

Integrated Proof Transformation Services

Jürgen Zimmer*

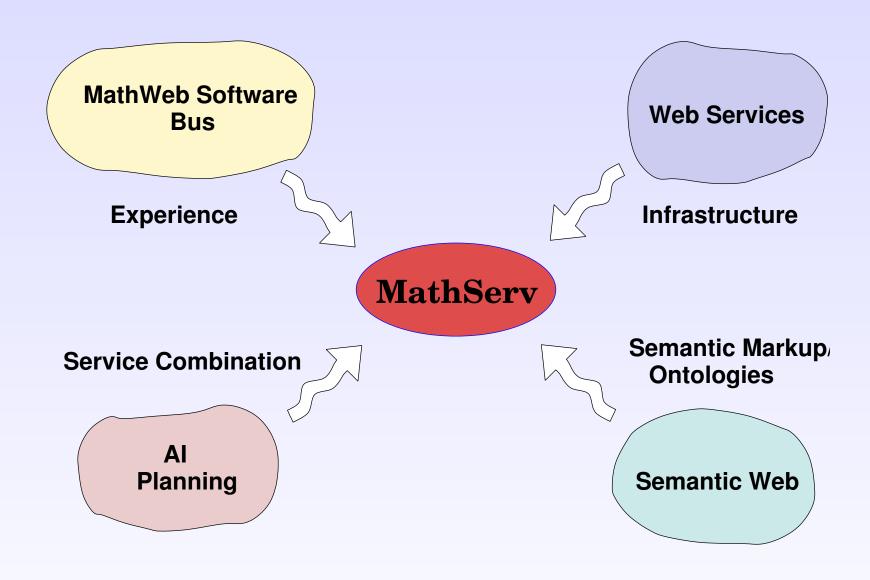
Universität des Saarlandes, Germany
University of Edinburgh, Scotland
joint work with Andreas Meier, Geoff Sutcliffe, Yuan Zhang

*The author is supported by the European Union
CALCULEMUS IHP Training Network HPRN-CT-2000-00102

Overview

- MATHSERV: Semantic Reasoning Web Services
- Some Systems Integrated in MATHSERV
- Theorem Proving and Proof Transformation Services
- Brokering of Proof Transformation Services
- Conclusion
- Future Work
- 1/2 Demo

The MathServ Framework



The MathServ Framework

A new framework for semantic reasoning services:

- Based on Web Service technology.
- Semantic markup for web services in the Mathematical Service Description Language (MSDL):
 - ⇒ Developed by MONET and MathBroker project.
 - ⇒ Based on commonly agreed ontology.
- Brokering mechanism retrieves and combines reasoning services using modified POP planner.

Benefits of MathServ

The MathServ framework can be used by humans or machines to...

- retrieve reasoning services (by human ∨ machine) given a semantic description of a problem.
- automatically combine services to tackle a problem.
- tackle subproblems in automatic or interactive theorem proving.

No need to know the underlying reasoning system!

Systems Integrated as Web Services

- 1) Automated theorem proving systems:
 - EP, Otter, SPASS.
 - For classical first-order predicate logic with equality.
- 2) Otterfier Tool for proof transformation [Sutcliffe'04]:
 - CNF refutation → CNF refutation (BrFP) calculus BrFP = Binary resolution, Factoring, Paramodulation
 - Calls Otter to replace "alien" inference steps

More Systems Integrated

- 3) The Tramp system [Meier'00]:
 - FOF problem

 + ND proof at assertion level.

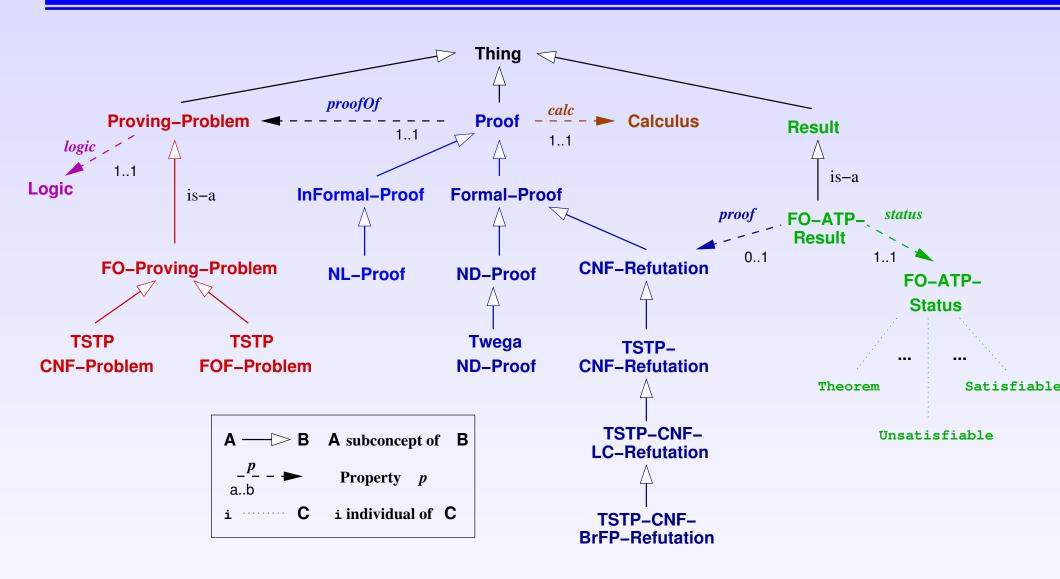
 CNF refutation (BrFP)

assertion level step [Huang'94]: $\frac{F \subset G \quad c \in F}{c \in G} \subset \mathsf{DEF}$

$$(\subset \mathsf{DEF}): \forall s_1. \forall s_2. (s_1 \subset s_2 \Leftrightarrow \forall x. (x \in s_1 \Rightarrow x \in s_2))$$

- 4) The P. rex system [Fiedler'01]:
 - Formal proof → Natural Language (NL) proof.
 - Proof quality depends on linguistic knowledge.

An Ontology for Service Descriptions



An ATP Service in MSDL

The central part of an MSDL description [MICAI'04]:

Service: EpATP		
input parameters:	problem::TSTP-CNF-Problem (Concept)	
output parameters:	<i>result</i> ::FO-ATP-Result	
pre-conditions:	T	
post-conditions:	$proof(?result, ?proof) \Rightarrow$	
	type(?proof, TSTP-CNF-Refutation)	

- We completely omit XML details.
- Conditions in Semantic Web Rule Language (SWRL) (RDF-triples, conjunction, implications).

The Otterfier Service in MSDL

Service: OtterfierService		
input parameters:	oldResult::FO-ATP-Result	
output parameters:	newResult::FO-ATP-Result	
pre-conditions:	proof(?oldResult, ?oldProof)	
post-conditions:	proof(?newResult, ?newProof) \	
	type(?newProof, TSTP-CNF-BrFP-Refutation) \	
	altProof(?newProof, ?oldProof)	

altProof = alternative proof

The Services of Tramp and P.rex

Service: NDforFOF		
input parameters:	fofProblem::TSTP-FOF-Problem	
	atpResult::FO-ATP-Result	
output parameters:	ndProof::Twega-ND-Proof	
pre-conditions:	proof(atpResult, ?proof) ∧	
	type(?proof, TSTP-CNF-BrFP-Refutation)	
post-conditions:	proofOf(ndProof, fofProblem)	

Service: PrexND2NL		
input parameters:	ndProof::Twega-ND-Proof	
output parameters:	<i>nlProof</i> ::NL-Proof	
pre-conditions:	Т	
post-conditions:	proofOf(?ndProof, ?p) ∧	
	informalProofOf(?nlProof, ?p)	

Example Conjecture

Scenario: Given a first-order conjecture:

■ hypotheses: F is a group, $U \subset F$,

$$\forall x, y. (x \in U \land y \in U) \Rightarrow (x \circ y^{-1} \in U)$$
 (Criterion)

- conclusion: $\forall v.v \in U \Rightarrow v^{-1} \in U$
- and some theory axioms, e.g.:

$$\forall s_1, s_2. \ (s_1 \subset s_2 \Leftrightarrow \forall x. (x \in s_1 \Rightarrow x \in s_2))$$
 (CDEF)

Queries:

Peter: Give me a first-order ATP system result!

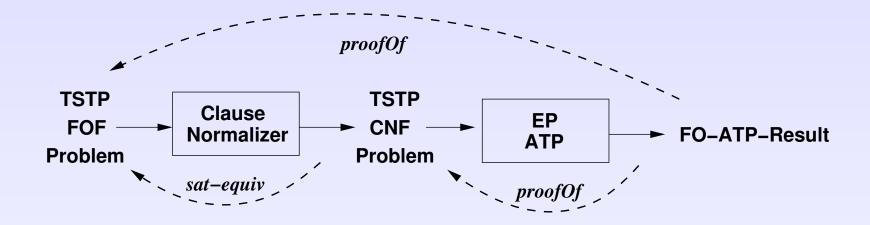
Susan: Give me a ND calculus proof!

Mary: Give me a NL proof!

Example: TSTP Encoding

```
fof(f_group,hypothesis, ( group(f) )).
fof(u_subset,hypothesis, ( subset(u,f) )).
fof(subgroupcriterion, hypothesis, ( ! [X,Y] :
           ( (member(X,u) & member(Y,u))
             => member (multiply(f,X,inverse(f,Y)),u) ))).
fof(subset,axiom, (![S,T]:
          ( subset(S,T)
            <=> ! [X] : ( member(X,S) => member(X,T) )))).
fof(prove_this,conjecture, ( ! [V] :
           ( member(V,u)
             => member(inverse(f,V),u) ))).
```

Peter's Query: Execution Plan



Peter's Query: A Resolution Proof

EP delivers a proof with 19 clauses in 31ms.

```
cnf(10,axiom,(equal(multiply(X1,X2,inverse(X1,X2)),identity(X1))
             | ~group(X1) | ~member(X2,X1))).
cnf(12,axiom,(group(f))).
cnf(13,axiom,(subset(u,f))).
cnf(14,axiom,( member(multiply(f,X1,inverse(f,X2)),u)
             \mid ~member(X1,u) \mid ~member(X2,u)).
cnf(15,conjecture,(member(sk2,u))).
 cnf(273,derived,(~member(sk2,f)),
    inference(rw,[status(thm)],[270,15,theory(equality)])).
 cnf(274,derived,(false),
    inference(rw,[status(thm)],[273,51,theory(equality)])).
```

Execution plan for Susan's Query

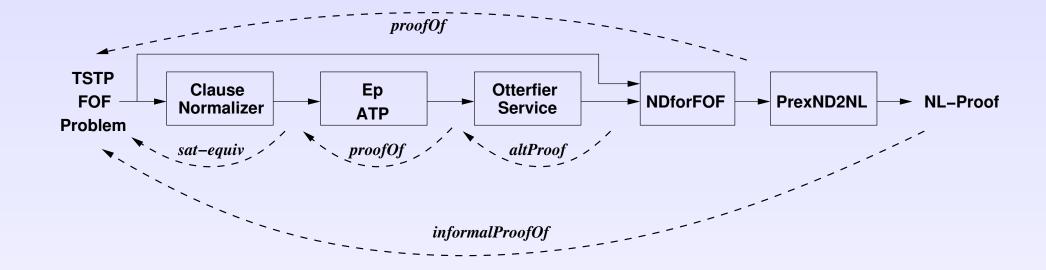


ND Proof answers Susan's Query

Tramp's ND proof with 10 steps (6 assertion level) after 20 seconds:

```
\vdash member(C, U)
L2.
                                                                             (Hyp)
             \vdash member(multiply(F, C, inverse(F, C)), U)
L4.
                                                                             (Criterion L2)
L5.
       \mathcal{H}_2 \vdash member(C, F)
                                                                             (\subset DEF\ U\subset L2)
L6.
             \vdash multiply(F, C, inverse(F, C)) = identity(F)
                                                                             (InvAx \ FGroup \ L5)
L7.
     \mathcal{H}_4 \vdash member(identity(F), U)
                                                                             (=Subst L4 L6)
             \vdash member(multiply(F, identity(F), inverse(F, C)), U)(Criterion\ L7\ L2)
L8.
L9.
       \mathcal{H}_3 \vdash member(inverse(F, C), F)
                                                                             (InvAx \ FGroup \ L5)
             \vdash multiply(F, identity(F), inverse(F, C))
L10.
                                                                             (UnitAx \ FGroup \ L9)
                                  =inverse(F,C)
L3.
      \mathcal{H}, L2 \vdash member(inverse(F, C), U)
                                                                             (=Subst\ L8\ L10)
L1.
            \vdash member(C, U) \Rightarrow member(inverse(F, C), U)
                                                                            (\Rightarrow I L3)
Conj.\mathcal{H}
            \vdash \forall x \text{ } member(x, U) \Rightarrow member(inverse(F, x), U)
                                                                             (\forall I \ L1)
```

Mary's Query: Execution Plan with P.rex



Mary's Query: NL Proof

P. rex' NL proof after 80 seconds with BASIC linguistic knowledge:

[...] Let member(C,U). Then member(C,F) because subset(U,F) by $\subset DEF$. Thus member(inverse(F,C),F) because group(F) by InvAx. That implies that multiply(F,identity(F),inverse(F,C)) = inverse(F,C) by UnitAx since group(F). That implies that member(multiply(F,C,inverse(F,C)),U) by Criterion. That leads to multiply(F,C,inverse(F,C)) = identity(F) by InvAx because group(F). That implies that member(identity(F),U). Therefore member(multiply(F,identity(F),inverse(F,C)),U) by Criterion. That implies that member(inverse(F,C),U). Therefore member(C,U) implies that member(inverse(F,C),U). That implies that member(inverse(F,C),U) implies that member(inverse(F,C),U). That implies that member(inverse(F,C),U) implies that member(inverse(F,C),U) for all x.

Conclusion

The MathServ framework offers

- Semantic retrieval of reasoning services.
- Our broker can provide customized execution plans for a given query.

In Computer-supported theory development:

- Interactive theorem proving useful for
 - closing subgoals.
 - retrieve useful lemmas (HELM web services).
- Proofs in different calculi.

Ongoing and Future Work

- Service Execution
 - ⇒ MONET plan executor?
- Description of other reasoning systems (e.g., model generators, decision procedures?).
- More fine-grained services (like MONET). (e.g., given $n \in \mathbb{N}$, prove that n is prime).
- Advanced brokering with
 - reasoning on ontology (subsumption test, etc.).
 - disjunctive plans (or re-planning).