
First Order Reasoning on a Large Ontology

Adam Pease1, Geoff Sutcliffe2

1Articulate Software
apease[at]articulatesoftware.com

2University of Miami
geoff[at]cs.miami.edu

Abstract

We present results of our work on using first order theorem proving to reason
over a large ontology (the Suggested Upper Merged Ontology – SUMO), and
methods for making SUMO suitable for first order theorem proving. We describe
the methods for translating into standard first order format, as well as optimizations
that are intended to improve inference performance. We also describe our work in
translating SUMO from its native SUO-KIF language into TPTP format.

 1. Introduction
There are two main areas of effort in this work. The first is to take a language that
appears to be beyond first order, and translate it into the strict first order form needed for
standard first order theorem provers. The second is in developing techniques that allow
standard provers to perform well on reasoning problems on a large ontology. Most first
order theorem provers, particularly those whose development has been done using the
TPTP (Sutcliffe & Suttner, 1998) library for testing, have been optimized to perform well
on proofs that require deep reasoning on a very small number of axioms, on the order of
10, or on proofs with a small number of rules but very large numbers of ground facts.
Reasoning over a large ontology such as SUMO requires a spectrum of reasoning, from
simple matching and unification to deep multi-step proofs, but most typically has a key
problem of finding a small number of relevant axioms in a sea of irrelevant ones. There
are also certain axioms that are needed much more frequently than others. Current ATP
systems are not tuned to cope with these two distinctive aspects of reasoning over a large
ontology. The most general way of framing a solution is to trade space for time, caching
what are anticipated to be frequently used results.

The Suggested Upper Merged Ontology (SUMO) (Niles & Pease, 2001) is a free,
formal ontology of about 1000 terms and 4000 definitional statements. It is provided in
the SUO-KIF language (Pease, 2003), which is a first order logic with some second-order
extensions, and also translated into the OWL semantic web language (which is a
necessarily lossy translation, given the limited expressiveness of OWL). SUMO has also
been extended with a number of domain ontologies, which together number some 20,000
terms and 70,000 axioms. SUMO has been mapped to the WordNet lexicon (Fellbaum,
1998) of over 100,000 noun, verb, adjective, and adverb word senses (Niles & Pease,
2003), which not only acts as a check on coverage and completeness, but also provides a
basis for work in natural language processing (Pease & Murray, 2003) (Elkateb et al,
2006) (Scheffczyk et al, 2006). SUMO is now in its 75th free version; having undergone
five years of development, review by a community of hundreds of people, and application
in expert reasoning and linguistics. Various versions of SUMO have been subjected to
formal verification with an automated theorem prover. SUMO and all the associated tools
and products are available at www.ontologyportal.org .

 1.1. The SUO-KIF Language
SUO-KIF, the Standard Upper Ontology Knowledge Interchange Format (Pease,

2003) was created as a variant of the KIF language (Genesereth, 1991) and designed to
support the SUMO project. It retains the LISP-like syntax of the original KIF, but
simplifies the language somewhat by including only logical operators in the language
itself, leaving any ontology that employs the language to define and handle issues such as
class and instance declarations and the difference between necessary and sufficient
definitions (if any). It has a relatively “free” syntax, allowing higher-order constructs
such as variables in the predicate position, quantification over formulas, and no
restrictions such as prohibiting predicates and instances sharing names. On the other
hand, the syntax is more restricted than some other variants of KIF in that constructs that
have little use in common sense knowledge representation, such as empty conjunctions,
are not allowed. Variables are denoted by a leading “?” character, and universal
quantification, existential quantification, implication, and biimplication are shown as
“forall”, “exists”, “=>” and “<=>”, respectively. Quantifier lists are delimited by
parentheses and quantified variables have no explicit sort syntax.

 2. Conversion to First Order Logic
Since 2002 a customized version of Vampire (Riazanov & Voronkov, 2002) has been

the primary system available for reasoning over SUMO, as part of the open source Sigma
system (Pease, 2003). While the customizations allow Vampire to read SUO-KIF format,
there are some restrictions, most notably on those aspects of SUO-KIF that appear to be
beyond first order. Several transformations are required.

The first transformation is related to handling the type signature of predicates and
functions. Provers such as Vampire are unsorted, and variables range over the Herbrand
universe. However, SUMO specifies the signature of each predicate and function. When
run in an unsorted prover, these specifications can have the unintended effect of
generating contradictions. Because variables can be of any type, they can be bound to a
term that is incompatible with the encompassing predicate or function's signature. The
axiom that specifies the signature then contradicts that variable binding. In addition, by
allowing variables to be any type, the prover's search may find variable bindings that
cannot be part of the eventual successful solution, so there is an efficiency cost, as well as
a problem for finding an accurate proof.

To solve this problem, we relativize the formulae by generating additional
preconditions for each rule in the ontology, which then limits every formula to being
considered only if type requirements have been met. For example,

 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

is transformed into

 (=>
 (and
 (instance ?AGENT Agent)
 (instance ?PATIENT Object))
 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

Note that a naïve implementation of this approach would be to state
(=>
 (and
 (instance ?AGENT Agent)
 (instance ?TRANSFER Instance)
 (instance ?TRANSFER Process)
 (instance ?PATIENT Object))
 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

but since ?TRANSFER is already constrained by the first clause of the original rule,
those additional preconditions are not necessary.

There is an efficiency cost with using sortal prefixes, since they increase the number
of literals that must be proved in order to derive each conclusion. We would expect the
use of sortal prefixes to improve correctness, but at the cost of speed (and some space).
The use of sortals has not provided any obvious benefit so far (see Section 5), possibly
because we have not allowed each test to run for a long enough time. Further testing is
planned.

The second transformation deals with SUO-KIF's row, or sequence variables, which
follow a scheme proposed in (Hayes & Menzel, 2001). They are denoted by the '@'
symbol in KIF statements. They are analogous to the Lisp language's @REST variable.
This is not first order if the number of arguments it can handle is infinite. However, if
row variables have a definite number of arguments, they can be treated like a macro, and
become first order. For example,
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 @ROW))
 (?REL2 @ROW))

becomes
 (=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1))

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1 ?ARG2))
 (?REL2 ?ARG1 ?ARG2))

etc.

Note that this “macro” style expansion has the problem that unlike the intended semantics
of row variables, it is not infinite. If the macro processor only expands to five variables,
there is a problem if the knowledge engineer uses a relation with six. Because of that,
Sigma's syntax checker must prohibit relations with more arguments than the row
variable preprocessor expands to. Alternatively, we could first determine the maximum
number of relation arguments used in the KB, and then perform macro expansion up to
that number of arguments.

The third transformation universally quantifies all free variables. For example
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1))

becomes

(forall (?REL1 ?REL2 ?ARG1)
 (=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1)))

The fourth transformation eliminates the use of variables as predicates and functions.
A typical SUMO axiom that uses a variable in a predicate position is
(=>
 (inverse ?REL1 ?REL2)
 (forall (?INST1 ?INST2)
 (<=>
 (?REL1 ?INST1 ?INST2)
 (?REL2 ?INST2 ?INST1))))

This illustrates a case of variables, ?REL1 and ?REL2, being used as predicates.
Strictly speaking, variables in a predicate position are not first order. However, if we
adopt the simplifying assumption that such variables can range only over those predicates
that appear in the formulae in use, the statements become first order. All that is needed is
a simple syntactic transformation to make them appear so to a standard first order prover.
To do this, a “dummy” predicate called “holds_X__” is prepended to every atom, where
X is the arity of the predicate plus 1. This yields the following axiom
(=>
 (holds_3__ inverse ?REL1 ?REL2)
 (forall (?INST1 ?INST2)
 (<=>
 (holds_3__ ?REL1 ?INST1 ?INST2)
 (holds_3__ ?REL2 ?INST2 ?INST1))))

The inclusion of the arity in the “holds_X__” predicate is necessary to support
provers that do not support variable arity predicates, and the trailing __ avoids potential

conflicts with user predicates (which by convention should not end with __). An
analogous approach is taken for functions, using an “apply_X__” function. For example
(=>
 (and
 (attribute (GovernmentFn ?AREA) ?TYPE)
 (instance ?TYPE FormOfGovernment))
 (governmentType ?AREA ?TYPE))

becomes
(=>
 (and
 (holds_2__ attribute (apply_2__ GovernmentFn ?AREA) ?TYPE)
 (holds_3__ instance ?TYPE FormOfGovernment))
 (holds_3__ governmentType ?AREA ?TYPE))

These “holds_X__” and “apply_X__” wrappers are added to all atoms (in SUMO
every predicate has arity at least two), and to all non-constant function terms, even if the
predicate or function position is not a variable. This consistent treatment allows the same
unification possibilities as prior to the transformation, so that no completeness is lost. The
transformation has an added benefit of improving performance for those provers which
index clauses primarily on the predicate name.

The fifth transformation is significant. SUMO includes statements that are truly
second order. For example
 (=>
 (instance ?DEVICE MeasuringDevice)
 (hasPurpose ?DEVICE
 (exists (?MEASURE)
 (and
 (instance ?MEASURE Measuring)
 (instrument ?MEASURE ?DEVICE)))))

is an axiom that states that a MeasuringDevice has the purpose of being used as an
instrument in a Measuring action. Because hasPurpose takes a formula as its second
argument, it is not first order, and there is no simple trick or assumption that can be made
to reduce it to first order. The only solution available is to lose most of the semantics of
the statement, and turn it into an uninterpreted list. After transformation (omitting other
transformations for clarity) the axiom becomes
(=>
 (instance ?DEVICE MeasuringDevice)
 (list hasPurpose ?DEVICE
 (exists (?MEASURE)
 (and
 (instance ?MEASURE Measuring)
 (instrument ?MEASURE ?DEVICE)))))

While exists, and, etc., all lose their semantics, at least it is possible for a theorem
prover to unify over the list, retaining some limited possibility for reasoning with the
statement. To choose a bit clearer artificial example, supposing we had
(believes Mary
 (likes Mary Bill))

an answer for (believes Mary (likes ?X Bill)) could be found because
although (likes Mary Bill) becomes an uninterpreted list after the transformation, it
can still be subject to unification. However, if we had instead

(believes Mary
 (and
 (likes Mary Bill)
 (likes Sue Bill)))

an answer for (believes Mary (likes ?X Bill)) could not be found because
the two lists are not unifiable.

 3. Conversion to TPTP
While the conversions described above result in an essentially first-order form, there

are several aspects that are beyond the “traditional human-readable” format of the TPTP
language, as used by many current provers. The TPTP language uses Prolog-like user
terms and atoms, uses infix notation for binary operators, has a separate namespace for
operators, and provides a separate namespace for defined functors and predicates.
Additionally the TPTP language does not support arbitrary lists. These differences are
dealt with in the translation to TPTP format as follows.

A stack-based algorithm is used to convert from the SUO-KIF prefix form for binary
operators, stacking the translated form of an operator when found at the start of a
formula, copying it off the top of the stack for insertion between operand formulae, and
popping it off the stack at the end of the formula. As user terms and atoms are
encountered they are translated to Prolog’s prefix form, with variables prefixed by "V_",
and function and predicate symbols prefixed by "s_". All hyphens in user terms are
translated to underscores. Some defined functions are translated to corresponding
equivalents from the TPTP language, starting with a “$” (note that the TPTP standards
for defined arithmetic functions and predicates are in the process of being set as this
paper is being written, so some minor changes may be necessary in this aspect of the
translation to TPTP format). In the TPTP language double quoted strings are always
interpreted as themselves so that different strings are known to be not equal. In the
translation SUO-KIF double quoted strings are converted to single quoted constants, and
non-printable characters - carriage return, new line, tab, and formfeed - are replaced by
spaces. For example
(forall (?REL ?OBJ ?PROCESS)
 (=>
 (and
 (holds_3__ instance ?REL CaseRole)
 (holds_3__ instance ?OBJ Object)
 (holds_3__ ?REL ?PROCESS ?OBJ))
 (exists (?TIME)
 (holds_3__ overlapsSpatially
 (apply_3__ WhereFn ?PROCESS ?TIME) ?OBJ))))

is translated to
fof(name,axiom,
 ! [V_REL,V_OBJ,V_PROCESS] :
 ((holds_3__(s_instance,V_REL,s_CaseRole)
 & holds_3__(s_instance,V_OBJ,s_Object)
 & holds_3__(V_REL,V_PROCESS,V_OBJ))
 => ? [V_TIME] :
 holds_3__(s_overlapsSpatially,
 apply_3__(s_WhereFn,V_PROCESS,V_TIME),V_OBJ))).

In the translation to first-order form described in Section 2, it is explained that truly
second order constructs are dealt with by losing most of the semantics by conversion to
uninterpreted lists. This translated form is not directly usable in the TPTP format, as there

is no support for arbitrary lists. The current solution is to lose even more of the semantics,
by single quoting such expressions, thus treating them as constants. In this way the
possibility of unification over the list elements is lost - only unification of the whole is
possible. Part of the reason for taking this simplistic approach is that operators have a
separate namespace in the TPTP language, e.g., rather than SUO-KIF's and TPTP uses &.
As a result TPTP operators cannot be treated as constants in a list function. The list
solution can be implemented in the translation to TPTP format by retaining the SUO-KIF
forms of operators (which look like TPTP constants), and forming atoms with a
“list_X__” predicate to represent lists. For example

(=>
 (instance ?DEVICE MeasuringDevice)
 (hasPurpose ?DEVICE
 (exists (?MEASURE)
 (and
 (instance ?MEASURE Measuring)
 (instrument ?MEASURE ?DEVICE)))))

would be translated to
fof(name,axiom,
 ! [V_DEVICE,V_MEASURE] :
 (holds_3__(s_instance,V_DEVICE,s_MeasuringDevice)
 => holds_3__(s_hasPurpose,V_DEVICE,
 list_3__(s_exists,V_MEASURE,
 s_and(s_instance(V_MEASURE,s_Measuring),
 s_instrument(V_MEASURE,V_DEVICE))))).

 4. Optimization
It is always possible to compare a prover optimized for a given set of problems to one

that has not and show disappointing results for the unoptimized prover (Ramachandran et
al, 2005). Our challenge has been to develop a set of simple optimizations that allow a
set of standard, general-purpose, first-order provers to perform well on SUMO.

A first simple optimization is to cache transitive relationships. Almost any practical
query on SUMO requires reasoning about subclass and instance relationships at some
point during a proof. A standard prover does not give any special priority to SUMO's
axiom of transitivity, so many proofs attempts can spend a lot of time searching dead end
solution paths, when the answer is found mostly in a succession of applications of just
one axiom. A simple way to solve this is to cache all the subclass relationships. This
means that if SUMO authors have stated (subclass C B) and (subclass B A) that
our optimization code also generates (subclass C A), prior to any query being asked.

While prefixing all clauses with “holds_X__” is effective in making SUMO first-
order, as described above, it might not be the most efficient strategy. An alternative
approach is to instantiate all predicate and function variables with all the predicates and
functions with the same arity. For example
(=>
 (instance ?REL TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (?REL ?INST1 ?INST2)
 (?REL ?INST2 ?INST3))
 (?REL ?INST1 ?INST3))))

can be instantiated with subclass to yield
 (=>
 (instance subclass TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (subclass ?INST1 ?INST2)
 (subclass ?INST2 ?INST3))
 (subclass ?INST1 ?INST3))))

To avoid proliferating too many such instantiations however, the processor has to take
into account restrictions in the axioms themselves. A naïve approach would instantiate
the above axiom with predicates such as agent, which are not transitive. Our intuition
about the computational advantages of this approach are not supported by current test
results, as explained below.

 5. Tests
The table below reports preliminary results of testing the translation and

optimizations. The tests were performed using a 2002 version of Vampire on a 3.2GHz
PC with 2.9GB of memory. The default query timeout was set to 180 seconds. The
results are for tests performed on a KB consisting of SUMO plus the Mid-Level Ontology
(MILO).

The heading element “sortals” refers to the addition of type constraint antecedents to
axioms. The heading element “holds” refers to the addition of the artificial predicate
“holds_X__” to every clause. When tests are run with the option “instantiate”, predicate
variable instantiation is used instead. The heading element “caching” refers to pre-
computing the transitive closure of subsumption relations. The values in the "Overall
Ranking" row were computed with the following off-the-cuff algorithm: for each table:

1. Find the lowest value for Avg. total seconds. Call this LV.

2. For each column, take the average number of failed queries (i.e., 50 - Avg. # of
successful queries). Call this IA.

3. For each column take the Avg. total seconds value. Call this TS.

4. For each column, compute an index I using this formula: I = ((IA/50) *
(TS/LV)). Essentially, this is an ad hoc index of "badness", giving equal weight
to avg. number of failed queries and avg. total time per query run per parameter
configuration (column). The smaller this index, the "better" the overall
performance for this configuration of parameter settings relative to the other
configurations of settings.

5. Assign a rank to each column, based on the computed "badness" index, with 1
being best and 8 being worst.

Surprisingly, the optimizations we have implemented appear to give better
performance with our 2002 version of Vampire in only a few configurations, and the
results are difficult to interpret. Caching the subclass hierarchy does not generally
improve the query success rate. We surmise that the detrimental effect of caching is
related to the greatly increased size of the KB, but explanation of the actual causes
requires further investigation.

Before running the tests, we expected that the introduction of sortals, by constraining
the search space, would improve both query success rate and answer time. However, we

found instead that, for all combinations of using holds and caching, the introduction of
sortals degrades both success rate and performance. We believe that the degradation
results from the fact that sortals add extra literals which must be solved for each proof. It
may be that none of our current tests adequately targets the main problem that the
introduction of sortals was intended to solve: making predicate argument type constraints
more accessible to our 2002 version of Vampire, and thereby preventing spurious
conclusions. The instantiation of predicate variables (i.e., no use of holds_X__
prefixes) resulted in some improvement over using holds prefixes.

no sortals,
instantiate,
no caching

sortals,
instantiat

e, no
caching

no sortals,
holds, no
caching

sortals,
holds,

no
caching

no sortals,
instantiate,

caching

sortals,
instantiate,

caching

no sortals,
holds,

caching

sortals,
holds,

caching

Avg. %
successful 86% 82% 86% 30% 76% 82% 50% 32%

Avg. num.
successful 43/50 41/50 43/50 15/50 38/50 41/50 25/50 16/50

Avg. total
seconds 4,010 5,814 9,689 12,140 6,849 8,430 10,003 9,377

Normalized
avg. total

time
0.33 0.48 0.8 1 0.56 0.69 0.82 0.77

Overall
Rank 1 2 5 8 3 4 6 7

Table 1: Summary of Aggregate Performance per Run by Parameter Cluster

 6. Conclusion
We plan to continue our experiments along several dimensions. We need to expand

the variables tracked when running tests to include the numbers and types of formulas
(“rules”, Horn clauses, unit clauses, etc.), and the number and characteristics of the
proof(s) used to obtain each answer. We need to expand the number of tests and ensure
that they are representative of the queries typically posed in current applications. We
need to run in different memory configurations, to determine the impact of memory
paging on performance when the knowledge base is very large. We need to run tests on
SUMO alone, and on SUMO plus all of its domain ontologies. We need to run on all the
provers in the current TPTP suite, including the most recent version of Vampire. The
evolving set of tests is available at
 http://sigmakee.cvs.sourceforge.net/sigmakee/KBs/tests/
and the Sigma system that runs these tests is available at
 http://sigmakee.sourceforge.net/ .

Acknowledgments
This work has been funded by a number of sources, including the US Air Force, Army
CECOM, and DARPA. We are grateful for their investment. Some of this most recent
work has been helped from collaboration and discussion with German Rigau and his
students and colleagues at Universitat Politècnica de Catalunya and La Universidad del
País Vasco. We also appreciate the contributions of the anonymous ESARLT reviewers.

References

Elkateb, S., Black, W., Rodriguez, H, Alkhalifa, M., Vossen, P., Pease, A. and Fellbaum, C.,
(2006). Building a WordNet for Arabic, in Proceedings of The fifth international
conference on Language Resources and Evaluation (LREC 2006).

Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database. MIT Press, 1998.

Genesereth, M., (1991). “Knowledge Interchange Format'', In Proceedings of the Second
International Conference on the Principles of Knowledge Representation and Reasoning,
Allen, J., Fikes, R., Sandewall, E. (eds), Morgan Kaufman Publishers, pp 238-249.

Hayes, P., and Menzel, C., (2001). A Semantics for Knowledge Interchange Format, in Working
Notes of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology.

Niles, I & Pease A., (2001). “Towards A Standard Upper Ontology.” In Proceedings of Formal
Ontology in Information Systems (FOIS 2001), October 17-19, Ogunquit, Maine, USA,
pp 2-9. See also http://www.ontologyportal.org

Niles, I., and Pease, A. (2003) Linking Lexicons and Ontologies: Mapping WordNet to the
Suggested Upper Merged Ontology, Proceedings of the IEEE International Conference
on Information and Knowledge Engineering, pp 412-416.

Pease, A., (2003). The Sigma Ontology Development Environment, in Working Notes of the
IJCAI-2003 Workshop on Ontology and Distributed Systems. Volume 71 of CEUR
Workshop Proceeding series. See also http://sigmakee.sourceforge.net

Pease, A., (2004). Standard Upper Ontology Knowledge Interchange Format. Unpublished
language manual. Available at http://sigmakee.sourceforge.net/

Pease, A., and Murray, W., (2003). An English to Logic Translator for Ontology-based
Knowledge Representation Languages. In Proceedings of the 2003 IEEE International
Conference on Natural Language Processing and Knowledge Engineering, Beijing,
China, pp 777-783.

Ramachandran, D., P. Reagan, K. Goolsbey. First-Orderized ResearchCyc: Expressivity and
Efficiency in a Common-Sense Ontology. In Papers from the AAAI Workshop on
Contexts and Ontologies: Theory, Practice and Applications. Pittsburgh, Pennsylvania,
July 2005.

Riazanov A., Voronkov A. (2002). The Design and Implementation of Vampire. AI
Communications, 15(2-3), pp. 91—110.

Scheffczyk, J., Pease, A., Ellsworth, M., (2006). Linking FrameNet to the Suggested Upper
Merged Ontology, in Proceedings of Formal Ontology in Information Systems (FOIS-
2006), B. Bennett and C. Fellbaum, eds, IOS Press, pp 289-300.

Sutcliffe G., Suttner C.B. (1998), The TPTP Problem Library: CNF Release v1.2.1, Journal of
Automated Reasoning 21(2), 177-203.

