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Abstract 

We present results of our work on using first order theorem proving to reason 
over a large ontology (the Suggested Upper Merged Ontology – SUMO), and 
methods for making SUMO suitable for first order theorem proving.  We describe 
the methods for translating into standard first order format, as well as optimizations 
that are intended to improve inference performance. We also describe our work in 
translating SUMO from its native SUO-KIF language into TPTP format. 

 1. Introduction 
There are two main areas of effort in this work. The first is to take a language that 
appears to be beyond first order, and translate it into the strict first order form needed for 
standard first order theorem provers. The second is in developing techniques that allow 
standard provers to perform well on reasoning problems on a large ontology. Most  first 
order theorem provers, particularly those whose development has been done using the 
TPTP (Sutcliffe & Suttner, 1998) library for testing, have been optimized to perform well 
on proofs that require deep reasoning on a very small number of axioms, on the order of 
10, or on proofs with a small number of rules but very large numbers of ground facts. 
Reasoning over a large ontology such as SUMO requires a spectrum of reasoning, from 
simple matching and unification to deep multi-step proofs, but most typically has a key 
problem of finding a small number of relevant axioms in a sea of irrelevant ones. There 
are also certain axioms that are needed much more frequently than others. Current ATP 
systems are not tuned to cope with these two distinctive aspects of reasoning over a large 
ontology. The most general way of framing a solution is to trade space for time, caching 
what are anticipated to be frequently used results. 

The Suggested Upper Merged Ontology (SUMO) (Niles & Pease, 2001) is a free, 
formal ontology of about 1000 terms and 4000 definitional statements. It is provided in 
the SUO-KIF language (Pease, 2003), which is a first order logic with some second-order 
extensions, and also translated into the OWL semantic web language (which is a 
necessarily lossy translation, given the limited expressiveness of OWL). SUMO has also 
been extended with a number of domain ontologies, which together number some 20,000 
terms and 70,000 axioms.  SUMO has been mapped to the WordNet lexicon (Fellbaum, 
1998) of over 100,000 noun, verb, adjective, and adverb word senses (Niles & Pease, 
2003), which not only acts as a check on coverage and completeness, but also provides a 
basis for work in natural language processing (Pease & Murray, 2003) (Elkateb et al, 
2006) (Scheffczyk et al, 2006). SUMO is now in its 75th free version; having undergone 
five years of development, review by a community of hundreds of people, and application 
in expert reasoning and linguistics. Various versions of SUMO have been subjected to 
formal verification with an automated theorem prover. SUMO and all the associated tools 
and products are available at www.ontologyportal.org . 



 1.1.  The SUO-KIF Language 
SUO-KIF, the Standard Upper Ontology Knowledge Interchange Format (Pease, 

2003) was created as a variant of the KIF language (Genesereth, 1991) and designed to 
support the SUMO project.  It retains the LISP-like syntax of the original KIF, but 
simplifies the language somewhat by including only logical operators in the language 
itself, leaving any ontology that employs the language to define and handle issues such as 
class and instance declarations and the difference between necessary and sufficient 
definitions (if any).  It has a relatively “free” syntax, allowing higher-order constructs 
such as variables in the predicate position, quantification over formulas, and no 
restrictions such as prohibiting predicates and instances sharing names. On the other 
hand, the syntax is more restricted than some other variants of KIF in that constructs that 
have little use in common sense knowledge representation, such as empty conjunctions, 
are not allowed. Variables are denoted by a leading “?” character, and universal 
quantification, existential quantification, implication, and biimplication are shown as 
“forall”, “exists”, “=>” and “<=>”, respectively.  Quantifier lists are delimited by 
parentheses and quantified variables have no explicit sort syntax. 

 2.  Conversion to First Order Logic 
Since 2002 a customized version of Vampire (Riazanov & Voronkov, 2002) has been 

the primary system available for reasoning over SUMO, as part of the open source Sigma 
system (Pease, 2003). While the customizations allow Vampire to read SUO-KIF format, 
there are some restrictions, most notably on those aspects of SUO-KIF that appear to be 
beyond first order.  Several transformations are required. 

The first transformation is related to handling the type signature of predicates and 
functions.  Provers such as Vampire are unsorted, and variables range over the Herbrand 
universe.  However, SUMO specifies the signature of each predicate and function.  When 
run in an unsorted prover, these specifications can have the unintended effect of 
generating contradictions.  Because variables can be of any type, they can be bound to a 
term that is incompatible with the encompassing predicate or function's signature.  The 
axiom that specifies the signature then contradicts that variable binding.  In addition, by 
allowing variables to be any type, the prover's search may find variable bindings that 
cannot be part of the eventual successful solution, so there is an efficiency cost, as well as 
a problem for finding an accurate proof. 

To solve this problem, we relativize the formulae by generating additional 
preconditions for each rule in the ontology, which then limits every formula to being 
considered only if type requirements have been met.  For example,  
 
 (=> 
    (and 
        (instance ?TRANSFER Transfer) 
        (agent ?TRANSFER ?AGENT) 
        (patient ?TRANSFER ?PATIENT)) 
    (not 
        (equal ?AGENT ?PATIENT))) 

is transformed into 



 (=> 
    (and 
        (instance ?AGENT Agent) 
        (instance ?PATIENT Object)) 
    (=> 
        (and 
            (instance ?TRANSFER Transfer) 
            (agent ?TRANSFER ?AGENT) 
            (patient ?TRANSFER ?PATIENT)) 
        (not 
            (equal ?AGENT ?PATIENT))) 

Note that a naïve implementation of this approach would be to state 
(=> 
    (and 
        (instance ?AGENT Agent) 
        (instance ?TRANSFER Instance) 
        (instance ?TRANSFER Process) 
        (instance ?PATIENT Object)) 
    (=> 
        (and 
            (instance ?TRANSFER Transfer) 
            (agent ?TRANSFER ?AGENT) 
            (patient ?TRANSFER ?PATIENT)) 
        (not 
            (equal ?AGENT ?PATIENT))) 

but since ?TRANSFER is already constrained by the first clause of the original rule, 
those additional preconditions are not necessary. 

There is an efficiency cost with using sortal prefixes, since they increase the number 
of literals that must be proved in order to derive each conclusion.  We would expect the 
use of sortal prefixes to improve correctness, but at the cost of speed (and some space).  
The use of sortals has not provided any obvious benefit so far (see Section 5), possibly 
because we have not allowed each test to run for a long enough time.  Further testing is 
planned. 

The second transformation deals with SUO-KIF's row, or sequence variables, which 
follow a scheme proposed in (Hayes & Menzel, 2001). They are denoted by the '@' 
symbol in KIF statements. They are analogous to the Lisp language's @REST variable. 
This is not first order if the number of arguments it can handle is infinite. However, if 
row variables have a definite number of arguments, they can be treated like a macro, and 
become first order. For example, 
(=> 
    (and 
        (subrelation ?REL1 ?REL2) 
        (?REL1 @ROW)) 
    (?REL2 @ROW)) 

becomes 
 (=> 
    (and 
        (subrelation ?REL1 ?REL2) 
        (?REL1 ?ARG1)) 
    (?REL2 ?ARG1)) 



(=> 
    (and 
        (subrelation ?REL1 ?REL2) 
        (?REL1 ?ARG1 ?ARG2)) 
    (?REL2 ?ARG1 ?ARG2)) 

etc. 

Note that this “macro” style expansion has the problem that unlike the intended semantics 
of row variables, it is not infinite. If the macro processor only expands to five variables, 
there is a problem if the knowledge engineer uses a relation with six. Because of that, 
Sigma's syntax checker must prohibit relations with more arguments than the row 
variable preprocessor expands to. Alternatively, we could first determine the maximum 
number of relation arguments used in the KB, and then perform macro expansion up to 
that number of arguments. 

The third transformation universally quantifies all free variables. For example 
(=> 
    (and 
        (subrelation ?REL1 ?REL2) 
        (?REL1 ?ARG1)) 
    (?REL2 ?ARG1)) 

becomes 

(forall (?REL1 ?REL2 ?ARG1) 
    (=> 
        (and 
            (subrelation ?REL1 ?REL2) 
            (?REL1 ?ARG1)) 
        (?REL2 ?ARG1))) 
 

The fourth transformation eliminates the use of variables as predicates and functions.  
A typical SUMO axiom that uses a variable in a predicate position is  
(=> 
   (inverse ?REL1 ?REL2) 
   (forall (?INST1 ?INST2) 
      (<=> 
         (?REL1 ?INST1 ?INST2) 
         (?REL2 ?INST2 ?INST1)))) 

This illustrates a case of variables, ?REL1 and ?REL2, being used as predicates. 
Strictly speaking, variables in a predicate position are not first order.  However, if we 
adopt the simplifying assumption that such variables can range only over those predicates 
that appear in the formulae in use, the statements become first order.  All that is needed is 
a simple syntactic transformation to make them appear so to a standard first order prover.  
To do this, a “dummy” predicate called “holds_X__” is prepended to every atom, where 
X is the arity of the predicate plus 1.  This yields the following axiom 
(=> 
   (holds_3__ inverse ?REL1 ?REL2) 
   (forall (?INST1 ?INST2) 
      (<=> 
         (holds_3__ ?REL1 ?INST1 ?INST2) 
         (holds_3__ ?REL2 ?INST2 ?INST1)))) 

The inclusion of the arity in the  “holds_X__” predicate is necessary to support 
provers that do not support variable arity predicates, and the trailing __ avoids potential 



conflicts with user predicates (which by convention should not end with __).  An 
analogous approach is taken for functions, using an “apply_X__” function.  For example 
(=> 
    (and 
        (attribute (GovernmentFn ?AREA) ?TYPE) 
        (instance ?TYPE FormOfGovernment)) 
    (governmentType ?AREA ?TYPE)) 

becomes 
(=> 
    (and 
        (holds_2__ attribute (apply_2__ GovernmentFn ?AREA) ?TYPE) 
        (holds_3__ instance ?TYPE FormOfGovernment)) 
    (holds_3__ governmentType ?AREA ?TYPE)) 

These  “holds_X__” and “apply_X__” wrappers are added to all atoms (in SUMO 
every predicate has arity at least two), and to all non-constant function terms, even if the 
predicate or function position is not a variable. This consistent treatment allows the same 
unification possibilities as prior to the transformation, so that no completeness is lost. The 
transformation has an added benefit of improving performance for those provers which 
index clauses primarily on the predicate name.  

The fifth transformation is significant.  SUMO includes statements that are truly 
second order.  For example 
 (=> 
    (instance ?DEVICE MeasuringDevice) 
    (hasPurpose ?DEVICE 
        (exists (?MEASURE) 
            (and 
                (instance ?MEASURE Measuring) 
                (instrument ?MEASURE ?DEVICE))))) 

is an axiom that states that a MeasuringDevice has the purpose of being used as an 
instrument in a Measuring action.  Because hasPurpose takes a formula as its second 
argument, it is not first order, and there is no simple trick or assumption that can be made 
to reduce it to first order.  The only solution available is to lose most of the semantics of 
the statement, and turn it into an uninterpreted list.  After transformation (omitting other 
transformations for clarity) the axiom becomes  
(=> 
    (instance ?DEVICE MeasuringDevice) 
    (list hasPurpose ?DEVICE 
        (exists (?MEASURE) 
            (and 
                (instance ?MEASURE Measuring) 
                (instrument ?MEASURE ?DEVICE))))) 

While exists, and, etc., all lose their semantics, at least it is possible for a theorem 
prover to unify over the list, retaining some limited possibility for reasoning with the 
statement.  To choose a bit clearer artificial example, supposing we had  
(believes Mary  
  (likes Mary Bill)) 

an answer for (believes Mary (likes ?X Bill)) could be found because 
although (likes Mary Bill) becomes an uninterpreted list after the transformation, it 
can still be subject to unification.  However, if we had instead  



(believes Mary  
  (and 
    (likes Mary Bill) 
    (likes Sue Bill))) 

an answer for (believes Mary (likes ?X Bill)) could not be found because 
the two lists are not unifiable. 

 3.  Conversion to TPTP 
While the conversions described above result in an essentially first-order form, there 

are several aspects that are beyond the “traditional human-readable” format of the TPTP 
language, as used by many current provers. The TPTP language uses Prolog-like user 
terms and atoms, uses infix notation for binary operators, has a separate namespace for 
operators, and provides a separate namespace for defined functors and predicates. 
Additionally the TPTP language does not support arbitrary lists. These differences are 
dealt with in the translation to TPTP format as follows. 

A stack-based algorithm is used to convert from the SUO-KIF prefix form for binary 
operators, stacking the translated form of an operator when found at the start of a 
formula, copying it off the top of the stack for insertion between operand formulae, and 
popping it off the stack at the end of the formula. As user terms and atoms are 
encountered they are translated to Prolog’s prefix form, with variables prefixed by  "V_", 
and function and predicate symbols prefixed by "s_". All hyphens in user terms are 
translated to underscores. Some defined functions are translated to corresponding 
equivalents from the TPTP language, starting with a “$” (note that the TPTP standards 
for defined arithmetic functions and predicates are in the process of being set as this 
paper is being written, so some minor changes may be necessary in this aspect of the 
translation to TPTP format). In the TPTP language double quoted strings are always 
interpreted as themselves so that different strings are known to be not equal. In the 
translation SUO-KIF double quoted strings are converted to single quoted constants, and 
non-printable characters - carriage return, new line, tab, and formfeed - are replaced by 
spaces. For example 
(forall (?REL ?OBJ ?PROCESS) 
   (=> 
      (and 
         (holds_3__ instance ?REL CaseRole) 
         (holds_3__ instance ?OBJ Object) 
         (holds_3__ ?REL ?PROCESS ?OBJ)) 
      (exists (?TIME) 
         (holds_3__ overlapsSpatially  
             (apply_3__ WhereFn ?PROCESS ?TIME) ?OBJ)))) 

is translated to 
fof(name,axiom, 
    ! [V_REL,V_OBJ,V_PROCESS] : 
      ( ( holds_3__(s_instance,V_REL,s_CaseRole) 
        & holds_3__(s_instance,V_OBJ,s_Object) 
        & holds_3__(V_REL,V_PROCESS,V_OBJ) ) 
     => ? [V_TIME] : 
          holds_3__(s_overlapsSpatially, 
              apply_3__(s_WhereFn,V_PROCESS,V_TIME),V_OBJ) )). 

In the translation to first-order form described in Section 2, it is explained that truly 
second order constructs are dealt with by losing most of the semantics by conversion to 
uninterpreted lists. This translated form is not directly usable in the TPTP format, as there 



is no support for arbitrary lists. The current solution is to lose even more of the semantics, 
by single quoting such expressions, thus treating them as constants. In this way the 
possibility of unification over the list elements is lost - only unification of the whole is 
possible. Part of the reason for taking this simplistic approach is that operators have a 
separate namespace in the TPTP language, e.g., rather than SUO-KIF's and TPTP uses &. 
As a result TPTP operators cannot be treated as constants in a list function. The list 
solution can be implemented in the translation to TPTP format by retaining the SUO-KIF 
forms of operators (which look like TPTP constants), and forming atoms with a 
“list_X__” predicate to represent lists. For example 

(=> 
    (instance ?DEVICE MeasuringDevice) 
    (hasPurpose ?DEVICE 
        (exists (?MEASURE) 
            (and 
                (instance ?MEASURE Measuring) 
                (instrument ?MEASURE ?DEVICE))))) 

would be translated to 
fof(name,axiom, 
    ! [V_DEVICE,V_MEASURE] : 
      ( holds_3__(s_instance,V_DEVICE,s_MeasuringDevice) 
     => holds_3__(s_hasPurpose,V_DEVICE, 
             list_3__(s_exists,V_MEASURE, 
                 s_and(s_instance(V_MEASURE,s_Measuring), 
                       s_instrument(V_MEASURE,V_DEVICE))) )). 

 4.  Optimization 
It is always possible to compare a prover optimized for a given set of problems to one 

that has not and show disappointing results for the unoptimized prover (Ramachandran et 
al, 2005).  Our challenge has been to develop a set of simple optimizations that allow a 
set of standard, general-purpose, first-order provers to perform well on SUMO. 

A first simple optimization is to cache transitive relationships.  Almost any practical 
query on SUMO requires reasoning about subclass and instance relationships at some 
point during a proof.  A standard prover does not give any special priority to SUMO's 
axiom of transitivity, so many proofs attempts can spend a lot of time searching dead end 
solution paths, when the answer is found mostly in a succession of applications of just 
one axiom.  A simple way to solve this is to cache all the subclass relationships.  This 
means that if SUMO authors have stated (subclass C B) and (subclass B A) that 
our optimization code also generates (subclass C A), prior to any query being asked. 

While prefixing all clauses with “holds_X__” is effective in making SUMO first-
order, as described above, it might not be the most efficient strategy.  An alternative 
approach is to instantiate all predicate and function variables with all the predicates and 
functions with the same arity.  For example 
(=> 
    (instance ?REL TransitiveRelation) 
    (forall (?INST1 ?INST2 ?INST3) 
        (=> 
            (and 
                (?REL ?INST1 ?INST2) 
                (?REL ?INST2 ?INST3)) 
            (?REL ?INST1 ?INST3)))) 



can be instantiated with subclass to yield 
 (=> 
    (instance subclass TransitiveRelation) 
    (forall (?INST1 ?INST2 ?INST3) 
        (=> 
            (and 
                (subclass ?INST1 ?INST2) 
                (subclass ?INST2 ?INST3)) 
            (subclass ?INST1 ?INST3)))) 

To avoid proliferating too many such instantiations however, the processor has to take 
into account restrictions in the axioms themselves.  A naïve approach would instantiate 
the above axiom with predicates such as agent, which are not transitive.  Our intuition 
about the computational advantages of this approach are not supported by current test 
results, as explained below. 

 5.  Tests 
The table below reports preliminary results of testing the translation and 

optimizations.  The tests were performed using a 2002 version of Vampire on a 3.2GHz 
PC with 2.9GB of memory.  The default query timeout was set to 180 seconds.  The 
results are for tests performed on a KB consisting of SUMO plus the Mid-Level Ontology 
(MILO).   

The heading element “sortals” refers to the addition of type constraint antecedents to 
axioms.  The heading element “holds” refers to the addition of the artificial predicate 
“holds_X__” to every clause.  When tests are run with the option “instantiate”, predicate 
variable instantiation is used instead.  The heading element “caching” refers to pre-
computing the transitive closure of subsumption relations. The values in the "Overall 
Ranking" row were computed with the following off-the-cuff algorithm: for each table: 

1. Find the lowest value for Avg. total seconds.  Call this LV. 

2. For each column, take the average number of failed queries (i.e., 50 - Avg. # of 
successful queries).  Call this IA. 

3. For each column take the Avg. total seconds value.  Call this TS. 

4. For each column, compute an index I using this formula: I = ( (IA/50) * 
(TS/LV)).  Essentially, this is an ad hoc index of "badness", giving equal weight 
to avg. number of failed queries and avg. total time per query run per parameter 
configuration (column).  The smaller this index, the "better" the overall 
performance for this configuration of parameter settings relative to the other 
configurations of settings. 

5. Assign a rank to each column, based on the computed "badness" index, with 1 
being best and 8 being worst. 

Surprisingly, the optimizations we have implemented appear to give better 
performance with our 2002 version of Vampire in only a few configurations, and the 
results are difficult to interpret.  Caching the subclass hierarchy does not generally 
improve the query success rate.  We surmise that the detrimental effect of caching is 
related to the greatly increased size of the KB, but explanation of the actual causes 
requires further investigation.   

Before running the tests, we expected that the introduction of sortals, by constraining 
the search space, would improve both query success rate and answer time.  However, we 



found instead that, for all combinations of using holds and caching, the introduction of 
sortals degrades both success rate and performance.  We believe that the degradation 
results from the fact that sortals add extra literals which must be solved for each proof.  It 
may be that none of our current tests adequately targets the main problem that the 
introduction of sortals was intended to solve: making predicate argument type constraints 
more accessible to our 2002 version of Vampire, and thereby preventing spurious 
conclusions. The instantiation of predicate variables (i.e., no use of holds_X__ 
prefixes) resulted in some improvement over using holds prefixes.   

 

 
no sortals, 
instantiate, 
no caching 

sortals, 
instantiat

e, no 
caching 

no sortals, 
holds, no 
caching 

sortals, 
holds, 

no 
caching 

no sortals, 
instantiate, 

caching 

sortals,  
instantiate, 

caching 

no sortals, 
holds, 

caching 

sortals, 
holds, 

caching 

Avg. %  
successful 86% 82% 86% 30% 76% 82% 50% 32% 

Avg. num. 
successful 43/50 41/50 43/50 15/50 38/50 41/50 25/50 16/50 

Avg. total 
seconds 4,010 5,814 9,689 12,140 6,849 8,430 10,003 9,377 

Normalized 
avg. total 

time 
0.33 0.48 0.8 1 0.56 0.69 0.82 0.77 

Overall 
Rank 1 2 5 8 3 4 6 7 

Table 1: Summary of Aggregate Performance per Run by Parameter Cluster 

 6. Conclusion 
We plan to continue our experiments along several dimensions.  We need to expand 

the variables tracked when running tests to include the numbers and types of formulas 
(“rules”, Horn clauses, unit clauses, etc.), and the number and characteristics of the 
proof(s) used to obtain each answer.  We need to expand the number of tests and ensure 
that they are representative of the queries typically posed in current applications.  We 
need to run in different memory configurations, to determine the impact of memory 
paging on performance when the knowledge base is very large.  We need to run tests on 
SUMO alone, and on SUMO plus all of its domain ontologies.  We need to run on all the 
provers in the current TPTP suite, including the most recent version of Vampire.  The 
evolving set of tests is available at 
 http://sigmakee.cvs.sourceforge.net/sigmakee/KBs/tests/ 
and the Sigma system that runs these tests is available at 
 http://sigmakee.sourceforge.net/ . 
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