
EXTRACTING RULE SCHEMAS FROM RULES, FOR
AN INTELLIGENT LEARNING DATABASE SYSTEM

GEOFF SUTCLIFFE and XINDONG WU
Department of Computer Science, James Cook University

Townsville, Qld, 4811, Australia

ABSTRACT
A software module for extracting rule schemas from rules, in the context of an intelligent
learning data base system (ILDB), is described. The ILDB system employs a two level
knowledge representation scheme, comprising rule schemas and rule bodies. This format
allows particularly efficient deduction to be performed. An interactive tool may be used
to capture knowledge in this format. Alternatively, a machine learning component may
be used to induce rules only. Without the corresponding schemas, the induced rules
cannot be used efficiently by the deduction engine. The extraction system described in
this paper overcomes this weakness. The technique has been tested on well-known data
sets.

1. Introduction
An intelligent learning data base (ILDB) system is an integrated learning system which
implements automatic knowledge acquisition from data bases by providing formalisms
for 1) translation of standard data base information into a form suitable for use by its
induction engines, 2) using induction techniques to produce knowledge from databases,
and 3) interpreting the knowledge produced efficiently to solve users' problems. The
translation of data base information to a form suitable for use by induction engines has
received some attention1. Induction of rules from data base information is a well
established field2,3,4,5,6,7,8,9,10. There are now induction systems that are capable of
dealing with realistically large databases. These induction systems produce knowledge in
the form of rule sets that can then be interpreted to solve users' problems. Three typical
families of induction algorithms are the generalisation-specialisation based AQ11-like
algorithms3,8, the decision tree based ID3-like algorithms5,6, and the extension matrix
based algorithms4,10.
An aspect of the third component of an ILDB - "interpreting the knowledge produced
efficiently to solve users' problems" - is considered in this paper. This is done in the
context of an existing ILDB system, KEShell211. KEShell2 is based on three existing
tools : KEShell12, dBASE3, and HCV10. These components are described in Section 2.
Briefly, the expert system shell KEShell provides a knowledge structuring system in
which the rules are grouped according to schemas. This grouping captures the structures
of the rules and allows for their efficient use. HCV is a low-order polynomial induction
algorithm that generates rules suitable for use in KEShell. However, the rules produced
by HCV are not grouped according to schemas. This paper describes how schemas are
extracted from the HCV rules, so that the rules can be grouped and used efficiently in
KEShell. Section 3 describes the process of schema extraction, and gives test results for
the MONK's problems13 and the Soybean data3. Section 4 concludes the paper.

2. KEShell2 - An ILDB System
KEShell2 is an integrated learning system which couples machine learning techniques
with database and knowledge base technology11. Figure 1 shows the main components
of the KEShell2 system.

Rules

User

Domain
Expert SIKT KBMS

DBMS

Rule schemas

 and

Rule bodies Deduction
Engine

Knowledge

Training

tuples
HCV

 DBMS - Database Management System (dBase3) KBMS - Knowledge Base Management System
 SIKT - Structured Interactive Knowledge Transfer facility HCV - Heuristic CoVering algorithm

Figure 1: KEShell2 Architecture

In the context of this paper, the substructure including the Deduction Engine, SIKT, and
HCV, are of interest. Each of these modules deals with the knowledge that is stored in
the KBMS.
KEShell's knowledge representation scheme has two levels: Rule Schemas + Rule
Bodies14, and is based on (factor,value) pairs. This is in contrast to typical rule-based
knowledge representation, such as in OPS5-like languages15. A factor, which is similar
to an attribute in M.1, EXPERT and KES16, is a name involved in a domain of expertise.
It can be a logical assertion, a discrete set variable or a continuous numeric variable. A
rule schema is of the form IF AF1, … , AFn THEN KF, where the AFi and KF are
factors. Each AFi is an antecedent factor, and KF is the consequence factor†. Associated
with each schema is a rule body. Rule bodies contain one or more rules. Rules are of the
form IF A1, …, An THEN K, where each Ai is antecedent of the rule, and K is the
consequence of the rule. The Ai and K are conditions and actions (including arithmetic
expressions). Each Ai examines the value of the factor AFi, and the consequence K is
performed iff each antecedent Ai has an appropriate value. An example of a rule schema
and associated rule body is as follows:
Rule schema:

 IF A, B, C THEN X

Rule body:
 IF A=0, B≠0 THEN X=-C/B
 IF A≠0 THEN X=(-B + sqrt(B*B - 4*A*C))/(2*A)
 IF A≠0 THEN X=(-B - sqrt(B*B - 4*A*C))/(2*A)

† The consequence factor is denoted by KF rather than CF to avoid confusion with the
common usage of CF to denote confidence factors.

The two level representation provides significant advantages over other representations15
• It provides a meta-rule structure by which a deduction engine can avoid attempting to

sequentially match each rule in a knowledge base with the data in working memory.
This issue, which motivated this work, is discussed below.

• The schemas highlight structure in the rules, thus providing semantic information
about the domain.

• The bodies can capture computations directly.
The deduction engine in KEshell2 supports both forward and backward chaining, with
the forward chaining working in linear time17. Deductions are efficiently implemented,
partially due to the two level knowledge representation scheme. A rule cannot be used
unless each antecedent factor has a value. Thus, before examining any rules, the
deduction engine checks the factors in working memory against the rule schemas. A rule
schema is satisfied if all it's antecedent factors have values. Only rule bodies associated
with satisfied rule schemas are examined by the deduction engine.
Knowledge acquisition in KEShell2 uses one of two tools : SIKT - a Structured
Interactive Knowledge Transfer facility; or HCV - a Heuristic CoVering algorithm.
SIKT18 is an interactive facility that allows experts and professionals to capture their
knowledge in a top down fashion. The knowledge is captured according to the two level
knowledge representation scheme, i.e., the user must first enter rule schemas, and then
provide the rule bodies for the schemas. A rule body contains several concrete rules.
SIKT was inspired by other knowledge-based tools, such as TEIRESIAS19 and KADS20.
HCV10 is a low-order polynomial induction algorithm, based on the extension matrix
approach. The rules or formulae produced by HCV take the same form of variable-
valued logic21 as used in AQ11 and have been shown empirically to be more compact
than both ID3-like and AQ11-like algorithms. The input to HCV is a set of training
examples, each a tuple of factor values attached to an indicator of the class the tuple
belongs to. These training examples are obtained from the DBMS in KEShell2. HCV
induces rules that recognise tuples in each class. These rules are the output from HCV.
The rules output by HCV have to be expanded to a simpler form before they can be used
by the KEShell2 deduction engine; the expansion is very simple. More significantly, in
contrast to the rule bodies captured using SIKT, the HCV rules (and thus the transformed
equivalents) are not grouped by schemas. This means that the deduction engine cannot
operate as efficiently with HCV output as it can with user supplied knowledge. It is
precisely this gap in KEShell2 that has been filled by the work described in Section 3.
The gap is filled by generating schemas for the rules output by HCV.

3. Extracting Schemas from Rules
The process of extracting schemas from the HCV output, and grouping the rules into rule
bodies according to the schemas, has been implemented in Prolog.
As a pre-processing step, the HCV output is passed through a simple text processing
phase to extract the rules. An example of a typical HCV rule is:

 [head_shape=[square]] ^
 [body_shape<>[round,oblong]] ^
 [jacket_color=[yellow,blue]] ^
 [is_smiling=[yes]] ^
 --> class='M2'.

The antecedent precedes the -->, and is a conjunction (as indicated by the ^s). Each
antecedent element specifies values that the factor may (=) or may not (<>) take. The
equality form [jacket_color=[yellow,blue]] indicates a disjunction, i.e., the
jacket_color may be yellow or blue. The inequality form
[body_shape<>[round,oblong]] indicates a conjunction, i.e., the body_shape may
be neither round nor oblong. HCV can also produce a special default rule, in the form:

 DEFAULT --> the Non-M1 class.
which is transformed into

 ['TRUE'] --> class='Non-M1'.
The TRUE antecedent is interpreted specially in the KEShell2 deduction engine. Such
rules are executed last, iff no other rules can fire.
Once in this form, the rules are read directly by the Prolog schema extraction program.
Each rule is transformed into an Antecedent --> Consequence rule structure in Prolog,
where the Antecedent is a Prolog list of the antecedents. The antecedent elements are
ordered using Prolog's built in ordering function, applied to the antecedents' factors. Note
that one HCV rule may be transformed into more than one
Antecedent --> Consequence rule structure, due to the existence of disjunctions in
HCV rules. For example, the first HCV rule above is translated into the following two
rules :

([head_shape=square,body_shape<>[round,oblong],jacket_color=yellow,
 is_smiling=yes] -->class='M2')

and
([head_shape=square,body_shape<>[round,oblong],jacket_color=blue,
 is_smiling=yes] -->class='M2')

Each structure thus formed is examined, and a schema corresponding to the rule is
generated and paired with the rule. The schemas generated contain the factors from the
antecedent of the rule and the factor from the consequent. The antecedent factors are, like
the antecedents themselves, ordered according to Prolog's built-in ordering function. For
example, the schema - rule pair formed from the first rule above is:

([head_shape,body_shape,jacket_color,is_smiling]-->class)-
([head_shape=square,body_shape<>[round,oblong],jacket_color=blue,
 is_smiling=yes] -->class='M2')

All the schema - rule pairs are grouped into a Prolog list. Finally, Prolog's setof
predicate is used to extract the unique schemas, and to group the rules into rule bodies,
according to the unique schemas. The Prolog code required to do this is pleasantly
elegant:
setof(UniqueSchema-RuleBody,
 setof(Rule,member(UniqueSchema-Rule,SchemaRulePairs),RuleBody),
SchemasAndBodies),

where SchemaRulePairs is the Prolog list of schema - body pairs. The output list,
SchemasAndBodies, is a list of pairs. Each pair consists of a unique rule schema and rule
body. Each rule body is a Prolog list of rules that fit the associated rule schema. The
earlier ordering of the antecedent factors in the schemas and rules means that the
components of rule antecedents may initially be in any order. After the ordering,
equivalent schema antecedents will be syntactically equivalent, which simplifies the
grouping task. The rule schemas and associated rule bodies are then output in an
appropriate format. Example output, containing the two rules above, looks like:

Rule Set #2 with 3 rules.
 Schema:
 IF head_shape,body_shape,jacket_color,is_smiling THEN class
 Body:
 IF head_shape=square, body_shape<>[round,oblong],
 jacket_color=yellow, is_smiling=yes THEN class=M2
 IF head_shape=square, body_shape<>[round,oblong],
 jacket_color=blue, is_smiling=yes THEN class=M2
 IF head_shape=round, body_shape=round, jacket_color=yellow,
 is_smiling=no THEN class=Non-M2

Note that the rules associated with a given rule schema need not have the same
consequence. The only restriction is that the factors in the antecedents and consequences
must be the same. The rule schemas in the KBMS can be further ordered to achieve
linear time complexity deductions17.

4. Results
The extraction process has been run on the HCV output for the three MONK's data sets13
and the Soybean data3. The MONK's problems are derived from an artificial robot
domain, in which robots (examples) are described by six multiple-valued attributes. The
sizes of the attribute value sets range from 2 to 4, giving 432 possible examples. The
MONK's problems are all binary classifications, defined over the same space. The three
problems differ in the type of the concept to be learned and in the amount of noise in the
training examples. The Soybean data characterises diseases in soybean plants. There are
35 attributes with value set sizes ranging from 2 to 7. There are approximately 1015
possible examples with 19 different classifications (diseases). The table below shows
results for each data set. The table lists the sizes of the data sets (numbers of examples),
number of rules induced by HCV, expanded number of rules for KEShell2, and number
of schemas extracted. The maximum number of KEShell2 rules associated with a schema
is also shown. In each example there are about half the number of schemas as there are
KEShell2 rules.

Data Set Size of
Data Set

HCV
Rules

KEShell2
Rules

Schemas Max.
Rules

MONK1 124 7 8 4 3
MONK2 169 40 50 26 7
MONK3 122 19 24 13 5

Soyabean 683 48 131 48 12
The schema extraction program is added into the KEShell2 architecture, as shown in
Figure 2.

User

Domain
Expert SIKT KBMS

DBMS

Rule schemas

 and

Rule bodies Deduction
Engine

Knowledge

Training

tuples Rules
HCV Schema

Extractor

Rule schemas

 and

Rule bodies

Figure 2 : Extended KEShell2 Architecture

The first effect of grouping the rules into rule bodies (according to the schemas) is to
speed up the deduction process. There are two cases, depending whether the deduction
strategy is forward chaining or backward chaining:
In forward chaining the deduction engine is given a tuple of factor values, and asked to
classify the tuple. Without the rule schemas (or equivalently, with one rule schema per
rule) the deduction engine will on average have to scan through half the rules to find a
match, or through all the rules if there is no applicable rule. In contrast, to find an
applicable rule with rule schemas, half the rule schemas have to be examined to find the
appropriate rule body and half of the rules in the rule body would be scanned to find the
match. In the case of no applicable rule, half the rule schemas have to be scanned to find
the appropriate rule body (if one exists, otherwise all of the rule schemas), then all of
those rules are examined.
The effect is even more dramatic in backward chaining, when the deduction engine has
the attributes in working memory, and iterates through the knowledge base to find an
applicable rule. Without rule schemas, the analysis is as above. With rule schemas, if
there is an applicable rule, it is found by checking each rule schema against the working
memory. If there is no data for one of a schema's antecedent factors, the associated rule
body is ignored. Otherwise the associated rules must be checked. The number of rules
that have to be checked in this process depends on what values the factors have in the
working memory. The number will certainly be less than or equal to the number checked
without rule schemas, due to the exclusion of some rule bodies. If there is no applicable
rule then the same search process is used. If there is no applicable rule because factor
values are missing from the working memory, then only the rule schemas are examined
(in contrast to the case without schemas where the rules are examined). If there is no
applicable rule because the factors have inappropriate values, then the rule schemas and
the rules associated with rule schemas where the factor values are available, will be
examined. Again, the number of checks will be less than the number without rule

schemas.
The second effect of grouping the rules into rule bodies is to highlight semantic
relationships between factors. For example, in the MONK's data examples that have been
tested, the body_shape and jacket_color factors appear together in most schema
attributes. This indicates that these two factors are independent of each other in terms of
the classification made. In contrast, factors that seldom appear together in schema
antecedents are likely to be dependent on each other. This issue is open to further
investigation.

5. Conclusion
The integration of database systems, knowledge acquisition techniques and efficient
deduction engines is an important frontier in machine learning and expert systems
research. It is important that the integration should be done in a seamless fashion, so as to
take full advantage of existing technology in each of the components. KEShell2 is a
recent example of such an integrated system. However, the junction between the machine
learning component (HCV) and the deduction engine was not efficient enough. KEShell2
used to put all the rules produced by HCV into a single rule body, with all attributes in
the example set as schema factors. Section 4 shows how the single rule body can be split
into a number of smaller rule bodies to improce the deduction efficiency. The schema
extraction software built in this work bridges that gap. The software has been
implemented in Prolog, and is easily integrated into the KEShell2 system.
The benefits of schema extraction are (i) to improve the efficiency of deduction in
KEShell2, and (ii) to highlight semantic relationships between factors. The first benefit is
easily quantified in terms of effort in the deduction engine. The second benefit is less
easy to quantify, but has been briefly analysed in Section 4.
To date the schema extraction system has only been tested on the MONK's problems and
the soybean data. The next step is to test the system on more large rule sets. In particular,
the system will be tested on rule sets that define multi-step deductions. Of interest will be
the ratio between the number of rules in a set and the number of schemas extracted. If the
number of schemas is consistently much smaller than the number of rules, then the effort
of schema extraction is justified in terms of deduction efficiency. The extent to which
semantic information can be gathered from the grouping of rules into rule bodies needs
further investigation.

6. References
1. Nieme T., Järvelin K. (1991), Prolog-Based Meta Rules for Relational Database

Representation and Manipulation, IEEE Transactions on Software Engineering
17(8), 762-788.

2. Wu X. (1993) Inductive Learning: Algorithms and Frontiers, Artificial Intelligence
Review 7(2), 93-108.

3. Michalski R.S., Chilausky R.L. (1980), Learning by Being Told and Learning from
Examples: An Experimental Comparison of Two Methods of Knowledge

Acquisition in the Context of Developing an Expert System for Soybean Disease
Diagnosis, International Journal of Policy Analysis and Information Systems 4, 125-
161.

4. Hong J. (1985), AE1: An Extension Matrix Approximate Method for the General
Covering Problem, International Journal of Computer and Information Sciences
14(6), 421-437.

5. Quinlan J.R. (1986), Induction of Decision Trees, Machine Learning 1, 81-106.
6. Quinlan J.R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann.
7. Cai Y., Cercone N., Han J. (1991), Learning in Relational Databases: An Attribute-

Oriented Approach, Computational Intelligence 7(3), 119-132.
8. Clark P., Niblett T. (1989), The CN2 Induction Algorithm, Machine Learning 3,

261-283.
9. Ke M., Ali M. (1991), A Knowledge-Directed Induction Methodology for Intelligent

Database Systems, International Journal of Expert Systems 4(1), 71-115.
10. Wu X. (1993), The HCV Induction Algorithm, Proceedings of the 21st ACM

Computer Science Conference, Kwasny S.C., Buck J. (Eds), ACM Press, 168-175.
11. Wu X (1992), KEShell2: An Intelligent Learning Data Base System, Research and

Development in Expert Systems IX, Bramer K.A., Milne R.W. (Eds), Cambridge
University Press, 253-272.

12. Wu X. (1991), KEshell: A "Rule Skeleton + Rule Body" Based Knowledge
Engineering Shell, Applications of Artificial Intelligence IX, Trivedi M.M. (Ed.),
SPIE Press, U.S.A., 632-639.

13. Thrun S.B., et al. (1991), The MONK's Problems - A Performance Comparison of
Different Learning Algorithms, CMU-CS-91-197, School of Computer Science,
Carnegie Mellon University.

14. Wu X. (1992), Rule Schema + Rule Body: A 2-Level Representation Language, DAI
Research Paper No. 579, Department of Artificial Intelligence, University of
Edinburgh. To appear in the International Journal of Computers and Their
Applications.

15. Brownston L., Farrell R., Kant E., Martin N. (1985), Programming Expert Systems
in OPS5, Addison-Wesley.

16. Harmon P., King D. (1985), Expert Systems, John Wiley & Sons, USA.
17. Wu X. (1993), LFA: A Linear Forward-chaining Algorithm for AI Production

Systems, Expert Systems: The International Journal of Knowledge Engineering
10(4), 237-242.

18. Wu X. (1994), SIKT: A Structured Interactive Knowledge Transfer Program,
Submitted.

19. Davis R. (1982), Applications of Meta-Level Knowledge to the Construction,
Maintenance and Use of Large Knowledge Bases, Ph.D. Thesis, Technical Report
Stan-CS-76-564, Stanford University, 1976; Reprinted in Knowledge-Based Systems
in Artificial Intelligence, Davis R., Lenat D.B. (Eds.), McGraw-Hill.

20. Wielinga B.J., Schreiber A.T., Breuker J.A. (1992), KADS: A Modelling Approach
to Knowledge Engineering, Knowledge Acquisition Journal 4(1), 5-53.

21. Michalski R.S. (1975), Variable-Valued Logic and Its Applications to Pattern
Recognition and Machine Learning, Computer Science and Multiple-Valued Logic
Theory and Applications, Rine D.C. (Ed.), Amsterdam: North-Holland, 506-534.

