.-..(-; | e NN » o :"‘;'
’., l ‘/ | \. . | w’c:- ‘.K - '.
. ".'_.-‘ | _ s |i~:\ 4
- I * 3 W LN ‘ | | ===
Al D=
) ,\\%‘\\ L

r%*“@“\“ ol i
ct Ehgence

“7 ~Art |f|cran;1
“for AII =

How Computers Play Games: Adversarial Search & Game Theory
o . <

Adversarial Search Problems

* Multiagent Environment

* each agent needs to consider the actions of other agents and how they affect
its own welfare.

* The unpredictability of these other agents can introduce contingencies into
the agent’s problem-solving process
* Competitive Environment

* The agents’ goals are in conflict, giving rise to adversarial search problems—
often known as games

Game Theory

 Two players
« Max-min
« Taking turns, fully observable

 Moves: Action
» Position: state

e Zero sum:
« good for one player, bad for another
* No win-win outcome.

Game Theory

 Sy: The initial state of the game

« TO-MOVE(s): player to move in state s.

« ACTIONS(s): The set of legal moves in state s.

« RESULT(s, a): The transition model, resulting state

« IS-TERMINAL(S): A terminal test to detect when the
game is over

« UTILITY(s; p): A utility function (objective/payoff)

Games: Computer vs Human

« On May 11, 1997 IBM Deep Blue beat the world
chess champion Garry Kasparov

« “Unpredictable” opponent = solution is a strategy
specifying @ move for every possible opponent reply

deterministic chance

perfect information chess, checkers, backgammon
go, othello monopoly

» ACM Chess Challenge ‘ |

Garry Kasparov
\A)

bridge, poker, scrabble

i i i battleships,
imperfect information blind tictactoe ,

Tic-Tac-Toe

MAX (X)
X X
MIN (O) X
x]o x| |o
MAX (X)
x[o][x| [xo o
MIN (O) X X
xlox| [X[o[X o
TERMINAL o[x| [O9fX X
o X[X[0 o

Utility

o

Tic-Tac-Toe

Possible moves?

Tic-Tac-Toe

Minimax Algorithm

* The minimax algorithm is a decision-making algorithm used in two-
player games, especially in the field of artificial intelligence and game

theory.

* It's primarily employed in games with perfect information, where
both players have full knowledge of the game state and can make
informed decisions.

* The primary goal of the minimax algorithm is to determine the best
possible move for a player, assuming that the opponent will also make
the best possible moves to minimize the first player's outcome (hence

the name "minimax"

Minimax Algorithm

Here's how the minimax algorithm works:

 Tree of Game States: The algorithm constructs a tree of possible game states, starting from the
current state and branching out to all possible future states resulting from legal moves by both
players. This tree is often called the game tree.

* Evaluation Function: At the terminal nodes of the tree (end of the game or a predefined depth),
an evaluation function is applied to determine the "value" of that game state for the player. The
evaluation function assigns a numerical score to each terminal node, representing how favorable
or unfavorable the state is for the player.

* Backpropagation: The values of terminal nodes are then propagated up the tree. At each non-
terminal node (i.e., a node representing a state where it's the player's turn to move), the
aliorithm calculates the best achievable outcome if both players play optimally. This involves
taking the maximum value for the player whose turn it is to move (the "max" player) and the
minimum value for the opponent (the "min" player) at each level of the tree alternately.

* Decision: Finally, the algorithm chooses the move that leads to the maximum value in the root
node of the tree, assuming the opponent will minimize the player's outcome. This move is
considered the best move to make in that game state.

Example: Tic-Tac-Toe

g
Root node

(Start state)
X’s turn

Example: Tic-Tac-Toe

Example — Simple Game

MAX

MIN

Example: Chess

Properties of minimax

« Complete?? Yes, if tree is finite (chess has specific rules for this)

» Optimal?? Yes, against an optimal opponent. Otherwise?? Time

complexity?? O(b™)

* Space complexity?? O(bm) (depth-first exploration) For

chess, b~ 35, m ~ 100 for “reasonable” games
« = exact solution completely infeasible

» But do we need to explore every path?

Alpha-Beta Pruning

* Alpha-beta pruning is a modified version of minimax algorithm.

* [t returns the same move as Minimax would, but prunes away
branches that cannot possibly influence the final decision.

* Limitation to the minimax algorithm is overcome with alpha-beta
pruning.

General Principle

e Consider a node ‘n” somewhere in the tree, such as that player has a
choice of moving to that node.

* If a player has a better choice ‘m’ either at the parent node of ‘n’ or
any choice point further up, then ‘n” will never be reached in actual
play.

* Once we found out enough about ‘n’ to reach this conclusion, we can
prune it.

Alpha-Beta Pruning

Alpha-Beta Pruning

MAX

MIN

Alpha-Beta Pruning: Chess

Alpha

e Alpha (a) is the best choice (best highest-value) we have found so far
at any point along the path for MAX

* It is a lower bound on the value that a MAX node may ultimately be
assigned.

 The MAX node will only update the value of alpha.
* Initially a = -00

Beta

* Beta (B) is the best choice (best lowest-value) we have found so far at
any point along the path for MIN

* It is a upper bound on the value that a MIN node may ultimately be
assigned.

* The MIN node will only update the value of beta.
* Initially B = +00

Alpha-Beta Pruning

MAX

MIN

Alpha-Beta Pruning: Chess

