Base Num Rem 2 75 37 1 18 1 9 0 4 1 2 0 1 0 0 1Therefore 7510 = 10010112.
Base Num Rem 16 1179 73 B 4 9 0 4Therefore 117910 = 49B16.
Set Total to 0 For each digit, from left to right Multiply Total by b and add the value of the digit
Base Total Digit 2 0 1 1 0 2 0 4 1 9 0 18 1 37 1 75Therefore 10010112 = 7510.
Base Total Digit 16 0 4 4 9 73 B 1179Therefore 49B16 = 117910.
0 1 0 1 0 0 1 1 + 0 1 0 1 0 1 0 1 --------------- = 1 0 1 0 1 0 0 0 C 0 1 0 1 0 1 1 1
Set the Result to 0 For each bit of the Multiplier, from right to left, do If the bit is 1 then Add Mulitplicand to Result Shift the Multiplicand left one bit
Bit Multiplicand Result 00000000 1 00000101 00000101 1 00001010 00001111 0 00010100 00001111 1 00101000 00110111 0 01010000 00110111 0 10100000 00110111 0 01000000 00110111 0 10000000 00110111Thus 11 * 5 = 55
0 0 0 0 1 1 1 1 + 0 0 0 0 1 0 0 1 --------------- = 0 0 0 1 1 0 0 0 C 0 0 0 0 1 1 1 1Therefore 15 + 9 = 24
0 0 0 0 1 1 1 1 + 1 1 1 1 0 1 1 1 --------------- = 0 0 0 0 0 1 1 0 C 1 1 1 1 1 1 1 1Therefore 15 - 9 = 6
Repeat Multiply the number by 2 Write down and discard the integer part Until the number reaches 0
Base Num Rem 2 37 18 1 9 0 4 1 2 0 1 0 0 1Therefore the integer part is 100101
Base Num Int 2 0.90625 1.8125 1 1.625 1 1.25 1 0.5 0 1.0 1 0Therefore the fractional part is 11101
Base Num Int 2 0.4 0.8 0 1.6 1 1.2 1 0.4 0 0.8 0 etc