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Abstract

The TPTP language, developed within the framework of the TPTP library, allows the repre-
sentation of problems and solutions in first-order and higher-order logic. Whereas the writing of
solutions in resolution calculi is well documented and used, an appropriate representation of solu-
tions in tableau or connection calculi using the TPTP syntax has not yet been specified. This paper
describes how the TPTP language can be used to represent derivations and solutions in standard
tableau, sequent and connection calculi for classical first-order logic.

1 Introduction

The TPTP language specifies syntax and semantics for expressing problems in first-order and higher-
order logic. It is used not only within the TPTP library [23], but also within similar problem libraries,
e.g., the ILTP library [15]. The TPTP syntax for representing problems is used by a variety of auto-
mated theorem proving (ATP) systems based on different proof calculi. The TPTP language also allows
representation of solutions, e.g., derivations and models, produced by ATP systems. The writing of
derivations in resolution calculi is well documented and specified [25]. At the last CADE system com-
petition, CASC-22 [24], three of the five ATP systems that output proofs in the core FOF division use
the TPTP syntax. All three of those systems produce proofs that are based on resolution calculi.

Even though the TPTP syntax is flexible, the presentation of derivations in, e.g., tableau, sequent or
connection calculi is not straightforward. Derivations in these calculi differ significantly from derivations
in the resolution calculus. Whereas the leaves of a proof in the tableau calculus consists of the axioms
of the calculus, the leaves of a derivation in the resolution calculus consists of the formulae of the given
problem; the axiom of the (formal) resolution calculus is the empty clause [18], which occurs only at the
root of a refutation.

This paper describes how the TPTP language can be used to represent derivations and proofs in
standard tableau and connection calculi. As the sequent calculus is closely related to the tableau calculus,
this can easily be adapted to present derivations in the sequent calculus as well. This is a proposed format,
not yet formally established as a TPTP standard; community feedback with suggestions for improvement
are welcome. The goal is to produce a format that is compatible with the existing format for representing
derivations (reviewed in Section 2.2), so that existing TPTP infrastructure for proof processing, e.g., the
GDV proof verifier [21] and the IDV proof visualizer [26], can be used with little or no modification.

2 The TPTP Language

The TPTP language is suitable for representing problems as well as derivations in first-order and higher-
order logic. The following description presents its main concepts. A detailed definition is part of the
TPTP library [23]; see also [25].
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%------------------------------------------------------------------------

% File : SYN054+1 : TPTP v4.0.1. Released v2.0.0.

% Domain : Syntactic

% Problem : Pelletier Problem 24

% Status : Theorem

% Rating : 0.00 v2.1.0

%------------------------------------------------------------------------

fof(pel24_1,axiom, ( ~ ( ? [X] : ( big_s(X) & big_q(X) ) ) )).

fof(pel24_2,axiom, ( ! [X] : ( big_p(X) => ( big_q(X) | big_r(X) ) ) )).

fof(pel24_3,axiom, ( ~ ( ? [X] : big_p(X) ) => ? [Y] : big_q(Y) )).

fof(pel24_4,axiom, ( ! [X] : ( ( big_q(X) | big_r(X) ) => big_s(X) ) )).

fof(pel24,conjecture, ( ? [X] : ( big_p(X) & big_r(X) ) )).

%------------------------------------------------------------------------

Figure 1: The presentation of the TPTP problem SYN054+1

2.1 Representing Problems

The top level building blocks for problems using the TPTP syntax are annotated formulae, of the follow-
ing form:

language(name,role,formula,source,useful info).

The language is one of thf, fof, or cnf, for formulae in typed higher-order, first-order, and clause
normal form. Each annotated formula has a unique name. The role is, e.g., axiom or conjecture.
The source describes where the formula came from, e.g., an input file, and useful info is a list of user
information. The last two fields are optional.

Example 1. Pelletier’s problem 24 [14] consists of the following subformulae.

¬(∃x(Sx∧Qx)) Axiom 1 (1)
∀(Px⇒ (Qx∨Rx)) Axiom 2 (2)
¬(∃xPx)⇒∃yQy Axiom 3 (3)
∀x((Qx∨Rx)⇒ Sx) Axiom 4 (4)
∃x(Px∧Rx) Conjecture (5)

It stands for the first-order formula (Axiom 1∧Axiom 2∧Axiom 3∧Axiom 4)⇒ Conjecture . This prob-
lem is in the TPTP library under the name SYN054+1. Its representation using the TPTP syntax is given
in Figure 1 (with an abbreviated version of the full TPTP header).

2.2 Representing Derivations

A derivation (in the resolution calculus) is a directed acyclic graph whose leaf nodes are formulae from
the problem, and whose interior nodes are formulae inferred from parent formulae. A refutation is a
derivation that has the root node false, representing the empty clause. A derivation written in the TPTP
language is a list of annotated formulae, as for problems. For derivations the source has one of the forms

file(file name,file info)

inference(inference name,inference info,parents)

The former is used for formulae taken from the problem file. The latter is used for inferred formulae, in
which inference name is the name of the inference rule applied by the ATP system, inference info is a
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∀(Px⇒ (Qx∨Rx)) (2)

∃x(Px∧Rx) (5)

¬(∃x(Sx∧Qx)) (1)

∀x((Qx∨Rx)⇒ Sx) (4)

{¬Pz,Qz,Rz} (12) {¬Px,¬Rx} (24) {¬Sy,¬Qy} (9) {¬Qv,Sv} (21)

Figure 2: A derivation for SYN054+1 in the resolution calculus

[]ed list of additional information about the inference, and parents is a list of the (logical) parents’ node
names in the derivation. The inference info normally includes a status() term that record the seman-
tic relationship between the parents and the inferred formula as an SZS ontology value [22]. Variable
bindings applied to a logical parent are captured in bind/2 terms following the parent’s name.

%--------------------------------------------------------------------------------------------

fof(1, axiom,~(?[X1]:(big_s(X1)&big_q(X1))),file(’SYN054+1.p’,pel24_1)).

fof(2, axiom,![X1]:(big_p(X1)=>(big_q(X1)|big_r(X1))),file(’SYN054+1.p’,pel24_2)).

fof(3, axiom,(~(?[X1]:big_p(X1))=>?[X2]:big_q(X2)),file(’SYN054+1.p’,pel24_3)).

fof(4, axiom,![X1]:((big_q(X1)|big_r(X1))=>big_s(X1)),file(’SYN054+1.p’,pel24_4)).

fof(5, conjecture,?[X1]:(big_p(X1)&big_r(X1)),file(’SYN054+1.p’,pel24)).

fof(6, negated_conjecture,~(?[X1]:(big_p(X1)&big_r(X1))),inference(assume_negation,[],[5])).

fof(7, plain,![X1]:(~(big_s(X1))|~(big_q(X1))),inference(fof_nnf,[],[1])).

fof(8, plain,![X2]:(~(big_s(X2))|~(big_q(X2))),inference(variable_rename,[],[7])).

cnf(9, plain,(~big_q(X1)|~big_s(X1)),inference(split_conjunct,[],[8])).

fof(10,plain,![X1]:(~(big_p(X1))|(big_q(X1)|big_r(X1))),inference(fof_nnf,[],[2])).

fof(11,plain,![X2]:(~(big_p(X2))|(big_q(X2)|big_r(X2))),inference(variable_rename,[],[10])).

cnf(12,plain,(big_r(X1)|big_q(X1)|~big_p(X1)),inference(split_conjunct,[],[11])).

fof(13,plain,(?[X1]:big_p(X1)|?[X2]:big_q(X2)),inference(fof_nnf,[],[3])).

fof(14,plain,(?[X3]:big_p(X3)|?[X4]:big_q(X4)),inference(variable_rename,[],[13])).

fof(15,plain,(big_p(esk1_0)|big_q(esk2_0)),inference(skolemize,[],[14])).

cnf(16,plain,(big_q(esk2_0)|big_p(esk1_0)),inference(split_conjunct,[],[15])).

fof(17,plain,![X1]:((~(big_q(X1))&~(big_r(X1)))|big_s(X1)),inference(fof_nnf,[],[4])).

fof(18,plain,

![X2]:((~(big_q(X2))&~(big_r(X2)))|big_s(X2)),inference(variable_rename,[],[17])).

fof(19,plain,

![X2]:((~(big_q(X2))|big_s(X2))&(~(big_r(X2))|big_s(X2))),inference(distribute,[],[18])).

cnf(21,plain,(big_s(X1)|~big_q(X1)),inference(split_conjunct,[],[19])).

fof(22,negated_conjecture,![X1]:(~(big_p(X1))|~(big_r(X1))),inference(fof_nnf,[],[6])).

fof(23,negated_conjecture,

![X2]:(~(big_p(X2))|~(big_r(X2))),inference(variable_rename,[],[22])).

cnf(24,negated_conjecture,(~big_r(X1)|~big_p(X1)),inference(split_conjunct,[],[23])).

cnf(25,plain,(big_q(X1)|~big_p(X1)),inference(csr,[],[12,24])).

cnf(26,plain,(~big_q(X1)),inference(csr,[],[9,21])).

cnf(27,plain,(big_p(esk1_0)),inference(sr,[],[16,26])).

cnf(28,plain,(~big_p(X1)),inference(sr,[],[25,26])).

cnf(29,plain,($false),inference(sr,[],[27,28])).

%--------------------------------------------------------------------------------------------

Figure 3: A derivation for SYN054+1 in the resolution calculus using the TPTP syntax
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Example 2. Figure 2 shows a conversion of some of the axioms and the negated conjecture of problem
SYN054+1 from Example 1 to clause normal form, and a subsequent refutation of the clause normal
form in the resolution calculus [16]. The leaf nodes are the formulae of the problem. As the root node is
the empty clause, the derivation is a proof for problem SYN054+1. The representation of this derivation
using the TPTP syntax is given in Figure 3. It is a slightly simplified version of the original proof output
by the EP system [17]. The five inferences of the resolution proof are represented by the nodes 25 to 29.
The nodes of the proof in Figure 2 are annotated by the corresponding EP node numbers.

3 Representing Derivations in the Tableau Calculus

Tableau calculi are well-known proof search calculi for classical and non-classical logics [4, 6]. The
axiom and 12 rules of a standard tableau calculus for classical logic are given in Table 1 [20]. It uses
signed formulae of the form AT or AF , in which A is a first-order formula and T /F is its sign (or polarity).
The signed formula AF can be interpreted as A⇒ false. The usage of signed formulae allows an elegant
and uniform representation of the rules of the tableau calculus. The α-rules add formulae to a branch
of a derivation, and the β -rules split a branch of the derivation into two branches. When eliminating a
universal quantifier using the γ-rule, all free occurrences of the variable x in A are replaced by the term
t. In the δ -rule the variable x is replaced by a Skolem term that consists of a unique Skolem function
symbol ski and all variables x1, . . . ,xn that occur free in A. A formula A is valid if, and only if, there is a
derivation of AF in the tableau calculus.

Table 1: The axiom and the rules of the tableau calculus

Axiom AT

AF

⊥

α-rules ∧T (A∧B)T

AT

BT

∨F (A∨B)F

AF

BF

⇒F (A⇒ B)F

AT ∧BF

¬T (¬A)T

AF
¬F (¬A)F

AT

β -rules ∧F (A∧B)F

/\
AF BF

∨T (A∨B)T

/\
AT BT

⇒T (A⇒ B)T

/\
AF BT

γ-rules ∀T (∀xA)T

AT [x\t]
∃F (∃xA)F

AF [x\t]

δ -rules ∀F (∀xA)F

AF [x\ski(x1, ...,xn)]
∃T (∃xA)T

AT [x\ski(x1, ...,xn)]
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(∃x(Px∧Rx))F (1)
|

(¬(∃x(Sx∧Qx)))T (2)
|

(∀x(Px⇒ (Qx∨Rx)))T (3)
|

(¬(∃xPx)⇒∃yQy)T (4)
|

(∀x((Qx∨Rx)⇒ Sx))T (5)
|

(Pa∧Ra)F (6) [1,{x\a}]
���

���

XXXXXXXXXXX

PaF (7) [6] RaF (25) [6]
���

���

XXXXXXXXXXX

(¬(∃xPx))F (8) [4]
|

(∃xPx)T (9) [8]
|

PaT (10) [9,{x\a}]
|
× (11) [7,10]

(∃yQy)T (12) [4]
|

QbT (13) [12,{y\b}]
|

(∃x(Sx∧Qx))F (14) [2]
|

(Sb∧Qb)F (15) [14,{x\b}]
�����������

HH
HHHH

SbF (16) [15]
|

((Qb∨Rb)⇒ Sb)T (17) [5,{x\b}]

QbF (23) [15]
|
× (24) [13,23]

���
���

XXXXXXXXXXX

(Qb∨Rb)F (18) [17]
|

QbF (19) [18]
|
× (20) [13,19]

SbT (21) [17]
|
× (22) [16,21]

Figure 4: A derivation for SYN054+1 in the tableau calculus

Example 3. A derivation of problem SYN054+1 from Example 1 in the tableau calculus is shown in
Figure 4. It follows the common representation of standard tableau calculi for classical logic [6]. Each
node is annotated in ( )s by its number and in [ ]s by the number of the node whose formula is used as
the premise of the inference rule, its logical parent. Additionally, a substitution is given when the γ- or
δ -rule is applied. The constants a and b are Skolem terms. Branches that are closed by an axiom are
marked with ×. The derivation in Figure 4 is not a proof, because the rightmost branch (node 25) is not
closed by an axiom.
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%------------------------------------------------------------------------------------------------------

fof(0, conjecture,?[X]:(big_p(X)&big_r(X)),file(’SYN054+1.p’,pel24)).

fof(1, negated_conjecture,(~ ?[X]:(big_p(X)&big_r(X)))=>$false,inference(neg_conj,[pparent([0])],[0])).

fof(2, axiom,~ ?[X]:(big_s(X)&big_q(X)),file(’SYN054+1.p’,pel24_1)).

fof(3, axiom,![X]:(big_p(X)=>(big_q(X)|big_r(X))),file(’SYN054+1.p’,pel24_2)).

fof(4, axiom,~ ?[X]:big_p(X)=>?[Y]:big_q(Y),file(’SYN054+1.p’,pel24_3)).

fof(5, axiom,![X]:((big_q(X)|big_r(X))=>big_s(X)),file(’SYN054+1.p’,pel24_4)).

fof(6, plain,(big_p(X)&big_r(X))=>$false,

inference(exists_F,[status(thm),pparent([5])],[1:[bind(X,$fot(a))]])).

fof(7, plain,~big_p(a),inference(and_F,[and_F(split,[position(l)]),pparent([6])],[6])).

fof(8, plain,(~ ?[X]:big_p(X))=>$false,

inference(implies_T,[implies_T(split,[position(ll)]),pparent([7])],[4])).

fof(9, plain,?[X]:big_p(X),inference(neg_F,[status(thm),pparent([8])],[8])).

fof(10,plain,big_p(a),inference(exists_T,[status(thm),pparent([9])],[9])).

fof(11,plain,$false,inference(axiom,[status(thm),pparent([10])],[7,10])).

fof(12,plain,?[Y]:big_q(Y),inference(implies_T,[implies_T(split,[position(lr)]),pparent([7])],[4])).

fof(13,plain,big_q(b),inference(exists_T,[status(thm),pparent([12])],[12:[bind(Y,$fot(b))]])).

fof(14,plain,(?[X]:(big_s(X)&big_q(X)))=>$false,inference(neg_T,[status(thm),pparent([13])],[2])).

fof(15,plain,(big_s(b)&big_q(b))=>$false,

inference(exists_F,[status(thm),pparent([14])],[14:[bind(X,$fot(b))]])).

fof(16,plain,~big_s(b),inference(and_F,[and_F(split,[position(lrl)]),pparent([15])],[15])).

fof(17,plain,(big_q(b)|big_r(b))=>big_s(b),

inference(forall_T,[status(thm),pparent([16])],[5:[bind(X,$fot(b))]])).

fof(18,plain,(big_q(b)|big_r(b))=>$false,

inference(implies_T,[implies_T(split,[position(lrll)]),pparent([17])],[17]).

fof(19,plain,~big_q(b),inference(or_F,[status(thm),pparent([18])],[18])).

fof(20,plain,$false,inference(axiom,[status(thm),pparent([19])],[13,19])).

fof(21,plain,big_s(b),inference(implies_T,[implies_T(split,[position(lrlr)]),pparent([17])],[17])).

fof(22,plain,$false,inference(axiom,[status(thm),pparent([21])],[16,21])).

fof(23,plain,~big_q(b),inference(and_F,[and_F(split,[position(lrr)]),pparent([15])],[15])).

fof(24,plain,$false,inference(axiom,[status(thm),pparent([23])],[13,23])).

fof(25,plain,~big_r(a),inference(and_F,[and_F(split,[position(r)]),pparent([6])],[6])).

%------------------------------------------------------------------------------------------------------

Figure 5: A derivation for SYN054+1 in the tableau calculus using the TPTP syntax

Even though a derivation in the tableau calculus is still an acyclic directed graph, its structure is
different from the structure of a derivation in the resolution calculus. Hence the proof presentation
using the TPTP language needs to be adapted. For a tableau, in addition to listing the logical parents
of each formula in the parents list, the physical parent of each node is recorded in a pparent() term
in the inference information list. The branching of the tableau is recorded in the same way as splitting
inferences are recorded in CNF refutations [25, 21]. The inference name is axiom or the name of the
applied inference rule, i.e., and T, or F, implies F, neg T, neg F, and F, or T, implies T, forall T,
exists F, forall F, or exists T. A formula of the form AF is represented in the TPTP language by the
formula A=>$false, if A is a non-atomic formula; otherwise, if A is an atomic formula, it is represented
by ~A. A formula of the form AT is represented by A.

Example 4. The derivation of Figure 4 is shown using the TPTP syntax in Figure 5. The non-negated
original conjecture is added as node 0. Observe the fact that the physical parent might differ from the
logical parent. For example, the physical parent of node 8 is node 7, its formula is (¬(∃xPx))F , which is
obtained by an implies T inference, whose premise is the formula of node 4.

The proof representation is independent from the specific proof search (algorithm). Hence, the pro-
posed format can also be used to represent derivations obtained by, e.g., free-variable tableaux or a proof
search using iterative deepening.
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(11)

(2),(3),(5),Pa ` Pa (10)
axiom

(2),(3),(5),(∃xPx) ` Pa (9)
∃-left∗

(2),(3),(5) ` Pa,¬(∃xPx) (8)
¬-right

(20)

(3),Qb `Qb,Rb,Sb,Pa (19)
axiom

(3),Qb ` (Qb∨Rb),Sb,Pa (18)
∨-right

(22)

(3),Sb,Qb ` Sb,Pa (21)
axiom

(3),(Qb∨Rb)⇒ Sb,Qb ` Sb,Pa (17)
⇒-left

(3),∀x((Qx∨Rx)⇒ Sx),Qb ` Sb,Pa (16)
∀-left

(24)

(3),(5),Qb `Qb,Pa (23)
axiom

(3),(5),Qb ` Sb∧Qb,Pa (15)
∧-right

(3),(5),Qb ` ∃x(Sx∧Qx),Pa (14)
∃-right

¬(∃x(Sx∧Qx)),(3),(5),Qb ` Pa (13)
¬-left

(2),(3),(5),∃yQy ` Pa (12)
∃-left∗

(2),(3),¬(∃xPx)⇒∃yQy,(5) ` Pa (7)
⇒-left

. . . ` Ra (25)

(2)∧ (3)∧ (4)∧ (5) ` Pa∧Ra (6)
∧-right

(2),(3),(4),(5) ` ∃x(Px∧Rx)
∃-right

Figure 6: A derivation for SYN054+1 in the sequent calculus

Representing Derivations in the Sequent Calculus. The tableau calculus is closely related to the
sequent calculus [5]. Therefore, the TPTP format for tableau derivations can also be used for representing
derivations in standard sequent calculi [20]. Formulae of the form AT occur (only) on the left side of the
sequents (the antecedent), formulae of the form AF occur (only) on the right side (the succedent). Each
inference rule ruleT and ruleF in the tableau calculus corresponds to exactly one rule rule-left and rule-
right in the sequent calculus, respectively.

Example 5. Figure 6 shows the the sequent derivation that corresponds to the tableau derivation given
in Figure 4. However, as the Eigenvariable condition needs to be respected (for the ∃-left∗ rule), it might
be necessary to reorder some inference rules in order to obtain a correct sequent proof.

4 Representing Derivations in the Connection Calculus

Connection calculi, e.g. the connection method [2], the connection tableau calculus [8] and the model
elimination calculus [9], are established proof search calculi. In principle, derivations in the clausal
connection calculus can be seen as derivations in the tableau calculus with a connectedness condition [6].
But to this end many additional inferences need to be inserted. Hence it is advantageous to have a
different representation of derivations, in which each inference in the connection calculus is related to
exactly one inference in the representation (using the TPTP language).

The main concept of connection calculi is the guidance of the proof search by connections. A connec-
tion is a set of literals with opposite polarity but identical atomic formulae, i.e., {L1,L2} is a connection
if, and only if, L1 = ¬L2 or ¬L1 = L2. The connection calculus has three main inference rules: start,
reduction, and extension rule. These rules are depicted in Table 2. For details see [2, 8, 11]. A formula F
in disjunctive (conjunctive) clause normal form is valid (unsatisfiable) if, and only if, there is a derivation
in the (clausal) connection calculus such that every literal is an element of at least one connection.

Example 6. A derivation of problem SYN054+1 from Example 1 in the clausal connection calculus is
shown in Figure 7 and Figure 8. Again, each inference is annotated by its number, the clause number used
in the inference, and a substitution. The inferences with numbers 5 and 10 are applications of reduction
rules. The branch containing the circled literal, i.e., inference number 7, is closed by an application of
the lemma rule (see [11] for details). The derivation is a proof as every literal is element of a connection,
hence all branches are closed by at least one connection. The major left branch in Figure 7 is a compact
representation of the derivation shown in Figure 4, containing only the bold literals of Figure 4.
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Table 2: The rules of the (clausal) connection calculus

Start rule ������
L1

�
�
�

L2

. . .
. . .

Z
Z
Z

. . .

PPPPPP
Ln (σ)

is a derivation for a clause C = {L1, . . . ,Ln}
and a (term) substitution σ .

Reduction rule ...

D . . .
L (τ)

������
L1

�
�
�

L2

. . .
. . .

S
S

Li

. . .
. . .

PPPPPP
Ln (σ)

is a derivation, if D (without the thick line) is
a derivation, Li is a (leaf) literal not element of
a connection, L is a literal on the path from Li

to the root, and {τ(L),σ(Li)} is a connection.

Extension rule

�
�
�
�
�
�

Q
Q
Q

Q
Q

Q

D L (τ)
������

L1

�
�
�

L2

. . .
. . .

S
S

Li

. . .
. . .

PPPPPP
Ln (σ)

is a derivation for a clause C = {L1, . . . ,Ln}
and a substitution σ , if D is a derivation, L
is a (leaf) literal not element of a connection,
and {τ(L),σ(Li)} is a connection for some i.

A derivation in the clausal connection calculus using the TPTP language is a list of clausal annotated
formulae, as described in Section 2.2. Similar to a tableau, the parents is an ordered list in which the
first element is the name of the physical parent of the node, and the following element is the name of the
logical parent, i.e., the clause of the inference. Again, variable bindings are captured in bind/2 terms.
Additionally, the number of the selected literal of the physical parent is captured in a cnf selected/1
term. Optionally, such a term can be assigned to the logical parent as well, which would make it easier to
identify the connection. The inference name is the name of the applied inference rule, i.e., either start,
reduction, extension, or lemma.

Example 7. The derivation of Figure 7 is shown using this TPTP syntax in Figure 9. The output is
produced by the most recent version of the leanCoP system [12, 10].

            

```````````̀
¬Pa ¬Ra (1) [1,{x\a}]
�
��

@
@@

�������
C
CC

HH
HHH

Pa Qb (2) [4] ¬Pa����
Qa Ra (6) [3,{z\a}]

�
��

@
@@

�
��

@
@@

¬Sb ¬Qb (3) [2,{y\b}]

(7)

¬Sa ¬Qa (8) [2,{y\a}]
�
��

@
@@

�
��

@
@@

¬Qb Sb (4) [5,{v\b}] ¬Qa Sa (9) [5,{v\a}]

(5) (10)

Figure 7: A derivation for SYN054+1 in the connection calculus (tableau representation)
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¬Px

¬Rx

¬Sy

¬Qy

¬Pz

Qz

Rz

Pa

Qb

¬Qv

Sv

Sw

¬Rw



¬Px

¬Rx

¬Sy

¬Qy

¬Pz

Qz

Rz

Pa

Qb

¬Qv

Sv

Sw

¬Rw

����

(1) ↓
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(1) {x\a}
(3) {y\b}
(4) {v\b}

(6) {z\a}
(8) {y\a}
(9) {v\a}

Figure 8: A derivation for SYN054+1 in the connection calculus (matrix representation)

%-----------------------------------------------------------------------------------------------

fof(pel24_1,axiom,~ ?[X]:(big_s(X)&big_q(X)),file(’SYN054+1.p’,pel24_1)).

fof(pel24_2,axiom,![X]:(big_p(X)=>(big_q(X)|big_r(X))),file(’SYN054+1.p’,pel24_2)).

fof(pel24_3,axiom,~ ?[X]:big_p(X)=>?[Y]:big_q(Y),file(’SYN054+1.p’,pel24_3)).

fof(pel24_4,axiom,![X]:((big_q(X)|big_r(X))=>big_s(X)),file(’SYN054+1.p’,pel24_4)).

fof(pel24,conjecture,?[X]:(big_p(X)&big_r(X)),file(’SYN054+1.p’,pel24)).

fof(f0,negated_conjecture,~ ?[X]:(big_p(X)&big_r(X)),

inference(negate_conjecture,[status(cth)],[pel24])).

cnf(c1,plain,(~big_p(X)|~big_r(X)),inference(clausify,[status(esa)],[f0])).

cnf(c2,plain,(~big_s(Y)|~big_q(Y)),inference(clausify,[status(esa)],[pel24_1])).

cnf(c3,plain,(~big_p(Z)|big_q(Z)|big_r(Z)),inference(clausify,[status(esa)],[pel24_2])).

cnf(c4,plain,(big_p(a)|big_q(b)),inference(clausify,[status(esa)],[pel24_3])).

cnf(c5,plain,(~big_q(V)|big_s(V)),inference(clausify,[status(esa)],[pel24_4])).

cnf(1,plain,(~big_p(a)|~big_r(a)),

inference(start,[status(thm)],[c1:[bind(X,$fot(a))]])).

cnf(2,plain,(big_p(a)|big_q(b)),

inference(extension,[status(thm),pparent([1:[cnf_select([1])]])],[c4])).

cnf(3,plain,(~big_s(b)|~big_q(b)),

inference(extension,[status(thm),pparent([2:[cnf_select([2])]])],[c2:[bind(Y,$fot(b))]])).

cnf(4,plain,(~big_q(b)|big_s(b)),

inference(extension,[status(thm),pparent([3:[cnf_select([1])]])],[c5:[bind(V,$fot(b))]])).

cnf(5,plain,$false,

inference(reduction,[pparent([4:[cnf_select([1])]])],[2])).

cnf(6,plain,(~big_p(a)|big_q(a)|big_r(a)),

inference(extension,[status(thm).pparent([1:[cnf_select([2])]])],[c3:[bind(Z,$fot(a))]])).

cnf(7,plain,$false,

inference(lemma,[pparent([6:[cnf_select([1])]])],[1])).

cnf(8,plain,(~big_s(a)|~big_q(a)),

inference(extension,[status(thm),pparent([6:[cnf_select([2])]])],[c2:[bind(Y,$fot(a))]])).

cnf(9,plain,(~big_q(a)|big_s(a)),

inference(extension,[status(thm),pparent([8:[cnf_select([1])]])],[c5:[bind(V,$fot(a))]])).

cnf(10,plain,$false,

inference(reduction,[pparent([9:[cnf_select([1])]])],[6])).

%-----------------------------------------------------------------------------------------------

Figure 9: A derivation for SYN054+1 in the connection calculus using the TPTP syntax

9



TPTP Derivations in Tableau and Connection Calculi J. Otten, G. Sutcliffe

5 Conclusion

A proposal for representing standard tableau, sequent and connection calculi in the TPTP language has
been presented. Even though derivations in these calculi differ significantly from those in the resolution
calculus, the existing TPTP syntax is flexible enough to represent derivations in these calculi as well. A
common standard for presentation of derivations and proofs will increase the interoperability between
ATP systems, ATP tools, and application software (see, e.g., [19]).

Future work includes the development of tools to translate connection proofs into sequent proofs,
which are often used in interactive proof editors, such as Coq [1], NuPRL [3] or PVS [13].

A possible extension of the current work includes the use of the TPTP language to represent deriva-
tions in tableau and connection calculi for non-classical logics, e.g., intuitionistic and modal logics [7,
27]. These calculi often use additional annotations, e.g., a prefix that is assigned to each formula. The
TPTP syntax might need to be carefully extended in order to allow the presentation of derivations in
these calculi as well.
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