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Categories of Machine Learning

• Supervised Learning

to model the relationship between measured features of data and 
some label associated with the data

• Unsupervised Learning

to model the features of a dataset without reference to any label

• Reinforcement Learning

the goal is to develop a model (agent) that improves its 
performance based on interactions with the environment



Cluster images

Image

Dataset

clustering

Goal of clustering:

Divide objects into groups,

and objects within a group

are more similar than

those outside the group

unsupervised learning



Clustering the images into ten 

groups/clusters

A cluster may correspond to a digit.

imageClustering handwritten digit images



Cluster customers - customer segmentation

• Assume you work in the credit card department of a bank

  you job title is data scientist

• to understand the behaviors of the customers (credit card holders) 
and improve marketing strategies, you may need to categorize the 
customers based on their characteristics (income, age, buying 
behavior, etc).

• Find the clusters/groups that contain valuable customers:

   e.g., high income but low annual spend.



Cluster houses

•Assume you work for a real-estate company as a data scientist

• Predict the sale prices of houses

step-1:  make clusters of houses (sub-markets)

cluster houses based on characteristics such as income of the 
house owner, house price, size, closeness to bay, etc

step-2: use a regression model to predict the sale price of a 
house in a sub-market/cluster, given the attributes/features of the 
house (e.g., size, number of bedrooms).

https://arxiv.org/pdf/1803.00919.pdf







To use k-means, we need to understand the meaning of each parameter

The default parameter values may NOT work for your application. 

You need to adjust the parameters

To understand the meanings of the parameters, we need to understand 

the algorithm of k-means



K-means Algorithm for Clustering Objects

• Represent each object by a numerical vector

 

• Input to the k-means algorithm is a set of vectors

   we need to put those vectors into a 2D array (matrix/table)

• Output from the k-means algorithm is a set of clusters (groups)

   each cluster contains a subset of the vectors/objects

   the clusters are disjoint (do not share any vectors/objects)

• Clustering is based on the distance between two vectors

   we need a function to measure the distance(vectorA, vectorB)



Represent an image by a vector

This image has 28×28 pixels.

It is a matrix/ 2D array 𝐴 ∈ ℝ28×28

𝐴=

𝐴0,0 … 𝐴0,27

… … …
𝐴27,0 … 𝐴27,27

row-0

row-27

𝒙 =

𝐴0,0

𝐴0,1

𝐴0,2

…
…
…
…
…
…
…

𝐴27,27

the first row

the second row

a vector ~an image ~ a data sample

𝒙 ∈ ℝ784



Represent a customer by a vector

𝑥 =
𝑖𝑛𝑐𝑜𝑚𝑒
𝑠𝑝𝑒𝑛𝑑

In many applications, 

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐼𝐷 is not useful, 

so we remove it

𝑥1 : the 1st customer (1st row in the table)

𝑥2 : the 2nd customer (2nd row in the table)

Each row is a feature vector of a customer

𝑥 =
𝐼𝐷

𝑖𝑛𝑐𝑜𝑚𝑒
𝑠𝑝𝑒𝑛𝑑



Vector Norm and Distance Measure

• In general, we can define a ℓ𝑝 norm  (𝑝 ≥ 1)

𝒙 𝑝 = σ𝑚=1
𝑀 𝑥[𝑚]

𝑝
1

𝑝
 

It measures the “length” of the vector

𝑥[1]  is the absolute value of 𝑥[1]

σ𝑚=1
𝑀 𝑥[𝑚]

𝑝
= 𝑥[1]

𝑝
+ 𝑥[2]

𝑝
+ 𝑥[3]

𝑝
+…+ 𝑥[𝑀]

𝑝



Vector Norm and Distance Measure

• In general, we can define a ℓ𝑝 norm  (𝑝 ≥ 1)

𝒙 𝑝 = σ𝑚=1
𝑀 𝑥[𝑚]

𝑝
1

𝑝
 

It measures the length of the vector

• ℓ2 norm   𝒙 2 = σ𝑚=1
𝑀 𝑥[𝑚]

2 = 𝒙𝑇𝒙     (Euclidean norm)

             𝒙 =
𝑥[1]

𝑥[2]
=

0.1
1.2

, then 𝒙 2= 0.12 + 1.22

            
          𝒙𝑇 = [0.1, 1.2] 



Vector Norm and Distance Measure

• two vectors/points 𝒙, 𝒚 ∈ ℝ𝑀, and the norm of 𝒙 is ℓ𝑝 norm 𝒙 𝑝

• 𝒙 is the feature vector of object-A

• 𝒚 is the feature vector of object-B

• Then the distance between 𝒙 and 𝒚 is 𝒙 − 𝒚 𝑝

•  ℓ2 norm is used in k-means algorithm to measure distance        

             𝒙 =
0.1
1.2

,  𝒚 =
𝟎. 𝟐
𝟐. 𝟏

 

     the distance is 𝒙 − 𝒚 2= (0.1 − 𝟎. 𝟐)2+(1.2 − 𝟐. 𝟏)2



Run kmeans_cust_seg.ipynb



Before clustering, a dataset of vectors/samples

𝒙 =
𝑥[1]
𝑥[2]

𝑥[1]

𝑥[2]

a feature vector 𝒙 is a data sample

a data sample is also called 

a data point, i.e. a point in a 

high dimensional space



Apply k-means algorithm: Initialization

c1, c2, c3 are initial cluster centers

at three random locations

Initialization:

(1) The user (you) sets the 

number of clusters

      e.g., 3

(2) The algorithm will 

randomly initialize the cluster 

centers/centroids. 

A cluster center is a vector.

We get three random centers

C2

C1

C3



After k-means clustering, clusters/groups are formed

After k-means clustering:

• The data points are assigned to 

the three clusters

      red-cluster

      green-cluster

      blue-cluster

• Every data point has a cluster 

label that could be 1, 2, or 3

• The final cluster centers are 

different from the initial centers 
c1, c2, c3 are the cluster centers

C2

C1

C3



Initialization:  the number of clusters and random locations of the cluster centers 

C1

C2

C3



Assign Labels:  assign each data point to the nearest cluster center

C1

C2

C3



Update Centers:  re-compute the center of each cluster 

C1

C2

C3



Assign Labels: assign each data point to the nearest cluster center

C1

C2

C3



Update Centers:  re-compute the center of each cluster 

C1

C2

C3



two steps run iteratively in the k-means algorithm

• Update Centers

  for each cluster, move the center vector C to the average location 
of the data points in the cluster

• Update Labels

  for each data point, find the nearest cluster center and then 
attach a cluster label to the data point



Watch video: k-means_clustering

Run kmeans_raw.ipynb



Formal statement of the k-means objective

• Given N  data points 𝑥1, … , 𝑥𝑁

      𝑥𝑛 ∈ ℛ𝑀 is a data point (feature vector) of an object

• Find K cluster centers, 𝑐1, … , 𝑐𝐾 , 𝑐𝑘 ∈ ℛ𝑀, 𝐾 ≪ 𝑁

• Assign each data point 𝑥𝑛 to one cluster:

                 𝛼 𝑛  is the cluster label of the data point 𝑥𝑛

                 𝛼 𝑛 = 𝑘 states the data point 𝑥𝑛 is assigned to the cluster-k

• The goal is to find the optimal clusters such that the objective/loss function is 
minimized: 

𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛 − 𝑐𝛼 𝑛
2

the average "distance" (squared) from the data points to the corresponding centers



Clustering is difficult in general

• Find K cluster centers 𝑐1, … , 𝑐𝐾 ∈ ℛ𝑀 that minimize the loss

𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛 − 𝑐𝛼 𝑛
2

𝛼 𝑛 = 𝑘 states 𝑥𝑛 is assigned to the cluster-k

• It is a chicken-egg problem:

• To make the assignment, we need to know the centers

• To obtain the centers, we need to know the assignment (cluster labels)

• Brute-force search: try all possible assignments {𝛼 1 , 𝛼 2 , … , 𝛼 𝑁 }

   Given N  data points, there are 𝐾𝑁 possible clustering results: computation 

cost is too high for a large dataset



The k-means algorithm

• Initialization:  the user inputs K, and the algorithm initializes random centers

𝑐1, … , 𝑐𝐾 , 𝑐𝑘 ∈ ℛ𝑀

• In each iteration:

• step-1: assign each data point 𝑥𝑛 to its nearest cluster 

𝛼 𝑛 = 𝑎𝑟𝑔 min
𝑘∈{1,…,𝐾}

𝑥𝑛 − 𝑐𝑘
2

• step-2: move center 𝑐𝑘 to the average location of the data points in cluster-k

𝑐𝑘 =
1

𝑁𝑘
σ𝑛: 𝛼 𝑛 =𝑘 𝑥𝑛 

 where 𝑁𝑘 is the number of data points in the cluster-k 



𝛼 𝑛 = 𝑎𝑟𝑔 min
𝑘∈{1,…,𝐾}

𝑥𝑛 − 𝑐𝑘
2

𝐴[𝑘] = 𝑥𝑛 − 𝑐𝑘
2  is  the squared-distance between 𝑥𝑛 and 𝑐𝑘 

𝛼 𝑛 = 𝑎𝑟𝑔 min([𝐴[1], 𝐴[2], … , 𝐴[𝐾]])

Note: Element index starts from 0 in Python,  but it starts from 1 in textbooks



the k-means algorithm

•Loss:  𝐿 =
1

𝑁
σ𝑛=1

𝑁 𝑥𝑛 − 𝑐𝛼 𝑛
2

•The goal of clustering is to minimize the loss

•For a cluster, the optimal cluster center is the average 

of the data points in the cluster. 

                          𝑐𝑘 =
1

𝑁𝑘
σ𝑛: 𝛼 𝑛 =𝑘 𝑥𝑛 

•Why?



the k-means algorithm

• Rewrite the loss function (it is a scalar function):

𝐿 =
1

𝑁
෍

𝑛=1

𝑁

෍
𝑘=1

𝐾

𝛼(𝑛,𝑘) 𝑥𝑛 − 𝑐𝑘
2

a N-by-K assignment matrix

𝛼 1,1 … 𝛼 1,𝐾

… … …
𝛼 𝑁,1 … 𝛼 𝑁,𝐾

, 𝛼(𝑛,𝑘) = 0 𝑜𝑟 1

𝛼(𝑛,𝑘) = 1 if and only if 𝑥𝑛 is assigned to the cluster-k

σ𝑘=1
𝐾 𝛼(𝑛,𝑘) = 1 because 𝑥𝑛 is assigned to only one cluster



Data Point 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 1 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 2 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 3

𝑥1 𝛼(1,1) = 1 𝛼(1,2) = 0 𝛼 1,3 = 0

𝑥2 𝛼(2,1) = 0 𝛼(2,2) = 1 𝛼(2,3) = 0

𝑥3 𝛼(3,1) = 0 𝛼(3,2) = 1 𝛼(3,3) = 0

𝑥1 is assigned to cluster 1

𝑥2 and 𝑥3 are assigned to cluster 2

the k-means algorithm

an assignment matrix 



the k-means algorithm

• The loss function (it is a scalar/number):

𝐿 =
1

𝑁
෍

𝑛=1

𝑁

෍
𝑘=1

𝐾

𝛼(𝑛,𝑘) 𝑥𝑛 − 𝑐𝑘
2

   We want to minimize the loss: it is an optimization problem.

•Next, we show that the solution of this optimization problem is

𝑐𝑘 =
1

𝑁𝑘
෍

𝑛=1

𝑁

𝛼(𝑛,𝑘)𝑥𝑛

which means the optimal cluster center is the average of the data 

points in the cluster



Calculus  (basic concept)

Two vectors 𝒙, 𝒃 ∈ ℝ𝑀, let 𝑓 𝒙 = 𝒃𝑇𝒙, then  
𝜕𝑓

𝜕𝒙
= 𝒃

𝒙 =

𝑥[1]

𝑥[2]

𝑥[3]

 , 𝒃 =

𝑏[1]

𝑏[2]

𝑏[3]

,    𝑓 𝒙 = 𝑥[1]𝑏[1] + 𝑥[2]𝑏[2] + 𝑥[3]𝑏[3]

𝜕𝑓

𝜕𝒙
≜

𝜕𝑓

𝜕𝑥[1]

𝜕𝑓

𝜕𝑥[2]

𝜕𝑓

𝜕𝑥[3]

= 𝒃 because
𝜕𝑓

𝜕𝑥[1]
= 𝑏[1],  

𝜕𝑓

𝜕𝑥[2]
= 𝑏[2], 

𝜕𝑓

𝜕𝑥[3]
= 𝑏[3]



𝐿 =
1

𝑁
σ𝑛=1

𝑁 σ𝑘=1
𝐾 𝛼(𝑛,𝑘) 𝑥𝑛 − 𝑐𝑘

2 , k-means uses ℓ2 norm 

𝑥𝑛 − 𝑐𝑘
2 = 𝑥𝑛 − 𝑐𝑘

𝑇 𝑥𝑛 − 𝑐𝑘 = 𝑥𝑛
𝑇𝑥𝑛 + 𝑐𝑘

𝑇𝑐𝑘 − 2𝑥𝑛
𝑇𝑐𝑘 

𝜕𝐿

𝜕𝑐𝑘
=

1

𝑁
σ𝑛=1

𝑁 2𝛼(𝑛,𝑘)(𝑐𝑘 − 𝑥𝑛) 

𝜕𝐿

𝜕𝑐𝑘
= 0 when the loss 𝐿 reaches the minimum value



𝐿 =
1

𝑁
σ𝑛=1

𝑁 σ𝑘=1
𝐾 𝛼(𝑛,𝑘) 𝑥𝑛 − 𝑐𝑘

2 , k-means uses ℓ2 norm 

𝑥𝑛 − 𝑐𝑘
2 = 𝑥𝑛 − 𝑐𝑘

𝑇 𝑥𝑛 − 𝑐𝑘 = 𝑥𝑛
𝑇𝑥𝑛 + 𝑐𝑘

𝑇𝑐𝑘 − 2𝑥𝑛
𝑇𝑐𝑘 

𝜕𝐿

𝜕𝑐𝑘
=

1

𝑁
σ𝑛=1

𝑁 2𝛼(𝑛,𝑘)(𝑐𝑘 − 𝑥𝑛) 

𝜕𝐿

𝜕𝑐𝑘
= 0 when the loss 𝐿 reaches the minimum value

we set 
𝜕𝐿

𝜕𝑐𝑘
= 0 and obtain:

𝑐𝑘 =
1

𝑁𝑘
σ𝑛=1

𝑁 𝛼(𝑛,𝑘)𝑥𝑛,   𝑁𝑘 the number of data points in the cluster-k

Therefore, the optimal cluster center is the average of the data points in the cluster.



𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛 − 𝑐𝛼 𝑛
2

For our dataset, the algorithm converged after some iterations.

Declare convergence if : after a number of iterations, the loss curve 

becomes flat:  check if 𝐿 𝑡 − 𝐿 𝑡−1 < 𝜖, (e.g., 𝜖 = 0.0001)

L

t (iteration)



Question:

•Will the k-means algorithm always converge after a finite 
number of  iterations for any dataset ?

    Yes ?  No ? Maybe ?



Convergence of the k-means algorithm

• 𝑙𝑜𝑠𝑠: 𝐿 =
1

𝑁
σ𝑛=1

𝑁 𝑥𝑛 − 𝑐𝛼 𝑛
2

• There is only a finite number of clustering results, 𝐾𝑁, so the loss only 

has a finite number of possible values.

• The loss will not increase in each iteration of the k-means algorithm

• make assignment: 𝛼 𝑛 = 𝑎𝑟𝑔 min
𝑘∈{1,…,𝐾}

𝑥𝑛 − 𝑐𝑘
2

• update centers: 𝑐𝑘 = 𝑎𝑟𝑔 min
𝑐

σ𝑛: 𝛼 𝑛 =𝑘 𝑥𝑛 − 𝑐 2 



Question:

•Will different initialization lead to different clustering results?

    Yes ? No ? Maybe ?

Run kmeans_raw.ipynb



Centers/centroids are 

randomly initialized



Centers are randomly 

initialized



the best clustering resulta bad result from k-means



Clustering result is determined by data distribution and initialization 

(given the number of clusters K)

Initialization of the centers is random.

Different initializations could lead to different clustering results.

Clustering result of k-means algorithm could be random



k-means may just find a local optimal solution 

Loss

parameter space



Better Initialization for k-means?

k-means++ use a special algorithm to initialize centers from the data points.

The initial centers will be far away to each other 

It helps to find the best solution



How many clusters ?  (K = ?)

• From some prior knowledge about the application

• Try K = 2, 3, 4, 5, …. plot the results and see which one is the best 



Empty Cluster ?

• Will the k-means algorithm output an empty cluster ?

   e.g., set K = 10,  but the first cluster is empty (no data points in that cluster)

• Handle empty cluster:

whenever an empty cluster is detected during the iterations in k-means, a new 
center will be generated randomly for this cluster

This method will reduce the chance of empty clusters.

It is implemented in sk-learn k-means



Faster ?

• In standard k-means, we need to use all data points to compute the 
centers and make assignments

𝑙𝑜𝑠𝑠 =
1

𝑁
σ𝑛=1

𝑁 𝑥𝑛 − 𝑐𝛼 𝑛
2
 

• Mini-batch k-means

Mini-batch 1

Mini-batch 2

Mini-batch 3

from the previous mini-batch

c is the center 

nearest to xlearning rate

new center



Clustering is based on distance measure and feature vector



Clustering is based on distance measure and feature vector

𝒙 = 𝑙𝑎𝑠𝑡_𝑛𝑎𝑚𝑒

Feature Vector



Clustering is based on distance measure and feature vector

𝒙 = 𝑔𝑒𝑛𝑑𝑒𝑟

Feature Vector



many distance/dissimilarity measures

https://www.psychologytoday.com/us/blog/canine-
corner/201308/do-dogs-look-their-owners



So what is clustering in general?

•You choose a distance/dissimilarity function

• The algorithm figures out the grouping of objects based on 

the distance function: distance(vectorA, vectorB)

•Data points within a cluster are similar

•Data points across clusters are not so similar



Feature Extraction Before Clustering

• Images of different sizes
small image

Can not directly compare the two images 

because they have different number of pixels

resize the images, or extract some features



Objects in real life



A Potential Problem in 
features and distance 𝒙 =

233
150

0
,     𝒚 =

250
187

1

the distance is 𝒙 − 𝒚 2

= (233 − 250)2+(150 − 187)2+(0 − 1)2

≈ (233 − 250)2+(150 − 187)2

The distance is dominated by the 

differences in income and spend;  

gender is almost "ignored"

This is bad because gender information is very useful for clustering:

male and female customers have different spending patterns



Normalize features: weight the features equally

Method-1:

calculate mean of income (1st column), m

calculate standard deviation (std) of income, s

normalize income by mean and std

income <= (income - m)/s

do the same thing for the other two features



Normalize features: weight the features equally

Method-2:

calculate the max of income (1st column), a

calculate the min of income, b

normalize income into the range of 0 to1 by 

income <= (income - b)/(a-b)

do the same thing for the other two features



•Common norms used in machine learning are

•ℓ1 norm   𝒙 1 = σ𝑚=1
𝑀 𝑥[𝑚]  

   (sum of the absolute values of the elements)

•ℓ2 norm   𝒙 2 = σ𝑚=1
𝑀 𝑥[𝑚]

2 = 𝒙𝑇𝒙        

  (Euclidean norm)

•ℓ∞ norm  𝒙 ∞ = max{ 𝑥[1] , … , 𝑥[𝑀] } 

    (max of the absolute values)

Vector ℓ𝑝 Norm of 𝒙 ∈ ℝ𝑀



two data points 𝑥 and 𝑦 in ℛ2



distance/dissimilarity functions

• desired properties of a distance function: 𝑑(𝑥, 𝑦)

• Symmetry: 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥)

       if  x looks like y , then y looks like x

• Positive separability: 𝑑 𝑥, 𝑦 = 0 if and only if x=y

      if x ≠ y, then 𝑑 𝑥, 𝑦 > 0 

• Triangle inequality: 𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑧 + 𝑑(𝑦, 𝑧)

    if 𝑑 𝑥, 𝑧  is small and 𝑑 𝑦, 𝑧  is small, then 𝑑 𝑥, 𝑦  is small

    if 𝑥 looks like 𝑧 and 𝑦 looks like 𝑧, then 𝑥 and y are similar



• Manhattan distance is also called Hamming distance when all features 
are binary

• count the number of different binary digits between two vectors

Hamming Distance for Binary Vectors



K-means with a general distance function 
(not implemented in sk-learn)

• Given N  data points, 𝑥1, … , 𝑥𝑁 , 𝑥𝑛 ∈ ℛ𝑀 

• Find K cluster centers, 𝑐1, … , 𝑐𝐾 , 𝑐𝑘 ∈ ℛ𝑀, 𝐾 ≪ 𝑁

• Assign each data point 𝑥𝑛 to one cluster: label 𝛼 𝑛 ∈ {1, … , 𝐾}

• The optimal clustering result is obtained by minimizing the loss

𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝑑(𝑥𝑛, 𝑐𝛼 𝑛 )2

the average distance (squared) from data points to corresponding centers

K-means is old (1957) but not obsolete



Maybe we only need Euclidian distance if we train 
a deep neural network for feature extraction

https://cmusatyalab.github.io/openface/#openface

Feature Vector in 𝓡𝟏𝟐𝟖 
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