
A Parallel Linear & UR-Derivation System1

Extended Abstract

Geoff Sutcliffe
The University of Western Australia

Perth, Western Australia
geoff@cs.uwa.oz.au

1 Introduction

The exponential size of the search space of the resolution procedure necessitates the use
of refined derivation systems, which restrict the search space. Given some fundamental
refinements, further refined derivation systems can be developed by combining several
fundamental refinements in a single derivation system. The manner in which
combinations can be formed is necessarily restricted by the requirement of
completeness. An alternative to combining refinements in a single derivation system is
to use multiple (refined) derivation systems concurrently. All the component derivation
systems of a concurrent derivation system use a common input set, and thus all
components can use clauses created by other components. Although hard to quantify, it
is this 'cross-fertilisation' between different derivation systems which furnishes the
power of concurrent derivation systems. A notable feature of the concurrent approach it
is only necessary for one of the component derivation systems to be complete.

The logical progression from the concurrent approach is to the parallel use of multiple
derivation systems. In a parallel derivation system the component derivation systems
run independently, and communicate in some (as yet) unspecified manner. The
advantage that a parallel system has over a concurrent system is that the components
can (and should) run on separate processors, thus enabling them to take advantage of
added computing power. This paper introduces a parallel derivation system called
GLD||UR, which uses a chain format linear derivation system and a UR-derivation
system in parallel.

2 The Derivation Components

Guided Linear Derivation
Guided Linear Derivation (GLD) is a chain format linear derivation system, based
broadly on the Graph Construction (GC) procedure [Shostak 1976]. GLD is a complete
derivation system, and has features that make it suitable for use in parallel with

1 This research was carried out at Edith Cowan University, Perth, Western Australia

UR-derivation : • an extended unit preference strategy in all extension operations, • a
unique mechanism for the reuse of derived information, including application of back
and forward subsumption for all new lemma chains, • a modified consecutively
bounded depth first search.

UR-derivation
The UR-derivation [Overbeek 1976] system used in GLD||UR uses the same chain
representation of clauses as the GLD component. As in GLD, back and forward
subsumption are applied for all new unit chains created.

3 The Parallel Implementation Environment - Prolog-Linda

The parallel aspects of GLD||UR have been implemented using Prolog-Linda
[Sutcliffe 1990]. Linda is a programming framework of language-independent operators
which may be injected into existing programming languages, resulting in new parallel
programming languages. Linda permits cooperation between parallel processes by
controlling access to a shared data structure called a tuple space. Manipulation of a
tuple space is only possible using Linda operators. Parallel execution of programs is
provided for via an operator which starts the execution of new processes. Prolog-Linda
is an extension of Prolog that supports tuple spaces and the Linda operators.

In our Prolog-Linda implementations the tuple space and associated operations are
implemented in a server process. Linda operations in client processes are translated into
requests which are passed to the server. The requests are serviced by evaluating them as
Prolog queries in the server. Requests for tuple space operations are simply queries on
Prolog procedures which implement those operations. This method of servicing
requests is a general mechanism, and allows any query to be passed to the server for
evaluation. The method may also be used in client processes, and is in fact used
extensively in GLD||UR.

Prolog-Linda has been implemented in two different environments. The first is in
muProlog on a network of Sun SPARC station-1s running SunOS 4.0.3. Intermachine
communication is via an Ethernet, using TCP/IP protocol. The second implementation
is in Arity Prolog on a network of IBM PS/2 55SXs, using MS-DOS 3.3. Intermachine
communication is via a token ring running IBM Netbios protocol.

4 GLD||UR Architectures

The parallel combination of GLD and the UR-derivation system forms GLD||UR. The
two systems are as described above, with extensions to implement the distribution of
chains created. Both derivation components maintain their own copies of the input set,

which are updated with chains that are created locally and with chains that are created
in the other derivation component. In both derivation components, new chains that
survive forward subsumption are added to the local input set and also transmitted to the
other component. At the same time, identifiers for any chains that were locally back
subsumed are also transmitted to the other component, so that they can be removed
from the input set in that component as well. The addition of input chains created by
GLD to the UR component's input set causes the UR-derivation system to report
refutations for input sets where this was previously not possible. On the other side of
this coin, extension operations against unit chains created by UR-derivation often
shorten GLD refutations.

Two versions of GLD||UR have been implemented. In the first version the derivation
components themselves control the distribution of the chains they create, while in the
second version an extra component is used to control the distribution of chains created.

GLD||UR-1
GLD||UR-1 consists of two derivation components, one for each derivation system.
Both components are responsible for examining, manipulating and transmitting to the
other component, any chains that they create. Within each component, any chains
created are passed to a chain control module which implements the subsumption
checks, removes subsumed input chains, adds new input chains to the input set, and
transmits both new chains and subsumed chains' identifiers to the other component. The
flow of information is illustrated in the following figure.

GLD||UR-1 has two problems : (i) The derivation components are responsible for
examining and manipulating the chains that they create. It would be preferable for this
work to be carried out external to the derivation components. (ii) The second problem
could be rather more severe. As the components deal independently with the chains
they create, it is possible for both to simultaneously create the same chain, determine
that it should be inserted into the input set, and transmit the chain to the other
component. As the receiving component accepts the new chain in good faith and adds it
to its input set, both components would then have two copies of the new chain in their
input sets. This would expand both search spaces.

GLD||UR-2 solves these problems.

GLD||UR-2
GLD||UR-2 consists of two derivation components and a separate chain control
component. Chains created in either of the derivation components are transmitted
directly to the chain control component. Here the new chains are examined for back and
forward subsumption, and if necessary transmitted to the derivation components, along
with identifiers for any chains that were back subsumed. The flow of information is
illustrated in the following figure.

This architecture permits the two derivation components to concentrate on their
derivation responsibilities. For the GLD component, this is particularly useful, as the
derivation operations in GLD are fairly complex. The gain is not so important in the
UR-derivation system.

5 Conclusion

GLD||UR-1 and GLD||UR-2 have been tested on a selection of reasonably hard
problems. The results of testing are given in the following table. Results are given in the
form <Number of derivation operations>:<Time taken>. In GLD||UR-1 and GLD||UR-
2, the time is given in the column for the component that first reports a proof.

Problem Derivation System
 Independent GLD||UR-1 GLD||UR-2
 GLD UR GLD UR GLD UR
Agatha 51 : 23 17 : 7 12 : 6 14 : 18 : 8 24 :
Group2 1413: 1158 95 : 36 21 : 95 : 12 17 : 88 : 11
School 148 : 60 No proof 134 : 48 : 52 108 : 37 50 :
Steamroller 15667 :

 12218
431 : 98 154 : 431 : 104 104 : 58 347 :

Truth&Lie
s

2141: 2035 No proof 859 : 688 : 1203 859 : 793 : 1144

The results show the benefits of combining the two derivation systems in parallel. The
relative advantage that GLD||UR has over the independent systems increases as the
problems get harder. It is noteworthy that the UR component obtained a proof for two
problems which it cannot prove independently.

The GLD||UR architectures allow easy addition of further components. If a new
derivation component is added, it is only necessary to extend the distribution of new
chain information to include the new component. In the GLD||UR-2 architecture,
further lemma control components can be added to the system with no modifications to
any of the existing components. As well as the addition of extra functional components,
work within an individual component can be distributed. For example, the GLD search
can be effectively guided by the use of a heuristic function, and the architecture of GLD
makes it possible for the heuristic function to be evaluated in parallel with derivation
operations.

GLD||UR is but one of a large class of parallel derivation systems, whose architecture is
identified by the relative independence of the individual derivation systems that run in
parallel. GLD||UR is an early development in this class of systems, and there is clearly
scope for further investigation. Questions concerning appropriate combinations and
numbers of components have yet to be addressed. The Prolog-Linda environment
makes it possible to quickly and easily build and evaluate combinations of components.
Experiments with different combinations of components are, to a large extent,
unhampered by the difficulty of determining the compatibility of the individual
derivation system. This is in contrast to the difficulties experienced when combining
multiple refinements of resolution into a single derivation system.

References
Overbeek R., McCharen J., and Wos L., Complexity and Related Enhancements for
Automated Theorem-Proving Programs, Computers and Mathematics with Applications
2, Pergamon Press, England, (1976), 1-16.

Shostak R.E., Refutation Graphs, Artificial Intelligence 7, North-Holland, Amsterdam,
The Netherlands, (1976), 51-64.

Sutcliffe G., and Pinakis J., Prolog-Linda - An Embedding of Linda in muProlog, In
Tsang C.P., Ed., Proceedings of AI'90 - the 4th Australian Conference on Artificial
Intelligence (Perth, Australia, 1990), World Scientific, Singapore, (1990), 331-340.

