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Overview

m MATHSERV: Semantic Reasoning Web Services

® Some Systems Integrated in MATHSERV
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The MathServ Framework

A new framework for semantic reasoning services:
m Based on Web Service technology.

® Semantic markup for web services in the
Mathematical Service Description Language (MSDL):

= Developed by MONET and MathBroker project.

= Based on commonly agreed ontology.

®m Brokering mechanism retrieves and combines reasoning
services using modified POP planner.
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Benefits of MathServ

The MathServ framework can be used by humans or
machines to...

W retrieve reasoning services (by human VvV machine)
given a semantic description of a problem.

m automatically combine services to tackle a problem.

m tackle subproblems in automatic or interactive theorem
proving.

No need to know the underlying reasoning system!
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Systems Integrated as Web Services

1) Automated theorem proving systems:

m EP, Otter, SPASS.

m For classical first-order predicate logic with equality.
2) Otterfier Tool for proof transformation [Sutcliffe’04]:

m CNF refutation — CNF refutation (BrFP) calculus
BrFP = Binary resolution, Factoring, Paramodulation

m Calls Otter to replace “alien” inference steps
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More Systems Integrated

3) The Tramp system [Meier’'00]:

FOF problem
o +p —— ND proof at assertion level.
CNF refutation (BrFP)
assertion level step [Huang'94]: FCGceg CEFCDEF

(CDEF) : Vs1.Vs5.(s1 C s9 & Vr.(x € s = x € $9))
4) The P rex system [Fiedler'01]:
®m Formal proof —— Natural Language (NL) proof.

m Proof quality depends on linguistic knowledge.
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An Ontology for Service Descriptions
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An ATP Service in MSDL

The central part of an MSDL description [MICAI'04]:

Service: EpATP

input parameters: | problem::TSTP-CNF-Problem (Concept)

output parameters: | result::FO-ATP-Result

pre-conditions: T

post-conditions: proof(?result, ?proof) =
type(?proof, TSTP-CNF-Refutation)

® We completely omit XML details.

m Conditions in Semantic Web Rule Language (SWRL)
(RDF-triples, conjunction, implications).
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The Otterfier Service in MSDL

Service: OtterfierService

input parameters: | oldResult::FO-ATP-Result

output parameters: | newResult.:FO-ATP-Result

pre-conditions: proof( ?oldResult, ?0ldProof)

post-conditions: proof( ?newResult, ?newProof) A
type( ?newProof, TSTP-CNF-BrFP-Refutation) N
altProof(?newProof, ?oldProof)

W altProof = alternative proof
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The Services of Tramp and P.rex

©J.Zimmer

Service: NDforFOF

input parameters:

fofProblem:: TSTP-FOF-Problem
atpResult::FO-ATP-Result

output parameters:

ndProof.:Twega-ND-Proof

pre-conditions:

proof(atpResult, ?proof) N
type(?proof, TSTP-CNF-BrFP-Refutation)

post-conditions:

proofOfindProof, fofProblem)

Service: PrexND2NL

input parameters: ndProof.:Twega-ND-Proof

output parameters: | n/Proof.:NL-Proof

pre-conditions:

T

post-conditions: proofOf ?ndProof, ?p) A

informalProofOf( ?nlProof, ?p)
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Example Conjecture

Scenario: Given a first-order conjecture:

W hypotheses: F'isagroup, U C F,
Ve,y(x cUAyceU)= (zoy ' eclU) (Criterion)
® conclusion: YoweU=v1elU

M and some theory axioms, e.g.:
Vs1,82. (s1 C so & Vr.(x € 51 = € S9)) (CcDEF)
Queries:

Peter: Give me a first-order ATP system result!
Susan: Give me a ND calculus proof!

Mary: Give me a NL proof!

©J.Zimmer Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004 —-p.12



Example: TSTP Encoding

©J.Zimmer

fof (f_group,hypothesis, ( group(f) )).

fof (u_subset,hypothesis, ( subset(u,f) )).

fof (subgroupcriterion,hypothesis, ( ! [X,Y]
( (member(X,u) & member(Y,u))

=> member (multiply(f,X,inverse(f,Y)),u) ))).

fof (subset,axiom, ( ! [S,T]
( subset(S,T)

<=> 1! [X] : ( member(X,S) => member(X,T) )))).

fof (prove_this,conjecture, ( ! [V]
( member (V,u)

=> member (inverse(f,V),u) ))).
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Peter’s Query: Execution Plan
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Peter’s Query: A Resolution Proof

EP delivers a proof with 19 clauses in 31ms.

cnf (10,axiom, ( equal (multiply(X1,X2,inverse(X1,X2)),identity(X1))
| “group(X1) | "member(X2,X1))).

cnf (12,axiom, (group(£f))).

cnf (13,axiom, (subset(u,f))).

cnf (14,axiom, ( member (multiply(f,X1,inverse(f,X2)),u)
| “member(X1,u) | “member(X2,u))).

cnf (15, conjecture, (member (sk2,u))).

cnf (273,derived, ("member (sk2,f)),

inference(rw, [status(thm)], [270,15,theory(equality)])).
cnf (274 ,derived, (false),

inference(rw, [status(thm)], [273,51,theory(equality)])).
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Execution plan for Susan’s Query
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ND Proof answers Susan’s Query

Tramp’s ND proof with 10 steps (6 assertion level) after 20 seconds:

L2. 12 Fmember(C,U) (Hyp)
L4. #H; Fmember(multiply(F,C,inverse(F,C)),U) (Criterion L2)
L5. #Hy Fmember(C,F) (C DEF U C L2)
L6. #Hz Fmultiply(F,C,inverse(F,C)) = identity(F) (InvAx FGroup Lb5)
L7. #H4 Fmember(identity(F),U) (=Subst L4 L6)
L8. #, Fmember(multiply(F,identity(F),inverse(F,C)),U)(Criterion L7 L2)
L9. #3 Fmember(inverse(F,C),F) (InvAz FGroup Lb5)
L10. #s Fmultiply(F,identity(F),inverse(F,C)) (UnitAxz FGroup L9)
= inverse(F,C)
L3. H, L2k member(inverse(F,C),U) (=Subst L8 L10)
L1. A Fmember(C,U) = member(inverse(F,C),U) (=1 L3)
Conj.# EYxamember(xz,U) = member(inverse(F,x),U) (VI L1)
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Mary’s Query: Execution Plan with P.rex
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Mary’s Query: NL Proof

P rex’ NL proof after 80 seconds with BASIC linguistic knowledge:

InvAx because group(F). That implies that member(identity(F),U).
fore  member(multiply(F,identity(F),inverse(F,C)),U) by Criterion.
implies that member(inverse(F, C),U). Therefore member(C,U)

member (inverse(F, x),U) for all z.

[...] Let member(C,U). Then member(C, F) because subset(U, F) by C DEF.
Thus member(inverse(F,C), F') because group(F) by InvAx. That
plies that multiply(F,identity(F'),inverse(F,C)) = inverse(F,C) by UnitAx
since group(F). That implies that member(multiply(F, C,inverse(F,C)),U)
by Criterion. That leads to multiply(F, C,inverse(F,C)) = identity(F) by
There-

im-

That

implies
that member(inverse(F,C),U). That implies that member(x,U) implies that
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Conclusion

The MathServ framework offers
m Semantic retrieval of reasoning services.

m Our broker can provide customized execution plans for a
given query.

In Computer-supported theory development:

® Interactive theorem proving useful for
m closing subgoals.

m retrieve useful lemmas (HELM web services).

m Proofs in different calculi.
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Ongoing and Future Work

B Service Execution
= MONET plan executor?

m Description of other reasoning systems
(e.g., model generators, decision procedures?).

®m More fine-grained services (like MONET).
(e.g., given n € IN, prove that n is prime).

m Advanced brokering with
m reasoning on ontology (subsumption test, etc.).

m disjunctive plans (or re-planning).
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