SOLVING PROBLEMS BY
SEARCHING

In which we see how an agent can find
a sequence of actions that achieves its

goals.

. Search for solutions

Content

. Problem-solving agents

. Examples

. Search strategies

. Specialties

. Summary

1. Problem-solving agents

Vacuum cleaning Vacuum cleaning
robot (world state) robot (problem state)

All problem-solving agents are abstract
— World state: specification of every aspect of reality
— Problem state: only problem-relevant aspects

Problem-solving agents

e Problem-solving agents is a special kind of goal-based
agent.

o Tasks:
— How to define a problem?
— Problem type of formulation depends on available knowledge.

— Problems, solutions, what is this?

e Six different search strategies.

Simplified roadmap of part of Romania

] Oradea
[|
Arad
Sibiu Fagaras
TitiIE5aTE . Rimnicu Vilcea
: Pitesti
[] Lugoj
0
] Mehadia
Dobreta []
= Craiova

Neamt
]
] lasi
[| Vaslui
Hirsova
Urziceni
O
Bucharest
Eforie

[] Giurgiu

Problem-solving agent

Formulate goals

— Defined states, actions are mapping functions between states — which actions
lead to goal state?
e Example: Drive from Arad to Bukarest

Problem Formulation
— Follows 1, which actions and states have to be considered?

Search is this process of finding sequences of actions that lead to known
states.

— A search algorithm takes a problem as input and returns a solution in the form
of an action sequence.

Execution
— If there is a solution, we can carry out the actions.

Also: ‘formulate, search, execute’ - Design

Simple Problem-Solving-Agent

function SIMPLE-PROBLEM-SOLVING- AGENT(percept) returns an action
persistent: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state + UPDATE-STATE(state, percept)
if seq is empty then
goal — FORMULATE-GOAL(state)
problem «— FORMULATE-PROBLEM(state, goal)
seq «—— SEARCH(problem)
if seq = failure then return a null action
action «— FIRST(seq)
seq «—— REST(seq)
return action

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem,
searches for a sequence of actions that would solve the problem, and then executes the actions
one at a time. When this is complete, it formulates another goal and starts over.

e Environment is e How do we formulate problems
— static, observable, discrete and how do we search?

— deterministic

Well-defined problems and solutions

e Problems and solutions:
— Initial state

— Possible actions available to the agent, e.g. successor function.
State space: the set of all states reachable from the initial state. A
path in the state space is a sequence of states connected by a
sequence of actions.

— Goal test:

e Simple check: actual state = goal.

o Abstract property rather than an explicitly enumerated set of states (e.g.
chess).

— A path cost function that assigns a numeric cost to each path

o Initial state, set of actions. goal test and path cost functions together
define a problem.

e Solution
— Path from initial state to goal.

Performance measure while solving problems

1. Is there a solution?
2. Is it a good solution?

3. What is the cost of the solution? (search costs for time and space), the total costs
are the costs of the search and the path

Example: Arad to Bukarest
e 20 states, several solutions

¢ Problem solving investigates
which information goes in the
description of the operators and
states

[] Vaslui

e Abstraction

"] [] Hirsova

[] Mehadia

Dobreta []

[] Giurgiu

8 - Puzzle

Family: sliding-block puzzle, NP-complete, Standard test for new
algorithms in Al

7 2 4
— States
e Location of the 8 tiles in one of the 9 areas 5 6
plus blank
e In total 91/2 = 181,440 reachable states 8 3 1
— Operators et St
e Blank moves right, left, up or down. 1 o
— Goal-test 3| 4|l 5
e State like image on the right.
6 7 8
— Path costs T

e Each step costs 1.

8 - Queens problem

(incremental and complete-state formulation)

11

8 - Queens problem

(incremental and complete-state formulation)
States
e Any arrangement of 0 to 8 queens on the board.

Initial state
e No queens on board.

Successor function
e Add a queen to any empty square.

Goal test W

e 8 queens on board, none attacked. ﬂ

In this formulation, we have 64*63...57 =3*10!* W
possible sequences to investigate.

Path costs W
e 0, only final state counts

11

8 - Queens problem

(incremental and complete-state formulation)
States
e Any arrangement of 0 to 8 queens on the board.

Initial state
e No queens on board.

e Arrangements of 0 to 8 queens in the leftmost columns with none attacked.

Successor function
e Add a queen to any empty square.

e Add a queen to any square in the leftmost empty column such that it is not

attacked by any other queen.

Goal test W
e 8 queens on board, none attacked. \M

In this formulation, we have 64*63...57 ~3*10!* W

possible sequences to investigate. W W

Path costs W
e 0, only final state counts

11

Vacuum cleaner problem

— States — Goal test
o 8 states, see figure e No dirt
— Successor function — Path costs
e Move right, left and suck e Each step costs 1

(e [e [S°0
LCAQJ i‘ ggon chg i'@ A
LCE@ i E,QDR
D D

12

Vacuum cleaner problem

no sensors, dashed boxes: set of states

13

Examples (real world)

Finding routes

— Routing in networks

— Automatic travel routes
— Airline planning systems

Traveling Salesman Problem (TSP)

VLSI Layout
— Chip layout

Robot navigation
— Generalization of route-finding problem (continuous space)

Search in the Internet

14

3. Search for solutions

Generating action sequences

— Initial stated + successor function = new state (generates states).

— Also: expansion of states.
— Arad — Sibiu, Timizoara, Zerind as option.

— Search strategy: choice of how to expand states.

— Search tree, nodes.

Arad []

[] Vaslui

Pitesti

[] Hirsova

[] Mehadia Urziceni

Bucharest
Dobreta []

U craiova . Eforie
[] Giurgiu

15

3. Search for solutions

Generating action sequences

— Initial stated + successor function = new state (generates states).

— Also: expansion of states.
— Arad — Sibiu, Timizoara, Zerind as option.

— Search strategy: choice of how to expand states.

— Search tree, nodes.

1.) Initial state Arad

[] Vaslui

Pitesti

[] Hirsova

[] Mehadia Urziceni

Bucharest
Dobreta []

U craiova Eforie
[] Giurgiu

15

3. Search for solutions

Generating action sequences

— Initial stated + successor function = new state (generates states).

— Also: expansion of states.
— Arad — Sibiu, Timizoara, Zerind as option.

— Search strategy: choice of how to expand states.

— Search tree, nodes.

1.) Initial state Arad

Arad []

[] Vaslui

Pitesti

[] Hirsova

[] Mehadia Urziceni

Bucharest
Dobreta []

U craiova . Eforie
[] Giurgiu

15

3. Search for solutions

Generating action sequences
— Initial stated + successor function = new state (generates states).
— Also: expansion of states.
— Arad — Sibiu, Timizoara, Zerind as option.
— Search strategy: choice of how to expand states.
— Search tree, nodes.

1.) Initial state Arad
2.) Expanding Arad: Arad
Sibiu Timisoara Zerind

[] Vaslui

Pitesti

[] Hirsova

[] Mehadia Urziceni

Bucharest
Dobreta []

Hcraiova Eforie
[1 Giurgiu

15

3. Search for solutions

Generating action sequences

— Initial stated + successor function = new state (generates states).

— Also: expansion of states.
— Arad — Sibiu, Timizoara, Zerind as option.
— Search strategy: choice of how to expand states.

— Search tree, nodes.

1.) Initial state Arad
2.) Expanding Arad: Arad
Sibiu Timisoara Zerind Alad:e

[] Vaslui

Pitesti

[] Hirsova

[] Mehadia Urziceni

Bucharest
Dobreta []

L craiova Eforie
[] Giurgiu

15

3. Search for solutions

Generating action sequences

— Initial stated + successor function = new state (generates states).

— Also: expansion of states.

— Arad — Sibiu, Timizoara, Zerind as option.

— Search strategy: choice of how to expand states.

— Search tree, nodes.

1.) Initial state Arad
2.) Expanding Arad: Arad
Sibiu Timisoara Zerind

3.) Expanding von SW
Nﬂa Zerind

Arad Fagaras Oradea Rimnicu Vilcea

[] Vaslui

[] Hirsova

Dobreta []

Hcraiova Eforie
[1 Giurgiu

15

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algo-
rithms. The parts of GRAPH-SEARCH marked in bold italic are the additions needed to
handle repeated states.

16

Separation property

~ & 6

Figure 3.8 A sequence of search trees generated by a graph search on the Romania prob-
lem of Figure 3.2. At each stage, we have extended each path by one step. Notice that at the

third stage, the northernmost city (Oradea) has become a dead end: both of its successors are
already explored via other paths.

17

Separation property

© Q
O—e—0O O—e—0
O—e—0O O—o—@ O
! 88|
O
(a) (b) (c)

Figure 3.9 The separation property of GRAPH-SEARCH, illustrated on a rectangular-grid
problem. The frontier (white nodes) always separates the explored region of the state space
(black nodes) from the unexplored region (gray nodes). In (a), just the root has been ex-
panded. In (b), one leaf node has been expanded. In (c), the remaining successors of the root
have been expanded in clockwise order.

18

Infrastructure for search algorithms

o Data structures for search trees
— Many ways to represent nodes, here:
— Node has 5 components

STATE: State in the state space to which the node
corresponds

PARENT- NODE: the node in the search tree
that generated this node

ACTION: the action that was applied to the
parent to generate the node

PATH-COST : the cost of the path from the
initial state to the node, as indicated by
the parent pointers. Traditionally denoted by g(n)

DEPTH: the number of steps along the path

from the initial state

AcCTION = right
DeptH =6
Patn-Cost =6

Node

19

Queue

* Queue as implementation of nodes, that will be expanded
(candidates are called frontier, fringe)

— Make-Queue(Elements)
— Empty?(Queue)

— First(Queue)

— Rest(Queue)

— Pop(Queue)

— Insert(Elements, Queue)

— InsertAll(Elements,Queue)

20

Measuring problem-solving performance

Lots of work has been invested to find good search
strategies. Evaluation criteria:

— Completeness: is the algorithm guaranteed to find a solution
when there is one?

— Optimality: does the strategy find the optimal solution?
— Time complexity: how long does it take to find a solution?

— Space complexity: how much memory does it need to perform
the search?

— Optimal solution?
¢ has the lowest path cost among all solutions

Following: 6 search strategies known as uninformed
search.

21

4. Search strategies
(uninformed, blind)

e Complexity
— b, the branching factor—the maximum number of successors of
any node

— d, the depth of the shallowest goal node
— m, the maximum length of any path in the state space

Breadth-first search =\ A
Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening depth-first search
Bidirectional search =

oA W=

Breadth-first search

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «+ a node with STATE = problem .INITIAL-STATE, PATH-COST =0
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «— a FIFO queue with node as the only element
explored + an empty set
loop do
if EMPTY?(frontier) then return failure
node «+ POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to ezplored
for each action in problem .ACTIONS(node.STATE) do
child «+ CHILD-NODE(problem ,node, action)
if child STATE is not in ezplored or frontier then
if problem.GOAL-TEST(child .STATE) then return SOLUTION(child)
frontier « INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

23

Breadth-first search

Expand root first, then all nodes that have been created by the root and so
forth

All nodes of depth d are expanded before the first node of depth d+7 will be
created

Can be implemented with GeneralSearch and a Queue.
Time complexity: O(b9), here b=2.

24

Breadth-first search

Expand root first, then all nodes that have been created by the root and so
forth

All nodes of depth d are expanded before the first node of depth d+7 will be
created

Can be implemented with GeneralSearch and a Queue.
Time complexity: O(b9), here b=2.

>@®

24

Breadth-first search

Expand root first, then all nodes that have been created by the root and so
forth

All nodes of depth d are expanded before the first node of depth d+7 will be
created

Can be implemented with GeneralSearch and a Queue.
Time complexity: O(b9), here b=2.

>@ (A
>(5 9

24

Breadth-first search

Expand root first, then all nodes that have been created by the root and so
forth

All nodes of depth d are expanded before the first node of depth d+7 will be
created

Can be implemented with GeneralSearch and a Queue.
Time complexity: O(b9), here b=2.

>@ (A
>(5 9

24

Breadth-first search

Expand root first, then all nodes that have been created by the root and so
forth

All nodes of depth d are expanded before the first node of depth d+7 will be
created

Can be implemented with GeneralSearch and a Queue.
Time complexity: O(b9), here b=2.

>@ (A
>(5 9

24

Breadth-first search (2)

e Time and space complexity, b=10, 1 million nodes/sec, 1 kb nodes

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 10 3.5 years 99 petabytes
16 1016 350 years 10 exabytes
Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Discussion:
— Enormous space effort, bigger problem than computing time
— Time is still a real problem (e.g. depth 14 = 3.5 years computing time)

— Complete, not optimal unless path cost is a nondecreasing function of the
depth of the node

25

Uniform-cost search

Modified breadth-first, expands only the node with the least cost
(using path g(n)).
Breadth-first = uniform-cost search with g(n)=depth(n).

26

Uniform-cost search

e Modified breadth-first, expands only the node with the least cost
(using path g(n)).
e Breadth-first = uniform-cost search with g(n)=depth(n).

Problem: from S to G,

costs are marked (a). A
SAG is first solution 1 10 State space
(cost 11). The algorithm 5 5

does not recognize this S B G
as solution, because 11

> 5 from B). SBG as 15 5
final solution (b). a) C

Uniform-cost search

e Modified breadth-first, expands only the node with the least cost
(using path g(n)).
e Breadth-first = uniform-cost search with g(n)=depth(n).

Problem: from S to G,
costs are marked (a).
SAG is first solution 1 10 State space
(cost 11). The algorithm
does not recognize this
as solution, because 11
> 5 from B). SBG as 15 5
final solution (b).

0

b) 15

11

Uniform-cost search (2)

— Discussion:

e Finds optimal solution when one assumption holds: path cost is
a nondecreasing function of the depth of the node (while
traversing through the tree)

e When costs are identical - breadth-first

e Uniform-cost search is guided by path costs rather than depths,
so its complexity cannot easily be characterized in terms of b

and d

e Instead, let C* be the cost of the optimal solution, and assume
that every action costs at least € . Then the algorithm’s worst-
case time and space complexity is O(b?+LC”1) , which can be

much greater than be

27

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO).

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). ©

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First
Depth-first search always expands the deepest node in the current fringe of the

search tree.
This strategy can be implemented by TREE - SEARCH with a last-in-first-out

(LIFO). © o o

28

Depth-First (2)

e Discussion:

Moderate space complexity (only single path in memory), max.
depth m and branching factor b = O(bm) nodes.

Comparison to breadth-first: 156 KB instead of 10 EB with depth
16, a factor of 1:7 trillion times less memory.

Time: O(b™m).
Better as breath-first for problems with lots of solutions

But: you can get stuck if wrong choice leads to very long path (or
even infinite)

— Depth-first not complete and not optimal.
Thus: avoid using depth-first with large or infinite maximal depths

29

Depth-First (3)

e Backtracking:

— A variant of depth-first search called backtracking search uses still
less memory.

— Only one successor is generated at a time rather than all
successors; each partially expanded node remembers which
successor to generate next.

— In this way, only O(m) memory is needed rather than O(bm)

— Backtracking search facilitates yet another memory-saving (and
time-saving) trick: the idea of generating a successor by modifying
the current state description directly rather than copying it first. This
reduces the memory requirements to just one state description and
O(m) actions.

— For this to work, we must be able to undo each modification when
we go back to generate the next successor. For problems with
large state descriptions, such as robotic assembly, these

techniques are critical to success. 30

Depth-limited search

Avoids disadvantage of depth-first through cut off max. depth of path

Can be implemented with special algorithm or with GeneralSearch that
includes operators, which save current.

Example: Search for solution of a path having 20 cities. We know that
max. depth=19

— New operator: Suppose you are in city A and you have done < 19 steps.
We then generate a new state in city B with path length that is increased
by one.

We find the solution guaranteed (if there is one) but algorithm is not optimal.
Time and space complexity resembles depth-first search

- Depth-limited search is complete but not optimal

31

Depth-limited search (2)

Path length 19 is obvious, so /=19 (max. path length). But diameter=9
if we have a closer look at map

Diameter of the state space, gives us a better depth limit, which
leads to a more efficient depth-limited search.

But: mostly, we will not know a good depth limit until we have solved

the problem.

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem)), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff
cutoff-occurred? < false
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result <~ RECURSIVE-DLS (successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
end
if cutoff-occurred? then return cutoff else return failure

32

Iterative deepening depth-first search

e General strategy often used in combination with depth-first
search, that finds the best depth limit.

Limit = 0 N0) ®

33

Iterative deepening depth-first search

e General strategy often used in combination with depth-first
search, that finds the best depth limit.

Limit = 0 N0) ®

Limit = 1 »® © /@\9 ./.\.
@ ©

33

Iterative deepening depth-first search

e General strategy often used in combination with depth-first
search, that finds the best depth limit.

Limit = 0 N0) ®

Limit = 1 N0

=

{5}

Limit=2 »® ®

p(5) (9
)

. « e
oo
S S S

33

[terative deepening depth-first search (2)

Limit = 3 N0

40
20
5 i 4o

34

[terative deepening depth-first search (3)

e Discussion:
— Combination of advantages of breadth-first and depth-first search.
— Iterative deepening depth-first search is complete and optimalX.
— States as in depth-first, approx. 11% more nodes.
— Time: O(bd)
— Space: O(bd)

— In general: iterative deepening if state space is large and depth of
solution is unknown

I: Complete, when the branching factor is finite and optimal when the path cost is a nondecreasing function of the depth of the node

35

Bidirectional search

Idea: to run two simultaneous searches—one forward from the initial
state and the other backward from the goal

Stop when the two searches meet in the middle
Motivation: bd/2 + bd/2 << bd

36

Bidirectional search (2)

e Discussion:
— Time: O(b%2), checking a node for membership in the other search
tree can be done in constant time with a hash table

— Example: for b=10 and d=6 breadth-first would create 1,111,100
nodes, bidirectional search only 2,200 (depth=3!).

— Space: O(b%2), because one of the trees has to be kept in memory
— What has to be considered?
* Predecessor for backward search

 Efficiency to check whether current node already exists in other tree
« What kind of search?

37

Comparing uninformed search strategies

Criteri Breadth- Uniform- Depth- Depth- Iterative Bidirectional
S First Cost First ~ Limited Deepening (if applicable)
Complete? Yes® Yes™® No No Yes® Yes®d
Time opd) o@ptle/dy om™) o®r) O(v?) o(b%/?)
Space oY) om'TlC/y O(m) O(be) O(bd) O(be/?
Optimal? Yes® Yes No No Yes® Yes®:d
Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth

of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

38

Avoiding repeated states

Options:
— Don't go back to way you came from
— Don't create paths with cycles
— Don't generate states that have been generated before

A C ” 4 . N O

O—0—O0—O0—0)
B A

O—O— O—0—0)
C

O O D2 O S S)
D Ol Qe e Ol

(a) (b) ©
(a): A state space in which there are two possible actions leading from A to B, two from B
to C, and so on. The state space contains d+1 states, where d is the maximum depth.
(b): The corresponding search tree, which has 29 branches corresponding to the 29 paths
through the space
(c): A rectangular grid space. States within 2 steps of the initial state (A) are shown in
gray.

39

Searching with partial information

e Dependent on knowledge about environment (sensors, effectors)

— Example: vacuum world environment. State space has eight states. There
are three actions—Left, Right, and Suck—and the goal is to clean up all
the dirt.

— If the environment is observable, deterministic, and completely known,
then the problem is trivially solvable by any of the algorithms we have
described. For example, if the initial state is 5, then the action sequence
[Right,Suck] will reach a goal state, 8.

— The remainder of this section 1
deals with the sensor-less and

contingency versions of the

problem. Exploration problems 3
and adversarial problems

MM
L [*h[| &) 3k

Sensorless (conformant) problems

1 A 2 A
oFR oFR oFR oFR
3 A 4 A
oFR PR
5 A 6 A
oZR oZR
7 4=& 8 E@
1. Single-state problems 2. Multiple-state problems
e World is accessible, sensors give all * Actions are known, world partially

accessible (extreme: no sensors).

information, actions are exactly known = _
e Initial state one of {1,2,3,4,5,6,7,8}. With

e Steps to goal can be calculated (e.g. state [Right] we would get {2,4,6,8} and with
5, action [Right,Suck]). [Right, Suck, Left, Suck] we would reach
the goal
e Agent infers over set of states (Belief
states)

41

Contingent Problems

e Problems during execution e I.e, solution of problem means
(Exp.: {1,3} --> {7,8}). consideration of sensor data during
execution!

e Assume: Agent is in either {1,3}, he _
could formulate sequence [suck, right, ® Agent needs to test not only single

suck], sucking goes in {5,7}, moving sequences but whole tree.
right into {6,8}, if he is in {6}, action e Adversarial problems, if uncertainty by
successful, if in {8} action fails. opponent agent.

e Solution: from {1,3} via {5,7} in {6,8}
and then [suck] only, if dirt exists.

1 | =) 2 =)
oFR oFR ZR | @R
3 | = a =
oZR oZR
5 A 6 4=£
oZR 2R
7 d! 8 A

42

Exploration problems

Assumption: Agent has no information about effect of his actions
(most difficult situation).

Agent needs to experiment, this is a kind of search, but search in
real world not in model world.

If agent “survives”, learns his world like through a map that he
can use later.

Single-state and multiple-state problems are solvable with similar
search techniques, contingency problems need more complex
techniques.

43

Summary

Before an agent can start searching for solutions, it must formulate a
goal and then use the goal to formulate a problem.

A problem consists of four parts: the initial state, a set of actions, a
goal test function, and a path cost function. The environment of the
problem is represented by a state space. A path through the state
space from the initial state to a goal state is a solution.

In real life, most problems are ill-defined; but with some analysis,
many problems can fit into the state space model.

A single, general TREE- SEARCH algorithm can be used to solve any

problem; specific variants of the algorithm embody different strategies.

Search algorithms are judged on the basis of completeness,
optimality, time complexity, and space complexity. Complexity depends
on b, the branching factor in the state space, and d, the depth of the
shallowest solution.

44

Summary (2)

Breadth-first search selects the shallowest unexpanded node in the
search tree for expansion. It is complete, optimal for unit step costs,
and has time and space complexity of O(b%). The space complexity
makes it impractical in most cases. Uniform-cost search is similar to
breadth-first search but expands the node with lowest path cost, g(n).
It is complete and optimal provided step costs exceed some positive
bound €.

Depth-first search selects the deepest unexpanded node in the
search tree for expansion. It is neither complete nor optimal, and has
time complexity of O(b™) and space complexity of O(bm), where m is
the maximum depth of any path in the state space.

Depth-limited search imposes a fixed depth limit on a depth-first
search.

45

Summary (3)

Iterative deepening search calls depth-limited search with
increasing limits until a goal is found. It is complete, optimal for unit
step costs, and has time complexity of O(b%) and space complexity of
O(bd).

Bidirectional search can enormously reduce time complexity, but is
not always applicable and may be impractical because of its space
complexity.

When the environment is partially observable, the agent can apply
search algorithms in the space of belief states, or sets of possible
states that the agent might be in. In some cases, a single solution
sequence can be constructed; in other cases, a contingency plan is
required.

46

