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ABSTRACT 
A software module for extracting rule schemas from rules, in the context of an intelligent 
learning data base system (ILDB), is described. The ILDB system employs a two level 
knowledge representation scheme, comprising rule schemas and rule bodies. This format 
allows particularly efficient deduction to be performed. An interactive tool may be used 
to capture knowledge in this format. Alternatively, a machine learning component may 
be used to induce rules only. Without the corresponding schemas, the induced rules 
cannot be used efficiently by the deduction engine. The extraction system described in 
this paper overcomes this weakness. The technique has been tested on well-known data 
sets. 

1. Introduction 
An intelligent learning data base (ILDB) system is an integrated learning system which 
implements automatic knowledge acquisition from data bases by providing formalisms 
for 1) translation of standard data base information into a form suitable for use by its 
induction engines, 2) using induction techniques to produce knowledge from databases, 
and 3) interpreting the knowledge produced efficiently to solve users' problems. The 
translation of data base information to a form suitable for use by induction engines has 
received some attention1. Induction of rules from data base information is a well 
established field2,3,4,5,6,7,8,9,10. There are now induction systems that are capable of 
dealing with realistically large databases. These induction systems produce knowledge in 
the form of rule sets that can then be interpreted to solve users' problems. Three typical 
families of induction algorithms are the generalisation-specialisation based AQ11-like 
algorithms3,8, the decision tree based ID3-like algorithms5,6, and the extension matrix 
based algorithms4,10. 
An aspect of the third component of an ILDB - "interpreting the knowledge produced 
efficiently to solve users' problems" - is considered in this paper. This is done in the 
context of an existing ILDB system, KEShell211. KEShell2 is based on three existing 
tools : KEShell12, dBASE3, and HCV10. These components are described in Section 2. 
Briefly, the expert system shell KEShell provides a knowledge structuring system in 
which the rules are grouped according to schemas. This grouping captures the structures 
of the rules and allows for their efficient use. HCV is a low-order polynomial induction 
algorithm that generates rules suitable for use in KEShell. However, the rules produced 
by HCV are not grouped according to schemas. This paper describes how schemas are 
extracted from the HCV rules, so that the rules can be grouped and used efficiently in 
KEShell. Section 3 describes the process of schema extraction, and gives test results for 
the MONK's problems13 and the Soybean data3. Section 4 concludes the paper. 



2. KEShell2 - An ILDB System 
KEShell2 is an integrated learning system which couples machine learning techniques 
with database and knowledge base technology11. Figure 1 shows the main components 
of the KEShell2 system. 
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Figure 1: KEShell2 Architecture 

In the context of this paper, the substructure including the Deduction Engine, SIKT, and 
HCV, are of interest. Each of these modules deals with the knowledge that is stored in 
the KBMS. 
KEShell's knowledge representation scheme has two levels: Rule Schemas + Rule 
Bodies14, and is based on (factor,value) pairs. This is in contrast to typical rule-based 
knowledge representation, such as in OPS5-like languages15. A factor, which is similar 
to an attribute in M.1, EXPERT and KES16, is a name involved in a domain of expertise.  
It can be a logical assertion, a discrete set variable or a continuous numeric variable. A 
rule schema is of the form IF AF1, … , AFn THEN KF, where the AFi and KF are 
factors. Each AFi is an antecedent factor, and KF is the consequence factor†. Associated 
with each schema is a rule body. Rule bodies contain one or more rules. Rules are of the 
form IF A1, …, An THEN K, where each Ai is antecedent of the rule, and K is the 
consequence of the rule. The Ai and K are conditions and actions (including arithmetic 
expressions). Each Ai examines the value of the factor AFi, and the consequence K is 
performed iff each antecedent Ai has an appropriate value. An example of a rule schema 
and associated rule body is as follows: 
Rule schema: 

    IF A, B, C THEN X 

Rule body: 
    IF A=0, B≠0 THEN X=-C/B 
    IF A≠0 THEN X=(-B + sqrt(B*B - 4*A*C))/(2*A) 
    IF A≠0 THEN X=(-B - sqrt(B*B - 4*A*C))/(2*A) 

                                                
† The consequence factor is denoted by KF rather than CF to avoid confusion with the 
common usage of CF to denote confidence factors. 



The two level representation provides significant advantages over other representations15 
• It provides a meta-rule structure by which a deduction engine can avoid attempting to 

sequentially match each rule in a knowledge base with the data in working memory. 
This issue, which motivated this work, is discussed below. 

• The schemas highlight structure in the rules, thus providing semantic information 
about the domain.  

• The bodies can capture computations directly. 
The deduction engine in KEshell2 supports both forward and backward chaining, with 
the forward chaining working in linear time17. Deductions are efficiently implemented, 
partially due to the two level knowledge representation scheme. A rule cannot be used 
unless each antecedent factor has a value. Thus, before examining any rules, the 
deduction engine checks the factors in working memory against the rule schemas. A rule 
schema is satisfied if all it's antecedent factors have values. Only rule bodies associated 
with satisfied rule schemas are examined by the deduction engine. 
Knowledge acquisition in KEShell2 uses one of two tools : SIKT - a Structured 
Interactive Knowledge Transfer facility; or HCV - a Heuristic CoVering algorithm.  
SIKT18 is an interactive facility that allows experts and professionals to capture their 
knowledge in a top down fashion. The knowledge is captured according to the two level 
knowledge representation scheme, i.e., the user must first enter rule schemas, and then 
provide the rule bodies for the schemas. A rule body contains several concrete rules. 
SIKT was inspired by other knowledge-based tools, such as TEIRESIAS19 and KADS20. 
HCV10 is a low-order polynomial induction algorithm, based on the extension matrix 
approach. The rules or formulae produced by HCV take the same form of variable-
valued logic21 as used in AQ11 and have been shown empirically to be more compact 
than both ID3-like and AQ11-like algorithms. The input to HCV is a set of training 
examples, each a tuple of factor values attached to an indicator of the class the tuple 
belongs to. These training examples are obtained from the DBMS in KEShell2. HCV 
induces rules that recognise tuples in each class. These rules are the output from HCV. 
The rules output by HCV have to be expanded to a simpler form before they can be used 
by the KEShell2 deduction engine; the expansion is very simple. More significantly, in 
contrast to the rule bodies captured using SIKT, the HCV rules (and thus the transformed 
equivalents) are not grouped by schemas. This means that the deduction engine cannot 
operate as efficiently with HCV output as it can with user supplied knowledge. It is 
precisely this gap in KEShell2 that has been filled by the work described in Section 3. 
The gap is filled by generating schemas for the rules output by HCV. 

3. Extracting Schemas from Rules 
The process of extracting schemas from the HCV output, and grouping the rules into rule 
bodies according to the schemas, has been implemented in Prolog. 
As a pre-processing step, the HCV output is passed through a simple text processing 
phase to extract the rules. An example of a typical HCV rule is: 



       [ head_shape=[square] ] ^ 
       [ body_shape<>[round,oblong] ] ^ 
       [ jacket_color=[yellow,blue] ] ^ 
       [ is_smiling=[yes] ] ^ 
    --> class='M2'. 

The antecedent precedes the -->, and is a conjunction (as indicated by the ^s). Each 
antecedent element specifies values that the factor may (=) or may not (<>) take. The 
equality form [ jacket_color=[yellow,blue] ] indicates a disjunction, i.e., the 
jacket_color may be yellow or blue. The inequality form 
[ body_shape<>[round,oblong] ] indicates a conjunction, i.e., the body_shape may 
be neither round nor oblong. HCV can also produce a special default rule, in the form: 

       DEFAULT --> the Non-M1 class. 
which is transformed into 

       ['TRUE'] --> class='Non-M1'. 
The TRUE antecedent is interpreted specially in the KEShell2 deduction engine. Such 
rules are executed last, iff no other rules can fire. 
Once in this form, the rules are read directly by the Prolog schema extraction program. 
Each rule is transformed into an Antecedent --> Consequence rule structure in Prolog, 
where the Antecedent is a Prolog list of the antecedents. The antecedent elements are 
ordered using Prolog's built in ordering function, applied to the antecedents' factors. Note 
that one HCV rule may be transformed into more than one 
Antecedent --> Consequence rule structure, due to the existence of disjunctions in 
HCV rules. For example, the first HCV rule above is translated into the following two 
rules : 

([head_shape=square,body_shape<>[round,oblong],jacket_color=yellow, 
  is_smiling=yes] -->class='M2') 

and  
([head_shape=square,body_shape<>[round,oblong],jacket_color=blue, 
  is_smiling=yes] -->class='M2') 

Each structure thus formed is examined, and a schema corresponding to the rule is 
generated and paired with the rule. The schemas generated contain the factors from the 
antecedent of the rule and the factor from the consequent. The antecedent factors are, like 
the antecedents themselves, ordered according to Prolog's built-in ordering function. For 
example, the schema - rule pair formed from the first rule above is: 

([head_shape,body_shape,jacket_color,is_smiling]-->class)- 
([head_shape=square,body_shape<>[round,oblong],jacket_color=blue, 
  is_smiling=yes] -->class='M2') 

All the schema - rule pairs are grouped into a Prolog list. Finally, Prolog's setof 
predicate is used to extract the unique schemas, and to group the rules into rule bodies, 
according to the unique schemas. The Prolog code required to do this is pleasantly 
elegant: 
setof(UniqueSchema-RuleBody, 
    setof(Rule,member(UniqueSchema-Rule,SchemaRulePairs),RuleBody), 
SchemasAndBodies), 



where SchemaRulePairs is the Prolog list of schema - body pairs. The output list, 
SchemasAndBodies, is a list of pairs. Each pair consists of a unique rule schema and rule 
body. Each rule body is a Prolog list of rules that fit the associated rule schema. The 
earlier ordering of the antecedent factors in the schemas and rules means that the 
components of rule antecedents may initially be in any order. After the ordering, 
equivalent schema antecedents will be syntactically equivalent, which simplifies the 
grouping task. The rule schemas and associated rule bodies are then output in an 
appropriate format. Example output, containing the two rules above, looks like: 

Rule Set #2 with 3 rules. 
  Schema: 
    IF head_shape,body_shape,jacket_color,is_smiling THEN class 
  Body: 
    IF head_shape=square, body_shape<>[round,oblong],  
       jacket_color=yellow, is_smiling=yes THEN class=M2 
    IF head_shape=square, body_shape<>[round,oblong], 
       jacket_color=blue, is_smiling=yes THEN class=M2 
    IF head_shape=round, body_shape=round, jacket_color=yellow,  
       is_smiling=no THEN class=Non-M2 

Note that the rules associated with a given rule schema need not have the same 
consequence. The only restriction is that the factors in the antecedents and consequences 
must be the same. The rule schemas in the KBMS can be further ordered to achieve 
linear time complexity deductions17. 

4. Results 
The extraction process has been run on the HCV output for the three MONK's data sets13 
and the Soybean data3. The MONK's problems are derived from an artificial robot 
domain, in which robots (examples) are described by six multiple-valued attributes. The 
sizes of the attribute value sets range from 2 to 4, giving 432 possible examples. The 
MONK's problems are all binary classifications, defined over the same space. The three 
problems differ in the type of the concept to be learned and in the amount of noise in the 
training examples. The Soybean data characterises diseases in soybean plants. There are 
35 attributes with value set sizes ranging from 2 to 7. There are approximately 1015 
possible examples with 19 different classifications (diseases). The table below shows 
results for each data set. The table lists the sizes of the data sets (numbers of examples), 
number of rules induced by HCV, expanded number of rules for KEShell2, and number 
of schemas extracted. The maximum number of KEShell2 rules associated with a schema 
is also shown. In each example there are about half the number of schemas as there are 
KEShell2 rules. 
 

Data Set Size of 
Data Set 

HCV 
Rules 

KEShell2 
Rules 

Schemas Max. 
Rules 

MONK1 124 7 8 4 3 
MONK2 169 40 50 26 7 
MONK3 122 19 24 13 5 



Soyabean 683 48 131 48 12 
The schema extraction program is added into the KEShell2 architecture, as shown in 
Figure 2. 
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Figure 2 : Extended KEShell2 Architecture 

The first effect of grouping the rules into rule bodies (according to the schemas) is to 
speed up the deduction process. There are two cases, depending whether the deduction 
strategy is forward chaining or backward chaining: 
In forward chaining the deduction engine is given a tuple of factor values, and asked to 
classify the tuple. Without the rule schemas (or equivalently, with one rule schema per 
rule) the deduction engine will on average have to scan through half the rules to find a 
match, or through all the rules if there is no applicable rule. In contrast, to find an 
applicable rule with rule schemas, half the rule schemas have to be examined to find the 
appropriate rule body and half of the rules in the rule body would be scanned to find the 
match. In the case of no applicable rule, half the rule schemas have to be scanned to find 
the appropriate rule body (if one exists, otherwise all of the rule schemas), then all of 
those rules are examined. 
The effect is even more dramatic in backward chaining, when the deduction engine has 
the attributes in working memory, and iterates through the knowledge base to find an 
applicable rule. Without rule schemas, the analysis is as above. With rule schemas, if 
there is an applicable rule, it is found by checking each rule schema against the working 
memory. If there is no data for one of a schema's antecedent factors, the associated rule 
body is ignored. Otherwise the associated rules must be checked. The number of rules 
that have to be checked in this process depends on what values the factors have in the 
working memory. The number will certainly be less than or equal to the number checked 
without rule schemas, due to the exclusion of some rule bodies. If there is no applicable 
rule then the same search process is used. If there is no applicable rule because factor 
values are missing from the working memory, then only the rule schemas are examined 
(in contrast to the case without schemas where the rules are examined). If there is no 
applicable rule because the factors have inappropriate values, then the rule schemas and 
the rules associated with rule schemas where the factor values are available, will be 
examined. Again, the number of checks will be less than the number without rule 



schemas. 
The second effect of grouping the rules into rule bodies is to highlight semantic 
relationships between factors. For example, in the MONK's data examples that have been 
tested, the body_shape and jacket_color factors appear together in most schema 
attributes. This indicates that these two factors are independent of each other in terms of 
the classification made. In contrast, factors that seldom appear together in schema 
antecedents are likely to be dependent on each other. This issue is open to further 
investigation. 

5. Conclusion 
The integration of database systems, knowledge acquisition techniques and efficient 
deduction engines is an important frontier in machine learning and expert systems 
research. It is important that the integration should be done in a seamless fashion, so as to 
take full advantage of existing technology in each of the components. KEShell2 is a 
recent example of such an integrated system. However, the junction between the machine 
learning component (HCV) and the deduction engine was not efficient enough. KEShell2 
used to put all the rules produced by HCV into a single rule body, with all attributes in 
the example set as schema factors. Section 4 shows how the single rule body can be split 
into a number of smaller rule bodies to improce the deduction efficiency. The schema 
extraction software built in this work bridges that gap. The software has been 
implemented in Prolog, and is easily integrated into the KEShell2 system. 
The benefits of schema extraction are (i) to improve the efficiency of deduction in 
KEShell2, and (ii) to highlight semantic relationships between factors. The first benefit is 
easily quantified in terms of effort in the deduction engine. The second benefit is less 
easy to quantify, but has been briefly analysed in Section 4. 
To date the schema extraction system has only been tested on the MONK's problems and 
the soybean data. The next step is to test the system on more large rule sets. In particular, 
the system will be tested on rule sets that define multi-step deductions. Of interest will be 
the ratio between the number of rules in a set and the number of schemas extracted. If the 
number of schemas is consistently much smaller than the number of rules, then the effort 
of schema extraction is justified in terms of deduction efficiency. The extent to which 
semantic information can be gathered from the grouping of rules into rule bodies needs 
further investigation. 
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