Outline

- Autonomous robots
- 2 Agents
- Environments
- Agent types
- Typical components
- Example soccer robot
- Example service robot

From automation...

...to autonomy

Waymo Autonomous Vehicle

Spot Robot

Adult Humanoids, RoMeLa, UCLA & NimbRo, U Bonn

Da Vinci Surgical Robot

Solo, 3D Robotics

Autonomous robots

Robot

A robot is a autonomous system which exists in the physical world, can sense its environment and can act on it to achieve some goals.

Autonomous robot

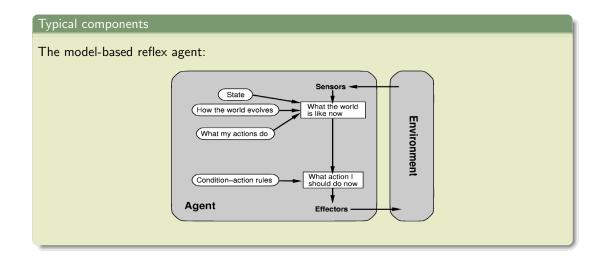
- An autonomous robot acts on its own decisions.
- It is not **directly** controlled by humans.
- Take an appropriate action for any given situation.

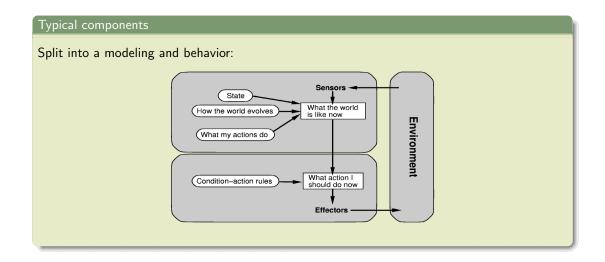
Robots

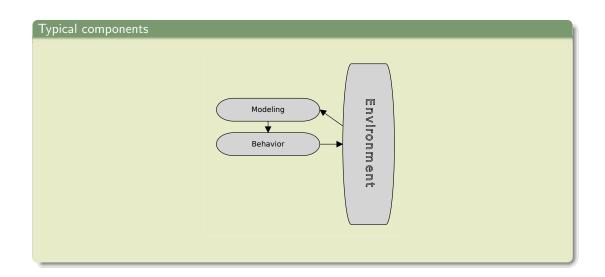
Situatedness

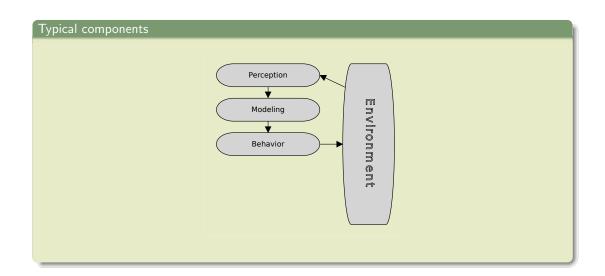
Agents are strongly affected by the environment and deal with its immediate demands (not its abstract models) directly.

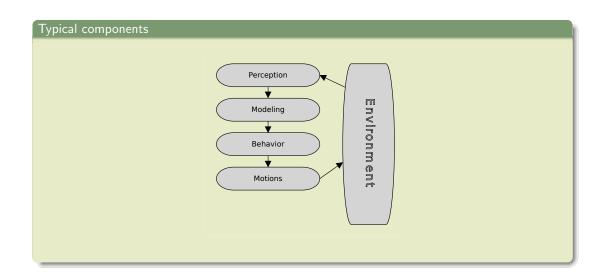
Embodiment

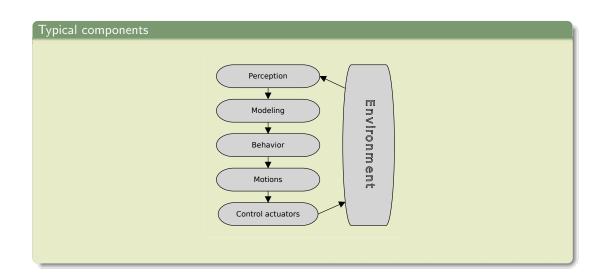

Agents have bodies, are strongly constrained by those bodies, and experience the world through those bodies, which have a dynamic with the environment.

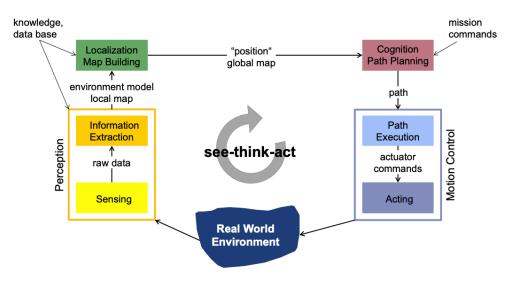

Outline

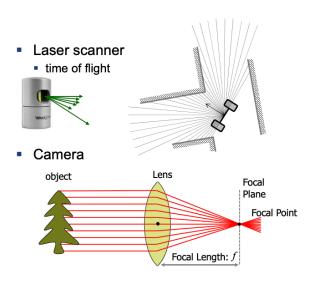

Typical components

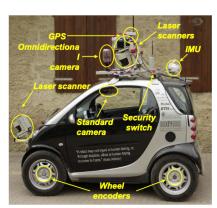

Typical components


- Previous agent types from "S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach."
- Focus so far on decision-making.
- Usually there are other parts in the architecture of an autonomous robot.








The see-think-act cycle knowledge

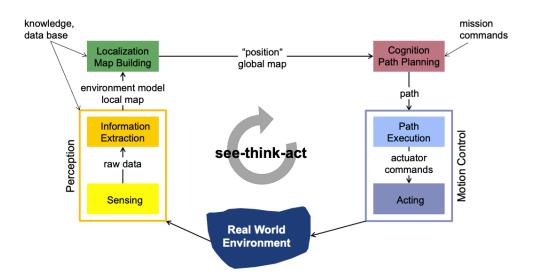
Source: R. Siegwart et al. 2015, ETH Zürich, Lecture series on Autonomous Mobile Robots

Sensing

Information extraction

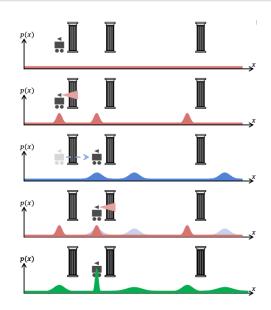
Filtering / Edge Detection

- Keypoint Features
 - features that are reasonably invariant to rotation, scaling, viewpoint, illumination
 - FAST, SURF, SIFT, BRISK, ...

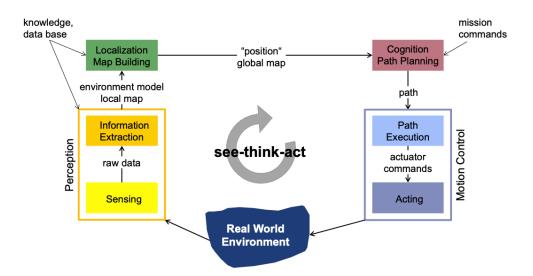


Keypoint matching

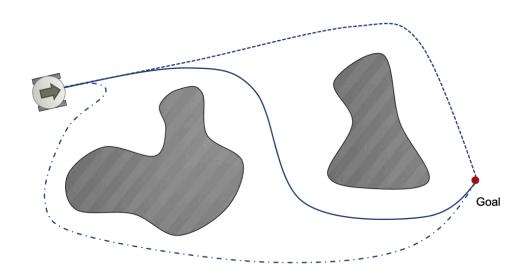
BRISK example



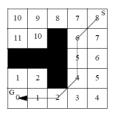
The see-think-act cycle knowledge



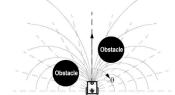
Localization


- SEE: The robot queries its sensors
 → finds itself next to a pillar
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief update (information fusion)

The see-think-act cycle knowledge

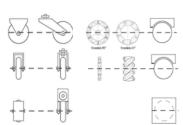


Cognition, where am I going, and how?


Cognition, where am I going, and how?

- Global path planning
 - Graph search

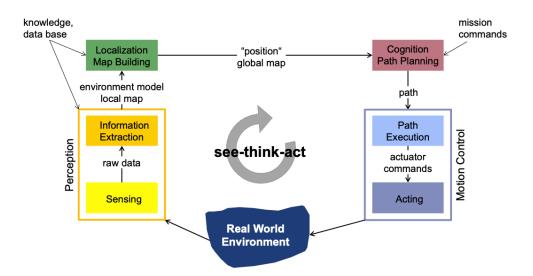
- Local path planning
 - Local collision avoidance



Motion control and kinematics

- Wheel types and its constraints
 - Rolling constraint
 - no-sliding constraint (lateral)
- Motion control

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = f(\dot{\varphi}_1 \cdots \dot{\varphi}_n, \theta, geometry)$$


$$\begin{bmatrix} \dot{\varphi}_1 \\ \vdots \\ \dot{\varphi}_n \end{bmatrix} = f(\dot{x}, \dot{y}, \dot{\theta})$$

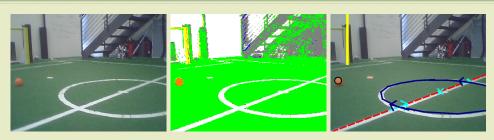
The see-think-act cycle knowledge

Robots and uncertainty

- A robot can not accurately know the answers to the following:
 - Where am I?
 - Where are my body parts, are they working, what are they doing?
 - What did I just do?
 - What will happen if I do X?
 - Who/what are you, where are you, what are you doing, etc.?
 - ...

Outline

Example soccer robot


Example soccer robot

Outline

- What do these robots do?
- Same categories:
 - Perception
 - Modeling
 - Behavior
 - Motions
 - Control

Perceptions

From image processing:

- ball
- goalposts
- field lines
- parts of other robots

Other:

- current joint angles
- battery state
- accelerometer
- **.**

Modeling

- Self-localization
- Estimate orientation of the robot (standing/lying)
- Ball tracking
- Opponent tracking

Behavio

- Decide what to do based on
 - current world model,
 - team communication,
 - role,
 - current plan,
 - internal state,
 - ...
- Select actions (e.g. "walk forward", "left kick")

Motion & control

- Motion:
 - Walking, kick, stand-up, ...
 - Set an angle for each joint.
 - Calculate trajectories, inverse kinematics, balancing, ...
 - Execute static angle sequences.
- Control
 - Move joints to the target positions.

Outline

Example service robot

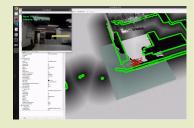
Example service robot, HSR TMC

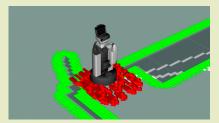
Outline

- What does this robot do?
- Same categories:
 - Perception
 - Modeling
 - Behavior
 - Motions
 - Control

Perceptions

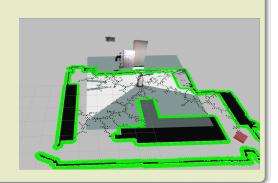
From image processing:


- household objects
- categorization (kitchen items, food items...)
- maps
- environment segmentation


Other:

- current joint angles
- battery state
- IMU
- **.**

Modeling


- Self-localization
- Estimate orientation of the robot (standing/lying)
- Object tracking
- Human tracking

Behavior

- Decide what to do based on
 - current world model,
 - team communication,
 - role,
 - current plan,
 - internal state,
 - ...
- Select actions (e.g. "move forward", "pick-and-place mustard bottle")

Motion & control

- Motion:
 - Moving using wheels, pick-and-place, interact with humans...
 - Set an angle for each joint.
 - Calculate trajectories, inverse kinematics, balancing, ...
 - Execute static angle sequences.
- Control
 - Move joints to the target positions.

Acknowledgement

Acknowledgemen

Some of the slides for this course have been prepared by Andreas Seekircher. I took some material from the ASL Lab at ETH Zürich https://asl.ethz.ch/.