

Preface

This volume contains the short papers presented at the 12th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-
12), held 2-6 December 2006, in Montego Bay, Jamaica.

November 2006 Geoff Sutcliffe
Andrei Voronkov

Table of Contents

Extensional Higher-Order Datalog 1
Vassilis Kountouriotis, Panos Rondogiannis, William Wadge

Deciding Weak Monadic Second-order Logics using Complex-value Datalog 6
Gulay Unel, David Toman

A SAT-based Sudoku Solver 11
Tjark Weber

Matchmaking and Personalization on Mobile Devices 16
Thomas Kleemann, Alex Sinner

A Sequent Calculus for a First-order Dynamic Logic with Trace Modalities
for Promelad4. 21
Florian Rabe, Steffen Schlager, Peter H. Schmitt

Designing Efficient Procedures for #2SAT 28
Guillermo De Ita, Mireya Tovar, Erica Vera, Carlos Guilln

Exploring Hybrid Algorithms for SAT 33
Olivier Fourdrinoy, Eric Gregoire, Bertrand Mazure, Lakhdar Sais

A Logical Language for Dominoes i, 38
Fernando Raymundo Veldzquez-Quesada, Francisco Herndndez-Quiroz

Fregean Albebraic Tableaux: Automating Inferences in Fuzzy Proposi-
tional Logico 43
Francis Jeffry Pelletier, Christopher Lepock

Title: Reasoning on Multimodal logic with the Calculus of Inductive Con-
SEIUCEIONS . . o 49
Houda Anoun

A Hierarchical Logic for Network Configuration........................ 54
Roger Villemaire, Sylvain Hallé, Omar Cherkaoui, Rudy Deca

Extensional Higher-Order Datalog*

Vassilis Kountouriotis!, Panos Rondogiannis!, and William W. Wadge?

! Department of Informatics & Telecommunications
University of Athens, Athens, Greece
{grad0771,prondo}@di.uoa.gr
2 Department of Computer Science
University of Victoria, Victoria, BC, Canada
wwadge@csr.uvic.ca

Abstract. We define a higher-order extension of Datalog based on the
Horn fragment of higher-order logic introduced in [Wad91]. Programs
of Higher-Order Datalog can be understood declaratively as formulas in
extensional higher-order logic, in which (for example) a unary predicate
of unary predicates is a set of sets of data objects. The language retains
all the basic principles of first-order logic programming. In particular,
programs in this extended Datalog always have a minimum Herbrand
model which can be computed in a bottom-up way. We present the syntax
and semantics of our extended Datalog, state the main result cited above,
and describe an implementation of this new language.

1 Introduction

We define a higher-order extension of Datalog based on the Horn fragment of
higher-order logic introduced in [Wad91]. Our system is extensional in the tra-
ditional sense, in which a predicate denotes its extension (ie., the set of all
arguments for which the predicate is true). Ordinary logic programming, based
as it is on first-order logic, has always been extensional: unary (say) predicates
denote sets of data objects. Our system extends this concept to higher orders.
For example, a unary predicate of unary predicates denotes a set of sets of data
objects. Extensionality is a desirable feature since it gives an advantage when
one wants to reason about programs (for example, functional programming is
traditionally extensional).

In this paper we define the syntax and the semantics of Higher-Order Datalog.
Surprisingly, the minimum model property still holds and it can be proved using
the same basic tools as in classical (first-order) logic programming (extended
to apply to the higher-order setting). Moreover, our construction of the mini-
mum model immediately leads to a bottom-up proof procedure for Higher-Order
Datalog (based on an immediate consequence operator, as in ordinary Datalog).

* This research is supported by EIIEAEK II under the task “ITY©ATOPAX-II:
ENIZXYYH EPEYNHTIKQN OMAAQN XTA MMANEIIIXTHMIA” | Project title:
Applications of Computational Logic to the Semantic Web, funded by the European
Social Fund (75%) and the Greek Ministry of Education (25%).

We conclude the paper by describing an actual implementation of Higher-Order
Datalog based on the ideas that are developed in the paper.

2 Higher-Order Logic: Syntax and Semantics

We start with the syntax and the semantics of the higher-order predicate logic
(HOPL) underlying Higher-Order Datalog. We first specify the allowable types:

Definition 1. The set of expression types, tuple types, and predicate types are
ranged over by o, T and 7 respectively and are defined as follows:

ocu=1t|mw
T = (00y..-,0n-1)
Tu=o0|T—o0

The vocabulary of HOPL allows for: bound predicate variables of every pred-
icate type (denoted by Q,R,S,...); free predicate variables of every predicate
type (denoted by p,q,r,...); bound individual variables of ground type ¢ (de-
noted by X,Y,Z,...); constants of type ¢ and of every predicate type (denoted by
a,b,c,...). We will use V to denote arbitrary bound variables (either predicate
or individual ones). We now specify the set of well-typed expressions of HOPL:

Definition 2. The set of well-typed expressions of HOPL is defined as follows:

1. A constant of type o is an expression of type o; an individual variable is an
expression of type v; a predicate variable of type w is an expression of type 7.

2. Let E be an expression of type (0¢,...,0n—1) — 0 and let Eg,... E,_1 be
expressions of types oq,...,0,_1 respectively. Then, E(Eg,...,E,_1) is an
expression of type o.

3. If E, Ey and E; are expressions of type o and V is a bound (predicate or
individual) variable then (—E), (Eo A E1), (Eo V E1), (Eo < E1), (VWE) and
(3VE) are expressions of type o.

In the following we write type(E) for the type of E. The semantics of HOPL is
similar to that of functional programming: the denotations of (non-ground type)
variables and constant symbols of HOPL are monotonic relations; moreover, the
existential and universal quantifiers always quantify over monotonic relations.
Of course, the denotation of negation is not monotonic; however, as we will see,
the syntax of the fragment of HOPL that we will consider is guaranteed to have
a unique minimum Herbrand model that is monotonic. In the following, it will
often be convenient to view relations as functions whose range is the set {0, 1}.
In this way, we can adopt for relations the usual definition of monotonicity:

Definition 3. Let (A,C4) and (B,Cg) be partial orders. Then, f: A — B is
termed monotonic if for all x,y € A such that x T4 y, it is f(x) Cp f(y).

We write [A — B for the set of all monotonic functions from A to B. We now
specify the meaning of the types of the variables and the (non-logical) constants
of HOPL:

Definition 4. The denotation of a type with respect to a given nonempty set U
is recursively defined by the function [-], as follows:

- MU =U
- [[O]]U = {071}
= (o0, on-1)]y = [o0ly x -+ X [on-1]y

= [r =y =Ilr]y = {0,1}]

Now, to each set [o],; (respectively [7],,) of the above definition, we associate
a partial order C, (respectively C.) as follows:

If 0 = ¢ then C, relates every element of U to itself.

— If 0 = o then C, is the numerical ordering on {0,1}.

—Ifo=7—o0and f, gin [o],, then f C, g if f(r) T, g(r) for all r in [7],.
—If 7 = (00,...,0n-1) and r = (ro,...,7—1) and v = (r{,...,7,_ 1) with
r,r" €[]y, then v T, v if r; Ty, 7, for all 0 < i <n— 1.

We will often write just C when the subscript is obvious from context. We
can now define the notions of interpretation and state as follows:

Definition 5. An interpretation I of HOPL consists of: a nonempty set U,
called the domain of I; an assignment to each constant c of type o of an element
cr of [o]y; and, an assignment to each free predicate variable of type © of an
element of [r],. A state over I is a function that assigns to each bound (predicate
or individual) variable an element from the appropriate domain (with respect to
the type of the variable).

We can now define the semantics of expressions of HOPL (the cases for —,
A, V and < are straightforward and omitted):

Definition 6. Let I be an interpretation and s be a state over I. Then, the
semantics of expressions of HOPL in a state s over I is defined as follows:

[c] (1) = 1

[pl,(I) = I(p), where p is a free predicate variable

V],(I) = s(V), where V is a bound (predicate or individual) variable
[[E(EO’ o Enfl)]]s(‘[) = [[E]]S(I)([[EO]]S(I)7 ctt [[Enfl]]s(‘[))

(W BN, (1) = 1, if for all v € [type(V)]yy it is [E] yryyy (1) = 1
[AVE)(I) =1, if there exists v € [type(V)]y; such that [E] 4, (I) =1

S Grds o o =

An interpretation I is a model of a formula F if for all states s over I, [F] (1) = 1.

3 Higher-Order Datalog

The syntax of Higher-Order Datalog allows higher-order variables to be passed
as parameters to predicates. For example, the following is a legitimate program:

closure(R,X,Y):-R(X,Y).
closure(R,X,Y):-R(X,Z) ,closure(R,Z,Y).

We now formally define the syntax of the language:

Definition 7. A term is either a variable or a constant. An atom is either
an expression of the form p(to,...,tn—1), or P(to,...,tn—1), or c(to,...,tn—1),
where tg,...,tn—1 are terms. An atom is a free-predicate one if it of the first
form above. A literal is an atom or the negation of an atom. A positive literal is
an atom. A negative literal is the negation of an atom. A clause C is a formula:

Wo"’vvn_l(Lo VeV Lk—l)

where each L; is a literal and Vo, ...,V,—1 are all the bound (predicate or indi-
vidual) variables occurring in LoV -+ V Lg_1.

Definition 8. A definite program clause is a clause that contains precisely one
positive free-predicate atom (called the head of the clause). A definite program
(or simply program) is a set of definite program clauses.

As usual, definite program clauses are represented in the form A « Bg,...,Bg_1.
In order for our language to preserve the properties of classical Datalog, we follow
the proposal of [Wad91] and restrict our clauses so as to be definitional:

Definition 9. A clause C is called definitional iff a) all arguments of predicate
type in the head of C are bound predicate variables, and b) all these predicate
variables are distinct. A program is called definitional iff all its clauses are defi-
nitional.

The semantics of Higher-Order Datalog is based on Herbrand interpretations.
The Herbrand universe Up of a program P is the set of all constant symbols of
type ¢ that appear in P. Herbrand interpretations are interpretations that use
Up as their underlying universe. The relation C generalizes in the obvious way to
apply to Herbrand interpretations. We assume that HOPL has enough higher-
order constant symbols to represent all monotonic relations. Given a higher-order
constant ¢ we will write ¢ for the corresponding monotonic relation. Moreover,
we assume that all Herbrand interpretations assign the same denotations to the
higher-order constant symbols of the language. We can now define the operator
Tp associated with a given program P:

Definition 10. Let P be a Higher-Order Datalog program and let I be a Her-
brand interpretation of P. Then, we define the operator Tp as follows:

Te(I)(p) = {(coy---sen-1) : p(Coy- -+ Cn-1) — Ag,...,Ax_1 is a ground
instance of a clause in P and for every state s and
forall0 <i<k—1, [A],(I)=1}

Tp is called the immediate consequence operator for P.

Then, it is not hard to demonstrate the following theorem (which generalizes
the corresponding theorem for first-order Datalog):

Theorem 1. For every Higher-Order Datalog program P, Tp has a least (with
respect to C) fizpoint Mp = Ifp(Tp) = Tp | w. Moreover, Mp is a Herbrand
model of P.

4 Implementation

The ideas that are presented in this paper have been used in order to undertake
an implementation of Higher-Order Datalog. The implemented system is actually
based on an implementation of the Tp operator. The implementation is written
in C (about 6500 lines of code), it has been tested with various small programs
and is relatively stable. The current version of the system is available from
http://www.di.uoa.gr/~grad0771.

There exists however a problem that the bottom-up implementation of Higher-
order Datalog has to face. When the order of the program is high and the number
of constants is non-negligible, the bottom-up computation becomes impractical.
This problem is also apparent in ordinary Datalog if the bottom-up computation
is performed in a naive way. However, in our case the problem is more serious
since at each step the implementation may have to generate the set of all mono-
tonic relations of a given type, and this set may be very big. It remains to be
seen if one can develop techniques that can prune the search space.

5 Related and Future Work

The most popular higher-order logic programming systems are A-Prolog [NM98|
and Hilog [CKW93]. Both of these systems are powerful and have found inter-
esting applications. These languages differ from our system in that they are both
intensional (ie., two predicates are not considered equal unless their names are
the same). Both intensional and extensional systems have their corresponding
areas of applications and it would be interesting to compare their relative merits.

Work on extensional higher-order logic programming is very limited. The
only work that has come to our attention is that of M. Bezem [Bez99], which
considers higher-order logic programming with syntax similar to that of [Wad91].
However, the notion of extensionality that is adopted in [Bez99) is different than
the classical one and the main ideas are more proof-theory oriented.

There are certain aspects of this work that we would like to further inves-
tigate. The next step is to extend the semantics to apply to programs that use
“currying” and that allow function symbols. Finally, a more long-term goal is
the investigation of the interplay between higher-order constructs and negation.

References

[Bez99] M. Bezem. Extensionality of Simply Typed Logic Programs. In International
Conference on Logic Programming (ICLP), pages 395-410, 1999.

[CKW93] W.C. Chen, M. Kifer, and D.S. Warren. HILOG: A Foundation for Higher-
Order Logic Programming. J. of Logic Programming, 15(3):187-230, 1993.

[NM98] G. Nadathur and D. Miller. Higher-Order Logic Programming. In D.M.
Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logics for
Artificial Intelligence and Logic Programming, pages 499-590, 1998.

[Wad91] W.W. Wadge. Higher-Order Horn Logic Programming. In Proceedings of
the International Symposium on Logic Programming, pages 289-303, 1991.

6

Deciding Weak Monadic Second-order Logics
using Complex-value Datalog

Gulay Unel and David Toman
{gunel,david}@cs.uwaterloo.ca

Abstract. We use techniques developed for query evaluation of Complex-
value Datalog queries for determining satisfiability of WS1S formulee.

We show that the use of these techniques—in particular the Magic Set

rewriting of Datalog queries and the top-down resolution-based evalua-

tion with memoing—can, in many cases, considerably improve the per-

formance of decision procedures based on the connection between logics

and automata, such as the MONA system. While in this paper we fo-

cus on the WS1S logic, a similar approach can be used for logics whose

decidability can be shown using automata-theoretic techniques.

1 Introduction

Monadic second-order logics provide means to specify regular properties of sys-
tems in a succinct way. In addition, these logics are decidable by the virtue of
the connection to automata theory [4,10]. However, only recently tools based
on these ideas—in particular the MONA system [8]—have been developed and
shown to be efficient enough for many applications [7].

This paper introduces a technique for implementing an automata-based de-
cision procedure for WS1S based on techniques developed for query evaluation
in deductive databases, in particular on Magic Set transformation [2] and SLG
resolution, a top-down resolution-based approach augmented with memoing [5,
6]. The main contribution of the paper is showing the connection between the
automata-based decision procedures for WS18S and efficient techniques for query
evaluation in Complex-value Datalog (Datalog®).

2 Definitions

First, we define the syntax and semantics of the weak second-order logic of one
Successor:

Definition 1 (WS1S). Formulas of WS1S are constructed from atomic for-
mulas s(z,y) and x C y, for x and y second-order variables, with the help of
Boolean connectives N\ and — and second-order existential quantifier 3x.

The semantics of WSI1S is defined w.r.t. the set of natural numbers (successors
of 0); second-order variables are interpreted as finite sets of natural numbers.
The interpretation of the atomic formula s(x, y) is fixed to relating singleton sets
{n +1} and {n}, n € N.! Truth and satisfiability of formulas are defined with
the help of valuations mapping variables to finite sets of natural numbers in a
standard way.

! The atomic formula s(z,y) is often written as = = s(y) in literature, emphasizing its

nature as a successor function.

Definition 2. A finite automaton is a 5-tuple A = (N, X,S,T,F), where N
is the set of states (nodes), X is the alphabet, S is the initial (starting) state,
T C N x N x X is the transition relation, and F is the set of final states.

Given a WS1S formula ¢, there is a finite deterministic automaton A, that
accepts all models of ¢. For weak second-order logics, such as the WS1S, finite
automata are sufficient [7,8]. A, can be effectively constructed from ¢ starting
from automata for atomic formulae and using automata-theoretic operations.

Complex Data Model. The complex-value data model is an extension of the
standard relational model that allows tuples and finite sets to serve as values in
the place of atomic values [1]. The extended data model induces extensions to
relational query languages and leads to the definition of complez-value relational
calculus (calc®™) and a deductive language for complex values, Datalog®[2, 11].

Definition 3 (Datalog®). A Datalog® atom is a predicate symbol with vari-
ables or complex-value constants as arguments.

A Datalog® database (program) is a finite collection of Horn clauses of the
form h — g1,..., gk, where h (called head) is an atom with an optional grouping
specification and g1, ..., gr (called goals) are literals (atoms or their negations).

The grouping is syntactically indicated by enclosing the grouped argument in a
() constructor; the values then range over the set type of the original argument.

We require that in every occurrence of an atom the corresponding arguments have
the same finite type and that the clauses are stratified with respect to negation.

A Datalog® query is a clause of the form «— g1, ..., gr. Fvaluation of a Datalog®”
query (with respect to a Datalog® database P) determines whether P = g1, ..., gk-

Query Fvaluation. The naive technique for query evaluation in Datalog® is
commonly based on a fixed-point construction of the minimal Herbrand model
(for Datalog® programs with stratified negation the model is constructed w.r.t.
the stratification) and then testing whether a ground (instance of the) query is
contained in the model. The type restrictions guarantee that the fixpoint itera-
tion terminates after finitely many steps. However, whenever a query is known
as part of the input, techniques that allow constructing only the relevant parts
of the minimal Herbrand model have been developed. Among these, the most
prominent are the magic set rewriting (followed by subsequent fixed-point eval-
uation) [3,9] and the top-down resolution with memoing—the SLG resolution
[12].

3 Automata and Datalog for Complex Values

In this section we present the main contribution of our approach: given a WS1S
formula ¢ we create a Datalog® program P, representing A, such that the
answer to a reachability/transitive closure query w.r.t. this program proves sat—7
isfiability of ¢.

3.1 Representation of Automata

First, we fix the representation for automata that capture models of WS1S for-
mulae.

Definition 4. Given a WS1S formula ¢ with free variables x1, ...,z we define
a Datalog® program P, which represents the deterministic automaton Ay:

1. Node,(n) representing the nodes of Ay,

2. Start,(n) representing the starting state,

3. Final,(n) representing the set of final states, and

4. Trans,(nfi,nt1,T) representing the transition relation.

where T = {x1,x2,...,x} is the set of free variables of v; concatenation of their
binary valuations represents a letter of A, ’s alphabet X,,.

3.2 Automata-theoretic Operations

Automata Ay, ,) and A,c, for atomic formulee are directly represented by triv-
ial programs Py, ,) and P,c, consisting of ground facts. Automata-theoretic
operations [8] are then represented as the following programs:

P_, =P,U { Node_,(n) < Node,(n)
Start_,(n) < Start,(n)
Final_,(n) < Node,(n), =Finaly(n)
Trans_(nf1,nt1,T) < Trans,(nf1,nt1,T) }

Poynay = Pay U Pay, U { Nodeq, na, ([n1,12]) < Nodey, (1), Nodeq, (12)
Starta, nas ([1, n2]) < Starty, (n1), Starte, (n2)
Finala, aas ([1, n2]) < Finaly, (n1), Finaly, (n2)
Transal/\ag ([nfla an]a [nth ntQ] 3 E? ?7 z) —
Transy, (nf1,nt1,T,7), Transy, (nfo, nt2,7,%) }

The sets of variables T,y represent the free variables of the formula A,, and 7,z
of the formula A,,.

The projection automaton which represents the existential quantification of
a given formula is defined as follows.

Pﬂuiza = POC U { NOdegE:a(n) — NOdeOt(n)
Startys., (n) < Starty(n)
Final4z..,(n) < Final,(n)

Final4z..,(no) < Transs(ng,n1,T,0), Final4:., (n1)
Transyz. . (nf1,nt1,y) < Transy(nf1,nt1,Z,7) }

The sets of variables 3 and T represent the free variables of the formula «, and
0=1{0,0,...,0} where [o| = [7].

Note that we need to add the states which have a path to a final state with a
string of the form (Z,0)* in the automaton for « as final states. The automaton
we get after the projection operation is nondeterministic. The following program

g creates an equivalent deterministic automaton.

P}j:a = P%%:Oc U { NOdegfza(n) — Startgfﬂ(n)
Nodesgz.o(n) < Nodesz.o(n1), Transzz.o(n1,n,7)
Startaz.o ({n}) < Starti;.,(n)
Finalgz.o (n) < Nodegz.o(n), Finalyz.,(n1),n1 € n
Transsz.q(n1, (n),7) < Nodegz.q(n1), Nextaz.q (n1,n,7)
Nextaz.o(n1,n,7) < na € ny, Transiz., (n2,n,7) }

The determinization representation presented here is the Datalog® version of
a well known subset construction algorithm. The nodes of the DFA are created
beginning with the starting node and then constructing all nodes reachable from
the starting node through the transition relation. To this end, the grouping
construct of Datalog® is used to create all the needed elements of the powerset
of the original set of nodes.

Last, the test for emptiness of an automaton has to be defined: To find
out whether the language accepted by A, is non-empty and thus whether « is
satisfiable, a reachability (transitive closure) query is used.

TC, : { TransClos,(n,n) «—
TransClos, (nf1,nt1) < Transy (nfi,nte, T), TransClos, (nta, nty) }

Note that the use of magic sets and/or SLG resolution automatically trans-
forms the transitive closure query into a reachability query. By induction on the
structure of ¢ we have:

Theorem 1. Let ¢ be a WSI1S formula. Then ¢ is satisfiable if and only if
P,,TC, |= Starty,(x), Final,(y), TransClos,(z, y).

4 Experiments

We have compared our technique with the MONA system [7, 8], one of the most
efficient tools for reasoning in weak second-order logics (WS1S and WS2S). In
contrast to MONA, which constructs the whole automaton for a given formula,
our method only constructs the nodes we need to answer the non-emptiness
query. For the experiments we use XSB [12], a deductive system that sup-
ports top-down resolution with memoing. We also compare our results with
CORAL [11], a deductive system that supports Datalog® and Magic sets.

The performance results for a set of formulas similar to the ones in T98
satisfiability test suite are given in Figures 1 and 2. The inputs we give to XSB
and CORAL are the Datalog® programs representing the formulas, and the time
required to compute the Datalog®” representation of a formula is negligible. The
response times are measured in seconds; N/A means “Not Answered”.

5 Conclusions and Future Work

We have presented a technique that maps satisfiability questions for formulas in
WSI1S to query answering in Datalog® and demonstrated how advanced query
evaluation techniques can provide an efficient decision procedure for WS1S. g

#1 [#2 | #3 | #4 | #5 | #6 | #7 | #8 [#9 [#10
MONA |[4.37 | N/A [13.33 | N/A | N/A [0.00 | 0.00 | 0.00 | 0.24 | 4.06
CORAL | 2.42 | 4.15 | 4.75 | 12.09 | 14.17 | N/A | N/A | N/A | N/A [N/A
XSB [0.71]0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.07 | N/A | 8.41 | N/A

Fig. 1. Performance (secs) w.r.t. increasing number of quantifiers

#6 | #7 | #8 [#10 | #9 [#1 | #3 | #2 | #4 | #5
MONA [0.00 | 0.00 | 0.00 [4.06 | 0.24 | 4.37 [13.33 [N/A | N/A | N/A
CORAL | N/A [N/A | N/A | N/A | N/A | 2.42| 4.75 | 4.15 | 12.09 | 14.17
XSB | 0.01 | 0.07 | N/A [N/A | 8.41 | 0.71| 0.00 | 0.00 | 0.02 | 0.01

Fig. 2. Performance (secs) w.r.t. increasing number of variables

Extensions of the proposed approach include extending the translation to

other types of automata on infinite objects, e.g., to Rabin [10] and Alternating
Automata [13], and on improving the upper complexity bounds by restricting the
form of Datalog®” programs generated by the translation. In addition we plan
to study the impact of goal reordering and other query optimization techniques
on the performance of the decision procedure and to develop heuristics for this
purpose. We also consider the integration of the technique proposed in this paper
with more standard techniques such as BDDs.

References

1

10.

11.

12.

13.

10

S. Abiteoul and C. Beeri. The power of languages for the manipulation of complex
values. VLDB Journal, 4(4):727-794, 1995.

. C. Beeri, S. Naqvi, O. Shmueli, , and S. Tsur. Set construction in a logic database

language. JLP, 10(3&4):181-232, 1991.

C. Beeri and R. Ramakrishnan. On the power of Magic. JLP, 10(1/2/3&4):255—
299, 1991.

J. R. Biichi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math., 6:66-92, 1960.

W. Chen, T. Swift, and D.S Warren. Efficient top-down computation of queries
under the well-founded semantics. JLP, 24(3):161-199, 1995.

W. Chen and D.S Warren. Query evaluation under the well-founded semantics. In
PODS, pages 168-179, 1993.

J. G. Henriksen, J. L. Jensen, M. E. Jorgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. MONA: Monadic second-order logic in practice. In Proc.
TACAS, pages 89-110, 1995.

N. Klarlund. MONA & FIDO: The logic-automaton connection in practice. In
Computer Science Logic, pages 311-326, 1997.

I. S. Mumick. Query Optimization in Deductive and Relational Databases. PhD
thesis, Department of Computer Science, Stanford University, 1991.

M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1-35, 1969.

R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL
deductive system. VLDB Journal, 3(2):161-210, 1994.

K. F. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database
engine. In Proc. SIGMOD, pages 442-453, 1994.

M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. ICALP,
pages 628-641, 1998.

A SAT-based Sudoku Solver*

Tjark Weber

Institut fiir Informatik, Technische Universitat Miinchen
Boltzmannstr. 3, D-85748 Garching b. Miinchen, Germany
webertj@in.tum.de

Abstract. This paper presents a SAT-based Sudoku solver. A Sudoku is
translated into a propositional formula that is satisfiable if and only if the
Sudoku has a solution. A standard SAT solver can then be applied, and
a solution for the Sudoku can be read off from the satisfying assignment
returned by the SAT solver. No coding was necessary to implement this
solver: The translation into propositional logic is provided by a frame-
work for finite model generation available in the Isabelle/HOL theorem
prover. Only the constraints on a Sudoku solution had to be specified in
the prover’s logic.

1 Introduction

Sudoku, also known as Number Place in the United States, is a placement puzzle.
Given a grid — most frequently a 9 x 9 grid made up of 3 x 3 subgrids called
“regions” — with various digits given in some cells (the “givens”), the aim is to
enter a digit from 1 through 9 in each cell of the grid so that each row, column
and region contains only one instance of each digit. Fig. 1 shows a Sudoku on
the left, along with its unique solution on the right [12]. Note that other symbols
(e.g. letters, icons) could be used instead of digits, as their arithmetic properties
are irrelevant in the context of Sudoku. This is currently a rather popular puzzle
that is featured in a number of newspapers and puzzle magazines [1, 3, 9].
Several Sudoku solvers are available already [6, 10]. Since there are more
than 6 - 102! possible Sudoku grids [5], a naive backtracking algorithm would
be infeasible. Sudoku solvers therefore combine backtracking with — sometimes
complicated — methods for constraint propagation. In this paper we propose a
SAT-based approach: A Sudoku is translated into a propositional formula that is
satisfiable if and only if the Sudoku has a solution. The propositional formula is
then presented to a standard SAT solver, and if the SAT solver finds a satisfying
assignment, this assignment can readily be transformed into a solution for the
original Sudoku. The presented translation into SAT is simple, and requires
minimal implementation effort since we can make use of an existing framework
for finite model generation [11] available in the Isabelle/HOL [8] theorem prover.

* This work was supported by the PhD program Logic in Computer Science of the
German Research Foundation.

11

5|3 7 5/31416|7|8]9/1|2
6 1195 6/7]2]11/9|5]3/4(8
98 6 119(8]3/4(2]5/6|7
8 6 3 815]|9]|7/6]/1]4/2|3
4 8| 13 1 412]1618|5|3|7|9]1
7 2 6 71113]19/2/4]8]5/6
6 2|8 916]1]15/3|7]2/8[4
41119 5 2|8|7]14/1]9]6/3|5

8 719 31415]12/8[6]1/7]9

Fig. 1. Sudoku example and solution

2 Implementation in Isabelle/HOL

An implementation of the Sudoku rules in the interactive theorem prover Isa-
belle/HOL is straightforward. Digits are modelled by a datatype with nine ele-
ments 1,...,9. We say that nine grid cells x1,...,x9 are valid iff they contain
every digit.

Definition 1 (valid).

9 9

valid(z1, x2, 23, T4, T5, Te, T7, T8, Tg) = /\ \/ z; =d.
d=1i=1

Labeling the 81 cells of a 9 x 9 grid as shown in Fig. 2, we can now define
what it means for them to be a Sudoku solution: each row, column and region
must be valid.

Definition 2 (sudoku).

9
sudoku({zs;}4 je(1,....01) = /\ valid(z41, Ti2, i3, Tid, Tis, Tie, TiT, Tig, Ti9)
i=1
9
A /\ valid(z15, 25, T35, T4j, Tsj, Tej, 75, Tsj, Toj)
i=1

AN valid(@igs @iy, Tage2) Ts)5s T (1) Tt (42)
1,7€{1,4,7}

T(i42)j> L(i+2)(+1)1 T(i+2) (j+2))-

The next section describes the translation of these definitions into proposi-
tional logic.

3 Translation to SAT

We encode a Sudoku by introducing 9 Boolean variables for each cell of the
9 x 9 grid, i.e. 93 = 729 variables in total. Each Boolean variable pfj (with

12

@11 | @12 | @13 | ®14 | @15 (@16 |17 |18 [@19
2] | 22 | T23 | T24 | 25 | 26 | T27 | 28 [29
@31 | 232 | 233 | v34 | 235 | w36 | 237 | ®38 | 239
®41 | @42 |43 | P44 | ®a5 | P46 | Ta7 | a8 | P49
5] | 52 | 53 | 54 | £55 | €56 | £57 | €58 [£59
61 | T62 | T63 | 64 | T65 | T66 | T67 | 68 | £69
T71 | T72 | TT3 | TT4 | TT5 |76 | 7T | X788 [79
8] | T82 | T83 | T84 | T85 | £86 | T8T | 8 | £89
9] | 92 | T93 | 94 | T95 | €96 | €97 | £98 [€99
Fig. 2. Sudoku grid

1 <4,7,d <9) represents the truth value of the equation z;; = d. A clause

ensures that the cell z;; denotes one of the nine digits, and 36 clauses

make sure that the cell does not denote two different digits at the same time.

1<d<d’'<9

9
d
\/ Dij
d=1

A

d d’
Py V TPij

Since there are just as many digits as cells in each row, column, and region,
Def. 1 is equivalent to the following characterization of validity, stating that the

nine grid cells x4, ..

Lemma 1 (Equivalent characterization of validity).

valid(x1, x2,23, T4, T5, T6, 7, T8, ¥0) = [\ @i A5
1<i<j<9

9

1<i<j<9 d=1

., Tg contain distinct values.

The latter characterization turns out to be much more efficient when trans-
lated to SAT. While Def. 1, when translated directly, produces 9 clauses with
9 literals each (one literal for each equation), the formula given in Lemma 1 is
translated into 324 clauses (9 clauses for each of the 36 inequations z; # x;), but
each clause of length 2 only. This allows for more unit propagation [14] at the
Boolean level, which — in terms of the original Sudoku — corresponds to cross-
hatching [12] of digits, a technique that is essential to reduce the search space.

13

The 9 clauses obtained from a direct translation of Def. 1 could still be used as
well; unit propagation on these clauses would correspond to counting the digits
1 -9 in regions, rows, and columns to identify missing numbers. However, in our
experiments we did not experience any speedup by including these clauses.

This gives us a total of 11745 clauses: 81 definedness clauses of length 9, 81-36
uniqueness clauses of length 2, and 27 - 324 validity clauses,! again of length 2.
However, we do not need to introduce Boolean variables for cells whose value
is given in the original Sudoku, and we can omit definedness and uniqueness
clauses for these cells as well as some of the validity clauses — therefore the total
number of variables and clauses used in the encoding of a Sudoku with givens
will be less than 729 and 11745, respectively.

Note that our encoding already yields a propositional formula in conjunctive
normal form (CNF). Therefore conversion into DIMACS CNF format [4] — the
standard input format used by most SAT solvers — is trivial. Isabelle can search
for a satisfying assignment using either an internal DPLL-based [2] SAT solver,
or write the formula to a file in DIMACS format and execute an external solver.
We have employed zChaff [7] to find the solution to various Sudoku classified as
“hard” by their respective authors (see Fig. 3 for an example), and in every case
the runtime was only a few milliseconds.

oo

=~

—
N[N [O=]|w|co|—
Wk || |o (U [© N
=[O0 |OIN W |
O [WU | =]O ||~
(G111 ENI N Vo) o od}] (V]
N[O |W]o =T
(=211 CIEN] [US] Iad[ee] [N Ne}

| W0 |||~ Ut
OO (o w|oco

Fig. 3. hard Sudoku example and solution

4 Concluding Remarks

We have presented a straightforward translation of a Sudoku into a propositional
formula. The translation can easily be generalized from 9 x 9 grids to grids of
arbitrary dimension. It is polynomial in the size of the grid, and since Sudoku is
NP-complete [13], no algorithm with better complexity is known. The transla-
tion, combined with a state-of-the-art SAT solver, is also practically successful:
9 x 9 Sudoku puzzles are solved within milliseconds.

Traditionally the givens in a Sudoku are chosen so that the puzzle’s solution
is unique; nevertheless our algorithm can be extended to enumerate all possi-

! This number includes some duplicates, caused by the overlap between rows/columns
and regions: certain cells that must be distinct because they belong to the same row
(or column) must also be distinct because they belong to the same region.

14

ble solutions (by explicitly disallowing all solutions found so far, and perhaps
using an incremental SAT solver that allows adding clauses on-the-fly to avoid
searching through the same search space multiple times).

Particularly remarkable is the fact that our solver, while it can certainly
compete with hand-crafted Sudoku solvers, some of which use rather complex
patterns and search heuristics, required very little implementation effort. Aside
from Lemma 1, no domain-specific knowledge was used. The impressive perfor-
mance is largely due to the SAT solver. Even the translation into propositional
logic was not written by hand, but is an instance of a framework for finite model
generation that is readily available in the Isabelle/HOL theorem prover. Only
the Sudoku rules had to be defined in the prover, and this was a trouble-free
task.

References

[1] Col Allan, editor. New York Post. News Corporation, New York City, NY, USA,
2005.

[2] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394-397, 1962.

[3] Giovanni di Lorenzo, editor. Die Zeit. Zeitverlag Gerd Bucerius GmbH & Co.
KG, Hamburg, Germany, 2005.

[4] DIMACS satisfiability suggested format, 1993. Available online at ftp://dimacs.
rutgers.edu/pub/challenge/satisfiability/doc.

[5] Bertram Felgenhauer and Frazer Jarvis. Enumerating possible Sudoku grids, June
2005. Available online at http://www.shef.ac.uk/~pmlafj/sudoku/.

[6] DeadMan’s Handle Ltd. Sudoku solver, September 2005. Available online at
http://www.sudoku-solver.com/.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th Design Automation Conference,
Las Vegas, June 2001.

[8] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[9] Robert James Thomson, editor. The Times. Times Newspapers Ltd., London,
UK, 2005.

[10] Pete Wake. Sudoku solver by logic, September 2005. Available online at http:
//wuw . sudokusolver.co.uk/.

[11] Tjark Weber. Bounded model generation for Isabelle/HOL. In Wolfgang Ahrendst,
Peter Baumgartner, Hans de Nivelle, Silvio Ranise, and Cesare Tinelli, editors,
Selected Papers from the Workshops on Disproving and the Second International
Workshop on Pragmatics of Decision Procedures (PDPAR 2004), volume 125(3)
of Electronic Notes in Theoretical Computer Science, pages 103-116. Elsevier,
July 2005.

[12] Wikipedia. Sudoku — Wikipedia, the free encyclopedia, September 2005. Available
online at http://en.wikipedia.org/wiki/Sudoku.

[13] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding an-
other solution and its application to puzzles. In IPSJ SIG Notes 2002-AL-87-2.
IPSJ, 2002.

[14] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
Andrei Voronkov, editor, Proceedings of the 8th International Conference on Com-
puter Aided Deduction (CADE 2002), volume 2392 of Lecture Notes in Computer
Science. Springer, 2002.

15

Matchmaking and Personalization on Mobile Devices

Thomas Kleemann and Alex Sinner

University of Koblenz-Landau, Department of Computer Science
{tomkl|sinner}@uni-koblenz.de

Abstract. We describe in this paper how to perform description logic reasoning
on mobile devices for personalization in a semantic mobile environment. In such
an environment, semantic messages are sent to nearby mobile users. The mobile
devices manage a semantic user profile, which is used to filter out unwanted mes-
sages. The semantics of the messages and profile is formalized using description
logic. A matchmaking process is performed on the mobile device by a first order
reasoner, Pocket KRHyper. The suitable definition of profiles and annotations
and the translation from description logic to first order logic including general
TBoxes is also described.

1 Introduction

During the past few years mobile phones have become a ubiquitous companion. They
were up to now mainly used for messaging and phone calls, but they have become pow-
erful devices with much more potential. Our goal is to show how to use this potential
for performing description logic (DL) based matchmaking for personalization on mo-
bile devices in what we call a’'Semantic Mobile Environment'. In such an environment,
so-called service nodes are installed at chosen points of interest. These nodes broadcast
semantically annotated messages to nearby mobile users using, for example, bluetooth
wireless technology.

On the user’'s mobile device, we manag&emantic User Profilelescribing the
users interests and disinterests in a description logic formalization (se2.3ed his
user profile is used to filter out unwanted messages by performing matchmaking be-
tween the messages’ annotation and the user profile.

In the following, we describe the formalization of the annotations of messages and
the user profiles. Then we propose a matchmaking algorithm that requires, indepen-
dently of the profile size, only two DL satisfiability tests. Finally, we present how this
can be performed efficiently on mobile devices using the Pocket KRHyper mobile rea-
soner.

2 Semantic Personalization

We are using a description logic of expressiveng%s! to describe semantic annota-
tions and user profiles. In the followinyg, is the universal role] the top concept, and
| the bottom concept. The syntax and semantic$HfI are amply described irl].

1 This work is part of the IASON project and is funded by the "Stiftung Rheinland-Ptalz f
Innovation”.

16

2.1 Message Annotation

Every message in our environment consists of some human-readable content and an
annotation describing the semantics of the respective message. We distinguish between
an ontologyZy for describing the concepts in the world and a service ontolBgfgee

Fig. 1) that makes it possible to distinguish between producers and consumers of goods
and services. Additionally, social interests lacking a producer-consumer separation are
possibleZs is intentionally kept simple for clarity’s sake, but could easily be extended.

shareC U
offer C share
requestC share

Fig. 1. The Service Ontolog{s

In general, annotations are of the form
annotation= IRC

whereR C share &y = C, and %y U Ts |= annotation To describe, for example, an
offer of a movie of genre SciFi on a DVD, we would use the following annotation:

Joffer.(Movier1 3hasGenreSciFir 3hasMediunDVD)

2.2 User Profile

On the receiving end for semantic messages, we have a mobile device which manages
a semantic user profile. This user profile stores the positively marked interests and the
disinterests determined by rejected topics. The interests and disinterests in the profile
are defined as follows:

profile = interestsdisinterests (1)
interests= |:| positive (2)
positive = IHZI;. .G 3)

disinterests= E| negative 4)
negative = IHZI;. .G (5)
R C share (6)

From the definition, we see that the interests and disinterests are a collection of DL
concepts that follow the definition of the annotations.

The user’s interests and disinterests are updated from his/her responses to messages,
and allow for the use of ontological knowledge to generalize the annotation. The pro-
cedure of these updates is beyond the scope of this paper.

17

2.3 Matchmaking

The main motivation behind the DL formalization was to be able to compare the se-
mantic annotation of incoming messages with the interests and disinterests stored in the
semantic user profile. This is what we call matchmaking.

The decision whether a message matches a users interests is based on concept satis-
fiability and subsumption of the DL in use. Because the mobile clients provide limited
computing power, the decision of a match is performed with only two queries.

profilerannotation | @)
annotationC profile (8)

The first test 7) checks whether the annotatiorcismpatiblewith the profile. If the
test fails, the annotated message is considemdsmatch Otherwise, we perform the
second test§) to get a bettematch degreelf it is satisfied, the annotated message is
called amatch

3 Mobile Reasoning

To perform the reasoning necessary for the matchmaking task, we are using the first
order logic (FOL) theorem prover library Pocket KRHyp@for Java 2 Mobile Edition
(J2ME2) enabled mobile devices. The reasoning engine is based on the hyper tableau
calculus B] and can be considered as a resource optimized version of the KRHylper [
system. Pocket KRHyper is currently the only FOL automated theorem prover running
on mobile devices that can tackle useful problems.

Since our matchmaking algorithm requires DL TBox reasoning, we use a trans-
formation from description logic to FOL. The transformation into sets of clauses in-
troduces subconcepts to reduce the complexity of the concept expression or axiom. An
axiom3R.C L VSVT.Dis splitintodR.C T suly andsul C VS sub andsuly T VT.D to
comply with the transformation primitives. Tallegives the transformation primitives
in abstract DL syntax, a corresponding first order formula and the generated clauses.

The clauses marked with * are not range restricted, which may cause the reason-
ing algorithm to consider all ground instances of the disjunctive head. Since this is
very time-consuming, such constructs are better avoided in the modeling. Decidabil-
ity commonly requires the tableau procedure to engage a blocking technique to avoid
the infinite generation of role successors in clause **. This is neccessary for cyclical
terminologies wher® C C or D transitively has role successors@ The blocking
techniques found ing] may be adapted to the transformation as showrjin [

The effective test for satisfiability of a concepinserts a single fadt(a) into the
knowledge base&€ is satisfiable if the Pocket KRHyper finds a model for the knowledge
base. A refutation indicates the unsatisfiability of the concept. Subsumption of concepts
is reduced to satisfiability.

4 Resource Management and Evaluation

In order to reduce the workload introduced by the translation of DL axioms into clausal
form, the knowledge base is split into three parts. The ontology is assumed to be stable

2 http://java.sun.com/j2me

18

http://java.sun.com/j2me

description logicfirst order formula clauses
CnDCE VXx.C(x) AD(x) — E(x) e(x) :- c(x), d(x).
CuUDCE VX.C(x) vV D(x) — E(x) e(x) :- c(x).

e(x) :- d(x).

CcCC-D VX.C(x) — =D(x) false :- c(x), d(x).
JRCLCD VXVY.R(X,y) AC(y) — D(X) d(x) :- c(y), r(x,y).
VRCLCD VX.(VY.R(x,y) — C(y)) — D(X) d(x); r(x,fr_c(x)). *

d(x) :- c(fr-c(x)).

CCDME |vxC(x) — D(x) AE(x) e(x) :- c(x).

d(x) :- c(x).

CCDUE |VxC(x) — D(x) VE(x) e(x); d(x) :- c(x).

-CCD Vx.—C(x) — D(X) c(x); d(x). *

CCIRD |VxC(x) — (3y.R(xYy) AD(Y)) d(fr_p(X)) - ¢(X).

r(x,fr_p(X)) :- c(x). **

CLCVRD |¥XC(x) — (Vy.R(x,y) — D(y)) d(y) :- c(x), r(x,y).

RCS YXWY.R(XY) — S(x,Y) s(x.y) - r(x.y)

R =S YXVY.R(X,Y) < Sy, X) S(Y,X) :- r(x,y).
r(x.y) :- s(y.x).
Rt YXVWZ.R(X,Y) AR(Y,2) — R(X,2) r(x,z) :- r(x,y), r(y,z).

Table 1. Translation Primitives

throughout the runtime of the application and is therefore transformed only once. The
profile is transformed only when it is updated. Solely the annotations of messages and
the associated queries are transformed as they emerge. The knowledge base keeps track
of these parts by setting a mark at each such step, so it is possible to revert it to the state
it had before an update or query.

With respect to our matchmaking algorithm, the simplifications in T2bfield the
same results, but reduce the number of clauses. The effect is a reduced memory con-
sumption of the knowledge base itself and the hyper tableau generated for the tests. To
test the satisfiability ohnnotatiorm profile, it is sufficient to consider only theegative
part of the profile, if translated according to TaBleAn annotation will fail this test if
it is subsumed by thdisinterests

positivg C profile ie{1,..n} 9)
negative C L ie{l,..,m} (10)
annotationC 3R.C (12)

Table 2. Resource Optimized Transformation of Profile and Annotation

A performance evaluation of Pocket KRHyper with respect to a selection of TEOP |
problems can be found i®]. First empirical tests of our matchmaking approach with
ontologies for three different real world scenarios (public transport, conference pro-
gram, and cinema program) performed well on contemporary phones like e.g. Nokia
6681. Matchmaking decisions took less than one second per incoming message.

19

5 Conclusions and Related Work

In this paper, we have described how to perform matchmaking on mobile devices for
personalization in a semantic mobile environment using the Pocket KRHyper mobile
theorem prover and a corresponding DL transformation. To our knowledge, the use of
automated reasoning on mobile devices for personalization in a semantic mobile en-
vironment is new. A propositional tableaux-based theorem prover for JavaCard, Card-
TAP [4], has been implemented before. But unlike Pocket KRHyper, this was consid-
ered a toy system and was too slow for real applications.

Unlike other matchmaking approach@sg], we use at most two queries to calculate
the match degree for arbitrary profiles. A large profile containing many interests and
disinterests does not impose more tests. Thus our approach scales well even in the
context of limited resources.

The capabilities of the presented DL transformation extend those of the Description
Logic Programs (DLP)H] subset of DL and Logic Programs. Despite these extensions,
reasoning is still empirically successful, even on mobile devices.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schn&lkede-
scription logic handbook: theory, implementation, and applicatioBambridge University
Press, 2003.

2. P. Baumgartner, U. Furbach, M. Gross-Hardt, and T. Kleemann. Model based deduction for
database schema reasoning.KIn2004: Advances in Atrtificial Intelligen¢cerolume 3238,
pages 168-182. Springer Verlag, 2004.

3. P. Baumgartner, U. Furbach, and I. NieénelHyper Tableaux. Technical Report 8-96,
Universitt Koblenz-Landau, 1996.

4. R. Gog, J. Posegga, A. Slater, and H. Vogt. System description: cardtap: The first theo-
rem prover on a smart card. ADE-15: Proc. of the 15th International Conference on
Automated Deductigrpages 47-50. Springer-Verlag, 1998.

5. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logic. IRroc. of the 12th International World Wide Web
Conference (WWW 2003)ages 48-57. ACM, 2003.

6. V. Haarslev and R. Mller. Expressive ABox Reasoning with Number Restrictions, Role
Hierarchies, and Transitively Closed Roles KIR2000: Principles of Knowledge Represen-
tation and Reasoningages 273-284. Morgan Kaufmann, 2000.

7. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. InProc. of the 12th International World Wide Web Conference (WWW’2003)
pages 331-339. ACM, 2003.

8. T.D. Noia, E. D. Sciascio, F. M. Donini, and M. Mongiello. Abductive matchmaking using
description logics. IProc. of IJCAI'03 pages 337-342, 2003.

9. A. Sinner and T. Kleemann. Krhyper - in your pocket, system descriptionPrda. of
Conference on Automated Deduction, CADE-2005.

10. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1Iddrnal of
Automated Reasoning1(2):177-203, 1998.

11. C. Wernhard. System Description: KRHyper. Fachberichte Informatik 14—-2003, Uriersit
Koblenz-Landau, 2003.

20

A Sequent Calculus for a First-order Dynamic
Logic with Trace Modalities for Promela™

Florian Rabe!, Steffen Schlager?, and Peter H. Schmitt?

! International University Bremen
2 Universitat Karlsruhe

Abstract. In this paper we introduce the first-order dynamic logic DLP
for Promela™, a language subsuming the modelling language Promela, of
the Spin model checker. In DLP trace modalities can be used to rea-
son about the temporal properties of programs. The definition of DLP
includes a formal semantics of the Promela™ language. A sound and rela-
tively complete sequent calculus is given, which allows deductive theorem
proving for Promela™. In contrast to the Spin model checker for Promela,
this calculus allows to verify infinite state models. To demonstrate the
usefulness of our approach we present two examples that cannot be han-
dled with Spin but that can be derived in our calculus.

1 DLP—Dynamic Logic for Promela™

Dynamic Logic (DL) [4,5] is an extension of first-order predicate logic with
modalities [7]F and (m)F for each program 7 of some programming language
and DL formula F. DL allows to reason about the input/output behaviour of a
program. However, sometimes it is desirable to reason about intermediate states
of a program as well. This becomes possible if DL is extended with additional,
so-called trace modalities, as shown in [1].

The programming language we consider in this paper is Promela™ whose
syntax is essentially the same as of Promela [7], the modelling language of the
model checker Spin [6]. Besides the usual constructs like assignments, loops,
etc. Promela offers dynamic process creation, synchronous and asynchronous
communication through channels, and non-deterministic choice.

In contrast to Promela, Promela™ is not restricted to finite models. E.g., it
is possible to create an unbounded number of processes, integer variables are
not range restricted, and, most important, the initial state of a system may be
(partially) unknown. For an informal syntax and semantics of Promela programs
we refer to [7, 6]. A detailed formal syntax and semantics Promela™ and therefore
of Promela and can be found in [8].

2 Promelat and Limited Programs

In this section we give a very brief overview over the semantics of Promela™
as described in [8]. We also introduce limited programs, which are an extension
of [8].

21

Syntaz. Promela™ is based on a many-sorted first-order logic over a fixed sig-
nature containing all symbols to define syntax and semantics of Promela. It is
extended with six temporal operators for each program 7: [x], (w), [[7]], [{7)],
([r]) and {(r)). Promela variables are modelled as function symbols and are dif-
ferent from the logical variables.

The normal programs, which we call unlimited, are essentially the Promela
programs. In addition we introduce limited programs which are defined by the
following clause: If ¢ is a term of sort integer and 7 is an unlimited program,
then 7t is a limited program. Limited or unlimited programs may occur inside
temporal operators, e.g., for a formula F both [r]F and [r?]F are well-formed
formulas.

Semantics. The semantic domain of DL are extended Kripke structures. The
states are many-sorted first-order structures such that

— all states share the same universe,

— some function and predicate symbols are rigid, i.e. have the same interpre-
tation in all states (e.g. arithmetics and list operation), and

— the interpretation of non-rigid function symbols is depending on the state
encoding the values of the Promela variables and channels.

For each elementary command there is one transition relation reflecting the
semantics of the programming language. A trace of a program 7 for an initial
state s is the (possibly infinite) sequence of states of a possible run of 7 starting
in s. If a trace is finite its last state is labelled with timeout or termination.
Promela™ is non-deterministic, i.e., the semantics of a program is a set of traces
for each initial state. Where applicable our semantics of Promela™ agrees with
the semantics of Promela used by Spin.

For a trace t and a natural number n let t" denote the initial segment of
length n of ¢; and for a set of traces T let T™ denote the set of all such segments
of traces in T'. For a given state s and an assignment « to the free logical variables
let val denote the interpretation function. Then the semantics of the limited
program 7' is given by:

19 () valg (m)™ if val§(t) =n,n >0
valg (m') =
? 0 if valg () <0

That means that for a limited program only the first n — 1 computation steps
are relevant.

The formula [7]F ({(m)F) holds in state s iff for all (there exists a) possible
end state(s) of m labelled with termination when started in s the formula F
holds. The formula [[7]]F ([{w)]F) holds iff for all (there ezists a) state(s) on
all traces of 7 the formula F' holds. And the formula ([7])F ({n))F) holds iff
there exists a trace of m on which for all (there exists a) state(s) F' holds. If the
program in the modal operator is a limited program the same semantics applies
with respect to the traces in the interpretation of w?. Formulas not containing
modalities are interpreted as usual in first-order logic.

22

E.g., suppose valg (7) = {(s1, s2, termination s3), (s1,52, 83, timeout sj)}
and F holds precisely in the states si, sz, s3 and s3. Then val{ ({[7])F) = 1
because F' holds in all states of the first trace; valg, ([[7]]F) = 0 because F' does
not hold in s}; val§ ([[7*]]F) = 1 because now only the first three states of each
trace are considered; and valg ([7%]F) = 1 because there is no final state within
the first two states of a trace, and the universal quantification over the empty
set is trivially true.

3 A Sequent Calculus for DLP

We use a sequent calculus to axiomatise DLP. As usual, the semantics of a rule
is that the validity of the premisses above the line implies the validity of the
conclusion. A full account (except for limited programs) is given in [8]. The core
of the calculus are the rules for symbolic execution of Promela™ code.

The idea of the rules for symbolic execution is that first scheduling rules
introduce tags. The semantics of a tagged program i : 7 is the same as of © with
the restriction that the next command to be executed is from the i-th process
of m. Thus scheduling rules can be seen as case distinctions that have one case
for every possible scheduling decision.

Secondly, unwinding rules transform the program ¢ : 7 by replacing composed
commands (selections, loops and sequences marked as atomic) with elementary
ones. This is necessary since only elementary commands have a well-defined
effect on the global state (due to the non-deterministic interleaving of processes).
Both scheduling and unwinding lead to branches or alternatives in the proof tree
reflecting the indeterminism of Promela.

Thirdly, an elementary command is executed. A typical example rule is:

ex(c) H F ex(c) F eff(c)[[remProg(r,i)]|F
F[[i:n]]F

The purpose of this rule is to execute the first command c of the i-th process of
.

While tags are syntactic entities of DLP, ex, eff, and remProg are meta level
abbreviations that allow to state several rules in one compact rule scheme: ex(c)
is a first-order formula that expresses the executability of ¢, eff(c) expresses the
state transitions caused by the execution of ¢ and modifies the state in which
the following formula is to be evaluated, and remProg(w,) is the program that
remains to be executed after ¢ has been executed. These abbreviations must
be defined for all elementary commands c. E.g., if ¢ spawns a new process,
remProg(m, i) removes ¢ from m and adds the new process instance to .

Having the intuitive meaning of these functions in mind it is easy to under-
stand the rule: If ¢ is executable, the formula [[i : 7]]F, which states that F'
holds in all states on all traces, is reduced to F', which states that F' holds in
the current state, and eff(c)[[remProg(m,i)]]F, which states that F' holds in all
states on all traces that arise if the remaining program is executed in the next

23

state (characterised by the state updates eff(c)). If ¢ is not executable, the proof
goal is closed immediately.

Note that the execution rule eliminates the tag and the scheduling rules are
applicable again. This cycle is repeated until the program is completely executed
and can be discharged.

Rules for Limited Programs. In order to derive formulas with non-terminating
programs we apply induction rules, usually on the length of the traces. However,
this is only possible if the formula contains a term that encodes this length.
Therefore, limited programs are introduced by the rules given in Fig. 1. Here
the rules in the right column are not necessary for completeness and are only
given for symmetry. After introduction of the limited programs induction on ¢
can be applied.

M e {[], [, [O1} | M e {0, O
FVt:iint.t >1— M(@)F F Jt:int. t > 1TAM(T)F
F M(m)F F M(m)F

Fig. 1. Introducing limited programs

Formulas that contain limited programs are treated by similar symbolic exe-
cution rules as those with unlimited programs. In particular the scheduling and
unwinding rules are the same. For command execution one detail is changed: The
limit is decremented because one program step has been executed. For example
the above execution rule corresponds to

t>2, ex(c) H F t>2, ex(c) b eff(c)|[remProg(m, i)' |F
t>2 F [[i: 7| F

The rules for discharging limited programs when the limit is reached, i.e.,
t = 1, and for the degenerate cases where t < 0 are given in Fig. 2. If t = 1
a special case must be distinguished: If the program is non-empty, i.e. ™ # ¢,
it has not terminated yet and no final state exists, which means that [r!]F is
always true and (r!)F is always false. If ¢ < 0, formulas that contain operators
that quantify universally over the traces are always true.

3.1 Soundness and Relative Completeness

Soundness has to be shown separately for each rule. Most of the proofs are
technical, but not difficult. Except for the rules for limited programs they can
be found in [8].

The soundness of the rules for limited programs either follows directly from
the definition of the semantics or from the soundness of the corresponding rule
for unlimited programs—except for the introduction rules for limited programs
for the operators [()] and ([]). For the soundness of these rules the following
theorem.

24

e M= ‘ e M=) ‘ otherwise
t=1F t=1F F
t=1F M(r)F t=1F M(r)F

t=1F M(x)F
Me{[LILIO | Me {0, MO}
t<o0 F
t<0F M(x)F t<0F M(x)F

Fig. 2. Discharging limited programs

Theorem 1. For all unlimited programs w, all formulas F', all states s, and all
assignments o

inf . _
val®(M (7)F) = ’;ii* val?(M(ﬂ")F){ iﬂz‘j_&}
neN*

This theorem states that it is sufficient for the evaluation of formulas con-
taining the modalities ([]) and [()] to consider only finite prefixes of the traces.
The proof is based on quite involved an induction and can be found in [8]. It is
essential for this theorem that the number of indeterministic choices in Promela
is always finite. That guarantees that the sets valy (™) are always finite whereas
the set valY(7) may even be uncountable.

The idea of the proof of relative completeness is to discharge all programs
by symbolic execution if possible and to introduce limited programs and use in-
duction for non-terminating programs. Then the remaining first-order formulas
can be handled by standard methods. Relative completeness means that all valid
formulas could be derived in the calculus if an oracle for arithmetic was available,
i.e., a rule scheme providing all valid arithmetic formulas as axioms. Of course,
in reality such a rule cannot exist but this is not harmful to “practical complete-
ness”. Rule sets for arithmetic are available, which—as experience shows—allow
to derive all valid first-order formulas that occur during the verification of actual
programs. Moreover, many arithmetic formulas can be automatically discharged
by external decision procedures like CVC [9] and the Simplify tool, which is part
of ESC/Java [3].

It is possible to give further operators, e.g., Inf(m)F stating that F holds
infinitely many times along every trace of 7, for which the above theorem does
not hold. Therefore the described technique cannot be extended to give a sound
and relatively complete axiomatisation for these operators.

3.2 Examples

We now present two examples. Although they are extremely simple they cannot
be verified using the model checker Spin, whereas their deductive verification
can be done in a standard way. This shows the fundamental advantages of the
deductive approach.

25

For these examples, note that in Promela do...od denotes a guarded non-
deterministic choice, that is repeated until a break is encountered. Consider the
program 7 defined as

do

.. skip

2 x=0; break
od

We now want to verify that z = 0 holds in all possible final states of 7. In DLP
this property is expressed as [r]z = 0. Spin cannot handle this because infinitely
many and arbitrarily long runs exist for this model. However, using limited
programs and induction on ¢ in 7! this model can be easily verified deductively.
The induction hypothesis is V¢ : int. t > 1 — [7']x = 0.

For the second example let 7w be defined as

do
wox 1= 0; x=x—1
. else; break
od

where x is decreased as long as it is non-zero, and if x is zero, the loop terminates.
We want to prove validity of the formula Vz : int.x > 0 — [r]a = 0 expressing
that for every initial value of x greater than 0 and all terminating runs z = 0
holds in the final state. This property cannot be verified with Spin since it
does not allow arbitrary initial states. However, Spin can easily verify a similar
property with a fixed value for x.

While arbitrary initial states are not provided for in Promela they naturally
occur in many realistic scenarios, e.g., if a program is started in the final state
of another program or if it depends on some external input. The initial state
of a DLP verification is always arbitrary. If only certain initial states are to be
considered restrictions must be included in the property to be verified.

The formal proof of this example is done by induction on x and can be found
in [8]. Note that the induction hypothesis has to be specified interactively which
can be very hard to find in practice.

4 Related Work and Conclusions

There are some approaches to define the semantics of Promela formally, most
notably [2]. But the semantics that is induced by our semantics for Promela™ is
by far the most comprehensive one. Relative to this semantics we introduced a
calculus that allows deductive theorem proving for Promela. No previous work
in this direction exists for Promela or other non-deterministic multi-process lan-
guages. We showed that it is—in principle—possible to approach such program-
ming languages with methods from deductive theorem proving, thus preparing
the ground for implementations in automatic provers. The methods we used are
very general and can be easily applied to other languages.

26

The given examples show that DLP increases the set of verifiable Promela
models significantly. As a minor drawback DLP has only six temporal operators
to make statements about traces whereas Spin allows to specify arbitrary LTL
formulas. E.g., in order to express the property “A holds for a while, and then
B holds forever” DLP must be extended by a specific modality whereas this
can be easily expressed in LTL. We intend to extend our definitions to allow
for arbitrary modal operators, which would render our language as expressive as
LTL. First approaches have shown that it is indeed possible to give rules for the
case where the modal operator is arbitrary.

References

1. B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with
trace modalities. In International Joint Conference on Automated Reasoning, vol-
ume 2083 of LNCS, pages 626—641, 2001.

2. M. del Mar Gallardo, P. Merino, and E. Pimentel. A generalized semantics of
Promela for abstract model checking. Formal Aspects of Computing, 16(3):166-193,
2004.

3. ESC/Java (Extended Static Checking for Java). http://research.compaq.com/
SRC/esc/.

4. D. Harel. First-order Dynamic Logic, volume 68 of LNCS. Springer, 1979.

5. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

6. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

7. Promela Language Reference. Available at http://spinroot.com/spin/Man/
promela.html.

8. F. Rabe. A dynamic logic with temporal operators for Promela. Master’s the-
sis, Universitdt Karlsruhe, 2004. Available online at http://il2www.ira.uka.de/
~“frabe/DLTP.pdf.

9. A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating Validity Checker. In
E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer
Aided Verification (CA V), volume 2404 of Lecture Notes in Computer Science,
pages 500-504. Springer-Verlag, 2002.

27

Designing Efficient Procedures for #2SAT

Guillermo De Ita'*, Mireya Tovar?, Erica Vera? and Carlos Guillén?

! Universidad Politécnica de Puebla, deita@inaocep.mx
2 Universidad Auténoma de Puebla, mtovar@cs.buap.mx, ee_vc@cs.buap.mx
3 Instituto Nacional de Astrofisica Optica y Electrénica, cguillen@inaoep.mx

Abstract. We present some advances on the design of efficient proce-
dures for counting models of a Boolean formula X' (#SAT(X) Problem).
We show that if G5, the constraint graph of Y| is acyclic or contains
disjointed cycles then #SAT(X) is computed in polynomial time, estab-
lishing new polynomial classes of Conjunctive Forms for #SAT.
Keywords: #SAT Problem, Counting models, Efficient Algorithms.

1. Introduction

The problem of counting models for a Boolean formula (#SAT problem) can
be reduced to several different problems in approximate reasoning. For example,
for estimating the degree of reliability in a communication network, computing
degree of belief in propositional theories, for the generation of explanations to
propositional queries, in Bayesian inference, in a truth maintenance systems, for
repairing inconsistent databases [1, 3,6, 8].

#SAT is at least as hard as the decision problem SAT(determine if a Boolean
formula is satisfiable), but in many cases, even when SAT is solved in polynomial
time, no computationally efficient method is known for #SAT. For example, the
2-SAT problem, SAT restricted to consider a conjunction of (< 2)-clauses, it
can be solved in linear time. However, the corresponding “counting” problem
#2-SAT is a #P-complete problem.

2. Notation and Preliminaries

Let X = {x1,...,2,} be a set of n Boolean variables. A literal is a variable x or
a negated variable T. We will consider Boolean formulas in Conjunctive Forms
(CF) which are conjunctions of clauses, and where each clause is a disjunction of
different literals. For k € IN, a k-clause is a clause consisting of exactly k literals
and, a (< k)-clause is a clause with k literals at most. We use v(Y") to indicate
the variable involved in the object Y (Y can be a literal, a clause or a CF). As
is usual, for each z € X, 2° = T and z! = 2. We say that F is a monotonic CF
if all of its variables appear in unnegated form. A k-CF is a CF containing only

* This research is also supported by the Autonomous University of Puebla, via acad-
emic scholarship license.

28

k-clauses. A (k, su)-CF is a k-CF such that each variable appears no more than
s times. An assignment s for F is a function s : v(F) — {0,1}. A clause ¢ is
satisfied by the assignment s if and only if cN's # (. A CF F is satisfied by an
assignment s if each clause in F' is satisfied by s. A model of F' is an assigment
over v(F') that satisfies F. We will denote [n] = {1,2,...,n}. Let SAT(F') be
the set of models that F' has over v(F). Let pu,py(F) = #SAT(F) = |SAT(F)|
be the cardinality of SAT(F).

The Graph Representation of a 2-CF. Let X be a 2-CF, the constraint
graph of X is the undirected graph Gy = (V, E), with V = v(X) and E =
{(v(z),v(y))|(x,y) € X}. Given a 2-CF X, a connected component of Gx is a
maximal subgraph of G5 such that for every pair of vertices z,y € V, there
is a path in Gx from z to y. The set of connected components of 3 are the
subformulas corresponding to the connected components of Gyx. Let X be a
2-CF, F = {G1,...,G,} is a partition in connected components of X if V =
{v(Gy),...,v(G;)} is a partition of v(X).

Remark 1 If {G1,...,G,} is a partition in connected components of X, then:

:U/'U(Z)(E) = [Mv(Gl)(Gl)} et [Mv(G,)(G’!)] (1)

In order to compute p(X), we should first determine the set of connected com-
ponents of X, and this procedure can be done in linear time [7]. From now on,
we suppose that X' is a connected component. We say that a 2-CF X is a cycle,
a chain or a free tree if Gy is it too.

3. Linear Procedures for #2S AT for subclasses of 2-CF

If Gy is a linear chain with m edges: let us write down its associated formula
Y, without a loss of generality (ordering the clauses and its literals, if it were
necessary) as: X = {c1,¢a,...,cm }, where |u(¢;) Nu(eip1)] = 1, i € [m—1], then

{{yo ayl } {yl 7y22}a ey {ym 17ym }}) 51'761' S {Oa 1}7 1=]-7 w1

As X has m clauses then |v(X)| = n = m + 1. The frequency of yo and yn,
is 1, while the other variables: y;,7 = 2,...,m — 1 appear twice in Y.

Let f; a family of clauses of X' built as follows: f; = {¢;};<;, ¢ € [m]. Note
that f; C fit1, 4 € [m —1]. Let SAT(f;) = {s : v(fi) — {0, 1}|s satisifies f;},
Ai = {5 S SAT(fz)ler S S}, Bz = {S S SAT(fZ)|y,L S S}. Let o = |14,L|7 ﬁi = |BIL|
and u; = |SAT(f:)| = a; + 5. In general, we can calculate the values for the
pairs: (a;, 0;) associated to each node z;, for i = 1,..,m, according to the signs
(€i,0;) of the literals in the clause ¢;, by the next recurrence:

Eﬁz 1 01+ Bi- 1; if Eeu) = an()%

Qi1 +ﬂz 1,0i-1 if (e;,0:) = (0,1

(o, Bs) = (v i1+ Bic1) if (e, z) =(1,0) @
(041 1 + Bi—1,06-1) if (617 z) = (1; 1)

As |SAT(f:)| = wi = a; + Bi, then u; determines the number of models for
fi =A{c¢j}i<i, i € [m], and then p,, =#SAT(Y) is computed in time O(m).

29

Let X a 2-CF with n variables and m clauses and where Gy = (V, E) is
a free tree. We compute p(X) while we are traversing Gy in depth-first. The
initial node v € V for the search is any vertex with degree 1, and that node v
will be the root node of the tree Ay defined by the depth-first search. As Gy is
a free tree then there are not back edges in Ax. The associated pair to a node v
(v € Ayx) is denoted by (aw, 8,). We denote with —' the application of one of
the four rules of the recurrence (2).
Algorithm Count_Models_for_free_trees(Ayx)
Input: Ay the tree defined by the depth-search over G
Output: The number of models of X
Procedure:
Traversing Ay in depth-first and, while a node v € Ay is visited, assign:

1. (aw,By) = (1,1) for any leaf node v € Ay.

2. If v is a father node with a unique child node u, we apply the recurrence (2)
considering that (a;—1,8i—1) = (@, Bu) and then (a;—1,5;-1) — (o, Bi) =
(am B)-

3. If v is a father node with a list of child nodes associated, i.e., uy, us, ..., u are
the child nodes of v, then as we have already visited all the child nodes, then
each pair (v, By;) j = 1,...,k has been defined based on (2). (aw,, By,) is
obtained by apply (2) over (a;—1,8i-1) = (u;,Bu;). This step is iterated
until computes all the values (v, By;), 5 = 1,...,k. And finally, let o, =
H?Zl a,,; and 3, = H?Zl B, -

4. If v is the root node of Ay then return(a, + 5,).

This procedure return the number of models for X in time O(n + m) which
is the necessary time for traversing Gy in depth-first.

3.1. The constraint Graph contains cycles

Let X a (2,2u)-CF such that Gy = (V, E) is a simple cycle with m nodes, then
|V| = m =n = |E|. Ordering the clauses in X: | v(c;)Nv(cip1) |= 1, and ¢;, = ¢4,
whenever i; = i3 mod m, hence yg = ¥, then ¥ = {ci = {yfil,yfi} 7_711,
where §;,¢; € {0,1}. Decomposing X as X' = X' U ¢y, where X' = {¢y, ...,cmj_l}
is a chain and ¢, = (y;" 1, ygm) is the edge which conforms with G s/ the simple
cycle: Yo, Y1, .oy Ym—1,Yo- We can apply the linear procedure for chains in order
to compute pu(X’) since X’ is a chain.

Every model of X’ had determined logical values for the variables: ¥,,_1
and yo since those variables appear in v(X’). Any model s of X’ satisfies ¢y,
if and only if (y. 7 ¢ s and yL 9 ¢ s), this is, SAT(X' U ¢,) C SAT(X),
and SAT (X' U cp) = SAT(X') — {s € SAT(Y’) : s falsifies ¢;p,}. Let ¥V =
51U (o) A (yh®)}, and then:

#SAT(Z) = p(X) = p(X') = p(Y) = p(Z') = 1 A (Yo) A (U ™))
Note that this last equation can be generalized for computing #SAT(X) if

Gy can be decomposed in a chain and in a set of cycles S = {C4,Cy,...,Ck}
where there are not common edges between any two different cycles of S.

30

G x contains disjointed cycles: Let X/ C X be the set of clauses where
Gy is a chain (with all the variables of X' considered, i.e. v(X') = v(X)).
Y ={e1,...,em} determines an order over its clauses and its literals given for
i=1,...,m—1,|v(e)Nv(ct) = 1.

Let I' = X — X’ be the set of clauses such that for each clause d € I,
it conforms a cycle in Gx. We order the clauses in I' = {dy,...,dx} where if
1 < j then the variables in d; appear in clauses of X’ before of the clauses where
appear the variables of d;, and also order the literals for each d; = (l;;,1;,) €
I''v=1,...,k in such a way that i; < i2, according of the induced order given
by the clauses in X’. Note that for each d; = (I;,,1;,), the node v(l;,) points out
the beginning of one cycle. While the node v(l;,) points out the end of the same
cycle. Let D; = {¢iy, Ciy 41, ey Ciy—1, Cip De the set of clauses of X’ involved by
the cycle signaled by d;, each C; = D; Ud;,i =1,...,k is a cycle formula.

For each d; € I'yi = 1,..., k we conform the set of clauses Y; = {(l;,), (I;,) }U
D; which is a chain where the two extreme nodes of the chain have associated
the unitary clauses (I;,) and (I;,). Then u(X), where ¥ contains the linear chain
XY and the k cycles: C;,i =1,...,k, and such that there are not common edges
between any two different cycles, is:

k
BSAT(S) = p(Z') (3 u(¥D) (3)
i=1

(2

Example 1 Let X' = {(y1,92), (2, y3), (Y3, ¥1): (Y3, y4), (Y4, Y5), (Y5, Y6): (Ya.)
(y6,v7),s (Y7, ys), (Y9, Ys), (Ug, Us) } be a 2-CF which contains the monotonic chain;
El = {(yzaszrl)}aZ =]-7 "'78; and I' = {dladQ;dS} = {(ylayiﬁ)a @47%)7 (y(s;yg)}-
There are three cycles conformed by C1 = {(v1,y2), (y2,y3), (U3, y1)}, Ca =
{(y47y5)a (y57y6)a (?4) yﬁ)} and C13 = {(96797), (y7a yS)a (ySa y9)7 (56759)}' And the
sets Of Cla’uses Y;7Z = 15273; where Yi = {(yl)a(y17y2)5(y27y3)5(y3)}; Yé =

{(ya), (ya, y5), (ys,96), (W)} and Yz = {(ve). (Y6, y7), (Y7, ys), (s, yo), (y0)}-
We denote with (ci, 3;), the corresponding pair (o, 3;) associated to the

node y; from the graph of the formula G. Note that as X’ is a monotonic chain
we have to apply (2) when we are traversing each node of the chain, and we
apply (8) in order to compute u(X). Showing the computing of (au, ;)5 in
parallel way with each series (ai,ﬁi)/yj, for Y1,Y5, Y3, we have:

oNoYoNeoNcEoWgWola

Fig. 1. The constraint graph for the formula of the example 1

31

since () € Y1 and (y3) € Y1. Thus, (as3,03)/s = (a3,03) /5 — (a3,83) /v, =
(3,2) — (1,0) = (2,2), then:

Y3 Ya Ys Yo Yo
n(X') 2 (2,2) — (4,2) — (6,4) — (10,6)
w(Ya) : (4,0) — (4,4) — (8,4) — (0,4)

since (ys) € Yz and (Fg) € Yo.Then, (as,06)/5 = (a6, B6) /5 — (a6, 06) /v, =
(10,6) — (0,4) = (10,2). And,
Ye yr Ys Yo Y9
u(2') 1 (10,2) — (12,10) — (22,12) — (34,22)
u(Ya) = (10,0) — (10,10) — (20, 10) — (30,20) — (30,0)
since (ys) € Y3 and (yo) € Y. (o, Bo) /5 = (a9, B9) /50 — (a9, Bo) v = (34,22) —
(30,0) = (4,22). #SAT(X) = (L") — (Y1) + pu(Y2) + p(Y3)) = 4+ 22 = 26.

Then, in base on the equation (3), we obtain that:

Theorem 1 If Gx can be decomposed in a linear chain Gy (where v(X') =
v(X)) and a set of cycles such that there are not common edges between any two
different cycles, then #SAT(X) is computed in polynomial time.

4. Conclusions

Let X be a 2-CF with n variables and m clause and such that G5 (the con-
straint undirected graph of X') is acyclic, then we show an efficient procedure to
compute #SAT(X) of time complexity O(n + m), which is the neccesary time
for traversing Gy, in depth-first.

We also present an efficient procedure to compute #SAT(X) being Gx a
chain containing several cycles and such that there are not common edges be-
tween any two different cycles of G'x, which establish new polynomial classes for
#2SAT.

References

1. Angelsmark O., Jonsson P., Improved Algorithms for Counting Solutions in Con-
straint Satisfaction Problems, Int. Conf. on Constraint Programming, 2003.

2. Creignou N., Hermann M., Complexity of Generalized Satisfiability Counting Prob-
lems, Information and Computation 125, (1996), 1-12.

3. Dahlléf V., Jonsonn P., Wahlstrom M., Counting models for 2SAT and 3SAT for-
mulae., Theoretical Computer Sciences 332,332(1-3): 265-291, 2005.

4. De Ita G., Polynomial Classes of Boolean Formulas for Computing the Degree of
Belief, Advances in Artificial Intelligence LNAI 3315, 2004, 430-440.

5. Greenhill Catherine , The complexity of counting colourings and independent sets
in sparse graphs and hypergraphs”, Computational Complezity, 1999.

6. Roth D., On the hardness of approximate reasoning, Artificial Intelligence 82,
(1996), 273-302.

7. Russ B., Randomized Algorithms: Approzimation, Generation, and Counting, Dis-
tingished dissertations Springer, 2001.

8. Vadhan Salil P., The complexity of Counting in Sparse, Regular, and Planar Graphs,
SIAM Journal on Computing, Vol. 31, No.2, (2001), 398-427.

32

Exploring hybrid algorithms for SAT

Olivier Fourdrinoy, Eric Grégoire, Bertrand Mazure and Lakdhar Sais

CRIL CNRS & IRCICA
Rue Jean Souvraz SP 18 F-62307 Lens Cedex France
{fourdrinoy,gregoire,mazure,sais} (@cril.univ-artois.fr

Abstract. In this paper, several possible improvements of the combination
scheme of systematic DPLL-like and local search techniques for SAT proposed
by Mazure et al. are explored. Three important parameters that need to be tuned
are investigated. A new weighting heuristic is described. Then, it is investigated
how local search strategies that cover more diversified parts of the search space
can prove useful in this combination scheme. Finally, it is studied when local
search is best called within this hybrid DPLL-like algorithm.

1. Introduction

Various SAT solvers have been proposed these last years, leading to a dramatic
breakthrough in the practical handling of large and hard instances. Most of them are
based on one of the following two search paradigms: systematic (DPLL-like) and lo-
cal search (GSAT-like). Each of these search techniques outperforms the other one
with respect to some classes of instances. The combination of these search techniques
can thus be a promising way to increase the general performance of these solvers. In-
deed, hybridising these search methods is currently a hot topic of research within the
SAT community. In [7], local search (LS) is considered as a branching heuristic for a
DPLL-like algorithm. More precisely, at each node of the DPLL decision tree, a LS is
performed on the currently remaining SAT sub-problem. During this LS step, a
weight is computed for each variable. If LS fails to prove consistency within a pre-set
amount of time, then DPLL selects the variable with the highest weight as the branch-
ing one. This basic hybrid approach proved to be efficient with respect to various sets
of large and hard SAT instances [7]. However, it could still be improved in various
ways. In this paper, three possible improvements are investigated. First, a new
weighting heuristic is proposed. Then, it is experimented how LS strategies that cover
more diversified parts of the search space can prove useful in this combination
scheme. Finally, it is studied when local search is best called within this hybrid
DPLL-like algorithm.

2. Weighting heuristics for falsified clauses

Although LS is by itself unable to prove inconsistency, it can provide us with some
useful information that can help inconsistency to be detected. Let us elaborate on this.

33

Any inconsistent SAT instance contains one or several inconsistent cores [2,4,8]. This
means that only one (or several) subset(s) of variables (and/or clauses) is (are) causing
the unsatisfiability of the instance. LS can often help us to identify these subsets, at
least to some extent [7]. Before introducing heuristics to that end, let us recall some
useful definitions about inconsistent cores.

Definition 1
A SAT instance % is globally inconsistent iff % is inconsistent and for every set of
clauses I such that M O 2, I is consistent.

When an inconsistent SAT instance is not globally inconsistent, it is called locally in-
consistent. It is possible to define several forms of degree of locality. Indeed, a con-
cept of degree of locality can be defined based on some form of ratio between the size
(in terms of the number of involved clauses) of the smallest inconsistent sub-instances
and the size of the initial instance. Unsatisfiable sub-instances are called inconsistent
cores.

Definition 2

Let Z be an inconsistent SAT instance.

MM is an inconsistent core of iff 1 0 X and I is inconsistent.

MM is an overall inconsistent core of £ iff I U X and IM is globally inconsistent.

An overall inconsistent core 1 of X is minimally inconsistent iff for all overall incon-
sistent cores Q of 2, || < |Q].

Property 1
Let 2 be an inconsistent SAT instance. For all interpretations I of 2, at least one
clause of each inconsistent core of Z is falsified.

Based on Propertyl, for each clause, the number of times that it is falsified during a
failed LS can be counted as an attempt to locate or approximate inconsistent cores [7].
Indeed, intuitively, the most often falsified clauses should have a higher chance of be-
longing to an overall inconsistent core. As described in the introduction, this heuristic
was used in [7]; a call to LS at each branching node of the DPLL search tree delivers
the candidate branching variable. We believe that this approach can be refined in sev-
eral ways. First, let us note that LS often encounters a sharp decrease with respect to
the number of falsified clauses during the first flips. Indeed, the number of falsified
clauses after the random selection of an initial truth assignment can be high. In gen-
eral, the number of falsified clauses decreases quickly during the first flips. It scems
natural to think that information collected during this sharp descent is not relevant to
locate inconsistent cores. This can be compared to an initial noise phenomenon. Let
us investigate two different strategies to address such an issue.

3. A local minima-based strategy

A first candidate strategy would rely on a threshold that would define a maximal
number of falsified clauses. The counting heuristic would be inhibited each time the
number of falsified clauses is greater than this threshold. Obviously enough such a

34

strategy can only be useful when inconsistent cores are “small”. Hopefully, many
non-random SAT instances do exhibit quite small inconsistent cores [7]. However,
the main remaining open problem with the strategy is how the threshold should be de-
termined. Moreover, the optimal value of the threshold should depend on the nature
of the instance. Let us note that if the instance contains # mutually independent over-
all inconsistent cores, leading its Max-sat value to be ¢-n where ¢ is the number of
clauses of the instance, then the threshold must be at least equal to ». Otherwise, no
clause is weighted. Unfortunately, we do not have any reliable oracle informing us
about the number of overall inconsistent cores. A local minimum is a non-solution
state where no flip of variable can lead the number of falsified clauses to be de-
creased. Another strategy [5] would consist in counting falsified clauses in local min-
ima, only. To some extent, the numbers of falsified clauses in local minima can ap-
pear as dynamic thresholds. Our preliminary experimental validation of this new
heuristic is very promising. It outperforms the threshold-based strategy. Although it
vields weights that are similar to the ones obtained thanks to the initial heuristic of
[8], it is less time-consuming. As an illustration of the experimental tests that were
conducted, Table 1 shows the number of clauses belonging to a minimally inconsis-
tent core among the ten highest weighted clauses. The threshold strategy is investi-
gated using different thresholds (¢/2, ¢/5, ¢/10, ¢/100 and 1). It is compared with this
local minima-based strategy and with the initial one where weights are computed in a
systematic way. Such a test has been conducted on many instances. Only one instance
(aim-200-2_0-no-1.cnf) is presented, because results for other instances are similar and
it is known that this specific instance exhibits only one minimally inconsistent core.

Threshold Global | ¢/2 ¢/5 | ¢/10 | ¢/100 | 1 | Local minima
Clauses from core 9 9 9 8 9 5 9 Table 1. Threshold
Weighting calls | 2000 | 2000 | 2000 | 1980 | 1200 | 80 1250 comparison

4, Towards a more diversified exploration of the search space

The second possible improvement of the hybrid method of [7] concerns the initial in-
terpretation that is selected by each LS run. The goal is to perform a more diversified
exploration of the search space. Indeed, the more diversified exploration of the search
space is, the better the weighting strategy could be. In [7], the initial interpretation of
all called LS is chosen randomly. On the contrary, we define the initial interpretation
for the current LS, based on the last failure (i.e. the last backtrack in DPLL or last in-
terpretation of the previous LS). As a case study, we investigate a technique requiring
us to reverse the value of all variables (not already assigned by DPLL). Such a
“global flip” is also called a mirror. In this way, LS focuses on the last encountered
problems while considering the opposite configuration.

5. Strategies for calling LS

LS, as it is grafted in DPLL in [7], is time consuming since it is called at each node of
the DPLL search tree. Such a systematic call to LS could be relaxed as far as the cur-

35

rent variable weights remain relevant for successive nodes in the DPLL search trees.
In this respect, three strategies for calling LS are investigated.

1

. LS is run systematically, i.¢. for all nodes in the DPLL search tree [7]

2. LS is run as a pre-processing step, i.¢. it is called once, only [3]

3

. LS is run until a pre-set depth has been reached. Then, a traditional DPLL branch-

ing rule heuristic is used.

5.1 Methodology

We have implemented and compared these three strategies. As a preliminary experi-
mental validation procedure, a simple LS algorithm, namely WSAT [9], and the basic
branching MOMS heuristic [6] were considered. Basic versions of DPLL were im-
plemented, not including the above local-minima and mirror techniques. Two families
of instances have been tested:

1

AIM instances resulting from DIMACS [1], as they exhibit interesting properties:
satisfiable AIM instances admit only one model whereas the unsatisfiable ones ex-
hibit one minimally inconsistent core.

random instances: obtained from the traditional generation model [2]. Each group
of instances contains 300 problems (6 groups of 50 problems with 50, 100, 150,
200, 250 and 300 variables, respectively). These random instances are divided into
four subsets. The first one (Rand@3.25) contains easy instances that are satisfiable
and that are located before the phase transition threshold. Then, Rand@4.25s and
Rand@4.25u contain hard satisfiable and unsatisfiable, respectively. These in-
stances were generated at the 4.25 threshold. Finally, Rand@5.25 contains some
casy unsatisfiable instances located after the threshold. They are thus intended to
represent instances with a lot of models (Rand(@3.25), instances where models are
grouped inside clusters with a small number of clusters (Rand@4.25s), instances
almost globally inconsistent with large inconsistent cores (Rand@4.25u) and in-
stances with a lot of small inconsistent cores (Rand@5.25).

These tests have been conducted on a Pentium 3 2.4Ghz under Linux Fedora core 2.

Instances | DP-LS-ALL | DP-LS-PRE | DP-LS-DEPTH | WSAT
Alm_yes 710.07 611.55 502.29 530.18 .
Aim:}rllo 1750.21 1529.30 557.69 - Table 2. AIM and random in-
Rand@3.25 0.2 0.10 0.34 0.15 stances results
Rand@4.25s | 329.04 30232 231.43 26232
Rand@4.25u | 425.43 367.61 331.17 -
Rand@5.25 3254 291.08 6133

5.2 Results and comments

Table 2 summarises the results, reporting the average times in seconds to solve the in-
stances. DP-LS-ALL, DP-LS-PRE and DP-LS-DEPTH represent the DPLL-solvers:

» with systematic calls to LS [7];

« with a single call to LS as a pre-processing step;

e calling LS until a pre-set depth (set to 5, as a case study) has been reached, be-
fore a standard DPLL branching rule heuristic is applied.

36

As we hoped it, a limited number of calls to LS appeared to be more efficient to solve
unsatisfiable instances. Indeed, the single LS run approach suffers from the fact that
LS explores limited parts of the search space, only. The branching rule of DPLL is
thus based on findings about a specific subset of the search space, only. In this re-
spect, it seems that DP-LS-PRE is probably limited by the lack of reactivity of such a
LS-based branching heuristics. DP-LS-ALL is handicapped by the time consumed by
the numerous calls to LS.

6. Conclusions and perspectives

In this paper, several improvements of the combination scheme proposed in [7]
have been proposed. Three specific points have been addressed. First, a new con-
straint weighting heuristic has been described. Then, a new LS strategy to diversify
the part of the explored search sub-space has been proposed. Finally, several strate-
gies for calling LS have been experimentally studied. Our preliminary experimental
results appear to validate our expectations and they encourage us to continue in this
way. We are currently working on a very extensive validation of the approach and are
currently working on an implementation of such hybrid techniques in competitive
current solvers. We are also investigating to which extent the DP-LS-DEPTH heuris-
tic limits the search to a small number of clusters of models.

Acknowledgements
We thank the anonymous reviewers for their numerous comments that helped us to
improve the paper. This work has been supported by the Région Nord/Pas-de-Calais.

References

[1] Y. Asahiro, K. Iwama, and E. Miyano Random Generation of Test Instances with
Controlled Attributes, In Cligues, Coloring, and Satisfiability: The Second
DIMACS Implementation Challenge. Vol. 26 of DIMACS, 377-394, 1996.

[2] V. Chvtal and E. Szemeredi, Many hard examples for resolution, Journal of the ACM,
35(4):759-768, 1988.

[3] . M. Crawford & L.D. Auton, Experimental results on the crossover point in satisfiability
problems, Proceedings of AAAI'93, 21-27, 1993.

[4] C. P. Gomes, B. Selman, N. Crato and H. Kautz. Heavy-tail phenomena in satisfiability and
constraint satisfaction, Journal of Automated Reasoning, 24(1-2):67-100 2000.

[5] F. Hutter, D. A. D. Tompkins, H. H. Hoos. Scaling and Probabilistic Smoothing: Efficient
Dynamic Local Search for SAT. Proc. of the Eighth Int. Conf. on Principles and Practice
of Constraint Programming, Lecture Notes in Computer Science vol. 2470, 233-248, 2002.

[6] R.J. Jeroslow and J. Wang, Solving propositional satisfiability problems, Annals of
Mathematics and Artificial Intelligence, 1:167-188, 1990.

[7] B. Mazure, L. Sais, and E. Grégoire. Boosting complete techniques thanks to local search
methods. Annals of Mathematics and Artificial Intelligence, 22:319-331, 1998.

[8] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky. Determining com-
putational complexity from characteristic ‘phase transitions', Nature, 133-137, 1999.

[9] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search.
Proceedings of AAAI'94, 337-343, 1994,

37

A Logical Language for Dominoes

Fernando Raymundo Veldzquez-Quesada' and Francisco Herndndez-Quiroz?
! Universidad Nacional Auténoma de México, Instituto de Investigaciones en
Mateméticas Aplicadas y Sistemas, Circuito escolar, Ciudad Universitaria. C.P.
04510, México D.F.
frvq@uxmcc2.iimas.unam.mx
2 Universidad Nacional Auténoma de México, Facultad de Ciencias,
Circuito exterior, Ciudad Universitaria. C.P. 04510, México D.F.
fhq@fciencias.unam.mx

Abstract. The mathematical theory of games does not allow explicit
reasoning about the knowledge of the agents that interact in these com-
petitive situations. In recent years there has been much work oriented
towards analyzing the flow of information in games using logical tools.
The main point is to express explicitly the way the information (and
therefore, the knowledge) flows through the actions in a game. In this
paper we present a logical language that allows to express knowledge
of players and how actions modify this knowledge in the game of domi-
noes. We define a language based on propositional epistemic logic for
expressing knowledge at a given stage of a dominoes match. Then we
add actions to it to describe how knowledge is modified by each action
that occurs during the game. We describe the semantics of the language
in an informal way, and finally we present some examples of how the
language can express situations, knowledge of the players and how this
knowledge changes during a match.

1 Introduction

The mathematical theory of games, presented for the first time by J. von Neu-
mann and O. Morgenstern [1], does not allow explicit reasoning about the knowl-
edge of the agents that interact in these these competitive situations. We would
like to express explicitly the way the information (and therefore, the knowledge)
flows through the actions in a game.

In recent years there has been much work oriented towards analyzing the
flow of information in games using logical tools (see [2], [3] or [4]). A persistent
theme through these years has been “the pursuit of a broad conception of logic,
oriented toward information structures and actions transforming these” [5]. In
our work, we use a logical language to express knowledge of players in a game,
and how actions modify it. We focus in one particular game: dominoes.

The set of tiles for dominoes consists of all the possible pairs (28) taken from
numbers 0 through 6. Four players sit around a table, partners sitting opposite.
Each player takes 7 of the randomly shuffled closed tiles on the table. Any player
of the winning couple of the last match starts the next one playing any of her

38

tiles (in the first round, tile starts) and the flow of the play moves to
the right. Each player must draw a tile in her turn, except when she cannot (in
which case she passes: losses her turn). To draw a tile, it must match any of the
two free-ends on the table. This tile is placed with its matching side next to the
matching end on the table, leaving the other side of the tile as the new free-end.
The winner is the couple to which belong the player that finishes playing all her
tiles first. If no player can draw a tile and all still have tiles, then it is said that
the match is closed and the winner is the couple whose tiles sums less points.

The idea of using logic to study dominoes comes from Eric Schwarz, who
analyzed a partnership match using first order logic [6]. Our work is based in
propositional epistemic logic (EL) instead of first order logic. By using L we
avoid using a set of sentences to describe the properties of the knowledge we
are modeling (as this description is implicit in the relations of the model). As
a modal (multimodal) logic, EL’s formulae are clean, transparent and compact.
Most importantly, they are computationally solvable whereas first-order logic
is undecidable. The goal of expressing the way knowledge changes is achieved
by adding actions to the language (becoming propositional dynamic epistemic
logic). This also allows us to avoid sentences related to time.

2 Language DELp

Our language is based on the language of epistemic logic. The classical source
for epistemic logic is [7], in which J. Hintikka showed that a modal approach
to single-agent epistemic attitudes could be informative and rewarding. This
language comprises a set of atomic propositions, a set of logical connectives and
a set of modal operators. Then it is possible to express the knowledge of a group
of agents about different situations, and even more, the knowledge they can have
about the knowledge of other agents.

We define the set of players as J = {a,b,c,d} and the set of tiles as F =
{[ot0] [0t1] [ot2] . .. [5}5] [546] [616]}. Our language is based on a set of atomic

propositions that expresses the basic facts about the game.

Definition 1 (Atomic propositions for dominoes @p). The set of atomic
propositions for dominoes (@) is defined as

; t i ;
Pp = { 17 , tiles' | tiles” | ptst, , ptst

n n?

lesspoints’™ | turn® | W0, " }

where 1,5 € J, € F and u,v are possible free-ends on the table. Each
proposition has the intuitive meaning shown in table 1.

For describing how actions modify the knowledge of the players, we need a
language of actions in order to express that a formula holds after an action has
been executed. This language is built from a set of a basic actions of the game
using sequential composition and non-deterministic choice.

39

Table 1. Intuitive meaning for atomic propositions

Proposition|Intuitive meaning
‘ Player ¢ has the tile in her hand.
¢ The tile is on the table (has been played).

tilest, Player ¢ has n tiles in her hand.

tiles®, There are n tiles on the table.

pis’, The tiles player ¢ has in her hand sum n points.
ptsf) The tiles on the table sum n points.

[esspoinisi’j The tiles of player ¢ and player j sum less points than those of the
other players.
It is player ¢’s turn.

... 0 The free-ends on the table are u and v.
a—o=t¥] " |The free-ends on the table were u and v before player i threw .
The free-ends on the table were v and v after player ¢ threw .

Definition 2 (Action language for dominoes ALp). The actions o of the
action language for dominoes (ALp) are given by the following rule:

o=z | ol | ol | (a:6) | (@UP)

where a, f € ALqp.

The action € is the “do nothing action”, oy has the 4intuitive meaning
“player i draws tile on a free-end x on the table”, ol means “player i
passes”, (a; B) represents the sequential composition of the actions a and 3, and
(a U B) represents the non-deterministic choice between o and 3.

Based on the atomic propositions on @5 and the language of actions ALy, we
define the dynamic epistemic logical language for dominoes. With this language
we are able to express the situation at certain stage of a match, the knowledge
of the players and how actions modifies the situation and their knowledge.

Definition 3 (Language DELp). The formulae ¢ of the dynamic epistemic
logical language for dominoes (DELp) are given by the following rule:

pu=T |pl | (V)| Kip | Cse | [a]e

wherep e dp, i€ J, BC T, o, € DELp and a € ALp.

The logical connectives — and V have the usual meaning (T is the proposition
that is always true). The formula K;¢ has the intended meaning “the agent i
knows that ¢”, the formula Crp means “it is common knowledge between agents
in B that ¢ (everybody in B knows ¢, everybody in B knows that everybody in B
knows ¢ and so on.)” and [a]e means “after the action a is executed, ¢ holds”.

3 Informal Semantics of DELp

Epistemic logic is a multimodal logic, and therefore the language has meaning in
structures called Kripke models after Saul Kripke’s classical presentation [8]. For

40

epistemic logic, the intuitive idea behind Kripke models (also known as possible
world models), as presented by Hintikka [7], is that there are a number of other
possible worlds besides the real one. Given her current information, an agent may
not be able to distinguish between this real world and the other possible (but not
real) worlds. In the game of dominoes, these possible worlds have a concrete and
direct interpretation: all the possible distribution of the tiles among the players.

Usually, given a set of agents A and a set of atomic propositions @, a possible
world model M is defined as a tuple M = (W, R;, V) where

— W # (is the set of possible worlds.
— R; is a binary relation over W for each agent i € A (R, C (W x W)).
— V: & — 2V assigns to every atomic proposition a subset of W.

For our purposes, we need to make modifications to the possible world model:

1. In a possible world given, each atomic proposition has a truth value indepen-
dently of the truth value of the others atomic propositions. In dominoes, the
truth values of some atomic propositions are related (like [012] “ and it
is not possible that two players have the same tile). We need to define truth
values for an atomic proposition in a way that the truth values of its related
propositions are related. 4 _

2. Some of the atomic propositions (turn®, @, " and 28}, —) can
not be given a truth value by just knowing distribution of the tiles at a
certain stage. To give truth value to these propositions we need to keep a
record of the actions that have been executed during the match. A formal
description of the possible world model for dominoes and the history of a
match (a sequence whose entries record an action and the free-ends that
result from that action) will appear in a future paper.

3. To give a truth value to each formulae of the form [a]p, we need also to
specify how each action modify the possible world-history of a match pair.
Following ideas from [9], each action is then consider as a map that takes
the possible world model and the history that describes the situation of the
game before the action, and returns the possible world model and the history
that describes the situation of the game after the action. Again, a formal
definition of these actions as a maps will appear in a future paper.

4 Examples of the Use of the Language

We give some examples of the use of the language on a dominoes match:

- ‘7 =[] vz by v [21Y] % Tile is in some player’s hand.

- "=[=40)" vzt " v ... v[216] " Player i has at least one tile with x.

— K.—K[116] “: Player ¢ knows that b does not know that she has .

— tiles; — [ofptilesg: 1f a has 7 tiles, then after she plays any tile, she will
have six of them.

— (twm® N4...6) — [ofm]5. . 4: If it is a’s turn with 4 and 6 as free-ends, and
a plays , then the free-ends will be 5 and 4.

41

— (06 A wm?) — [0d)Cy (01 A ~EE Y): If it is d’s turn with 6 and 0 as
free-ends of the table, and d pass, then it will be common knowledge among
all the players that neither d has 0 nor 6.

— closed = 77 A =15 7 The match is closed (no tile can be played).

— tiles)] " = Vies—a (tiles’): Player b, ¢ or d has n tiles (7~ = J — {i}).

— won®™ = (tiles) A —tiles])V (tiles]) A ~tilesy)V (closed A lesspoints™): The
couple ¢ and 7 has won the match.

5 Conclusions and Further Work

We have defined a logical language DELp to describe situations during a game
of dominoes. Due to space constraints, we do not define here a formal semantics
for the language. In a further paper a formal semantics will be offered.

As pointed by S. Druiven in [3], we can distinguish four kinds of knowledge in
a game environment: game knowledge (knowledge players have about the rules of
the game they are playing), definite knowledge (knowledge about the situation
of the game that is developed as a consequence of the actions in the game),
strategic knowledge (knowledge about strategies over the game) and historical
knowledge (knowledge about previous matches). For the time being, the language
DELp can only express definite knowledge. We expect to extend the language
and the semantic model to express not only definite knowledge but strategic and
historical knowledge too. Most importantly, we are interested in the way strategic
and historical knowledge influence the way definite knowledge of a single player
evolves during a match.

References

1. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.
Princenton University Press (1944)

2. van Ditmarsch, H.P.: Knowledge games. PhD thesis, Institute for Logic, Language
and Computation (University of Amsterdam) (2000)

3. Druiven, S.: Knowledge development in games of imperfect information. Master’s
thesis, Institute for Knowledge and Agent Technology (University Maastricht) &
Artificial Intelligence (University of Groningen) (2002)

4. Kooi, B.P.: Knowledge, chance, and change. PhD thesis, Institute for Logic, Lan-
guage and Computation (University of Amsterdam) (2003)

5. van Benthem, J., Dekker, P.; van Eijk, J., de Rijke, M., Venema, Y.: Logic in action.
Institute for Logic, Language and Computation (University of Amsterdam) (2001)

6. Schwarz, E.: An instance of a complete communication cycle within co-operative
games: the case of domino. Unpublished (2001)

7. Hintikka, J.: Knowledge and Belief. Ithaca, N.Y. Cornell University Press (1962)

8. Kripke, S.: Semantical analysis of modal logic i. normal modal propositional calculi.
Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik (1963) 67-96

9. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge and private suspicious. Technical Report SEN-R9922, CWI, Amsterdam
(1999)

42

Fregean Algebraic Tableaux:

Automating Inferences in Fuzzy Propositional Logic

Christopher Lepock! and Francis Jeffry Pelletier?

! University of Alberta clepock@ualberta.ca
2 Simon Fraser University jeffpell@sfu.ca

Abstract. We develop a tableau procedure for finding theorems and
consequence relations of RPLa (i.e., Ly extended with constants and a
determinacy operator). RPL A includes a large number of proposed truth-
functions for fuzzy logic. Our procedure simplifies tableaux for infinite-
valued systems by incorporating an insight of Frege’s. We take formulas
of the language to be names for their truth-values, which permits them
to be manipulated in the tableaux as if they were algebraic variables.

1 Fuzzy logic

The central idea of fuzzy logic is that the truth-values are the [0..1] interval,
with 0 corresponding to classical falsity and 1, to classical truth. There is little
consensus on how best to define infinite-valued connectives. A wide variety of
truth-functions have been proposed for different purposes in the literature. Our
research has focused on the system RPL, which is particularly interesting in
three ways. First, it contains the system L, arguably the most plausible fuzzy
extension of the classical conditional (see [1], and the arguments of [2, pp.114-8]
and [3, pp.366-7]). Second, it can talk about the truth-values of its formulas.
Thus, it allows one to model approximately valid arguments and approximately
true sentences by allowing one to say just how truth-preserving an inference
is or how true a sentence is. Third, in it, we can define a wide variety of the
connectives that have been proposed in the literature. It is particularly important
for theorem-proving systems to have this breadth; the capacity to determine
easily what the tautologies of these new truth-functions are will make it much
easier to determine their merits and demerits for the applications for which they
were proposed. Using [¢]to be the truth-value of ¢, RPLA is defined as:

[> ¢]= min(1, 1-[£]+[])
[~]= 1 -[]

[C;]= i, for each rational i € [0..1]
[Jip]= 1if []= i, O otherwise.

In the interests of space, we will only discuss a two other automated proce-
dures in detail; but there are a number of others worth mentioning. There are
several procedures that, like those of [4] or [5] apply just to the fragment of Lg3

having only the truth-functions A,V,—. [6] gives a procedure that can deter-
mine theoremhood in any decidable propositional fuzzy logic. As the run time
of this algorithm is at least doubly exponential, its use is not practically feasi-
ble. [7] outlines a procedure that finds a finite number of subintervals of [0..1]
such that if the formula in question takes the value 1 on an arbitrarily chosen
value from each subinterval, the formula takes the value 1 on the entire range of
truth-values. This procedure also appears to be quite complex in operation.

[8] and [9-12] describe methods which are closely related to one another and
to the method we will outline below. Although these systems were designed for
Ly, they can be extended to cover the full RPLA. Both are, in effect, tableau sys-
tems. Hahnle’s constraint tableaux are extensions of signed tableaux to infinite-
valued logics; Beavers’s procedure consists of decomposing a formula into a set
of equations to be checked for satisfiability, although he does not present these
equations in tableau format. The central idea of Beavers’s procedure is that each
formula of Ly corresponds to a set of linear polynomial functions, determined
by the truth-functions corresponding to the connectives found in the formula.
Each formula will exhaustively divide the [0..1] interval into a bunch of disjoint
subintervals, where each of these subintervals is describable by a linear function.
The formula as a whole is merely the piecewise combination of these functions.
Therefore, to find whether a formula is a logical truth (always takes the value 1),
the task is to determine whether this combination of functions ever takes a value
less than 1; and this amounts to determining whether any of the functions de-
scribing the formula over a subinterval takes a value less than 1. Beavers reports
various implementations of an algorithm that makes use of a linear programming
package to evaluate the polynomials generated by the formulas.

Héhnle’s constraint tableaux are a variant on signed tableaux for finite-valued
logics, which consist of formulas prefixed with signs indicating their truth values.
In constraint tableaux, rather than representing individual truth values, the signs
place constraints on the truth values of their formulas. The decomposition rules
of constraint tableaux result in new constraints applied to the formulas of which
the original was composed, and inequations (equations with inequality relations)
representing the relations between the variables used in the signs. There are no
branching rules; instead, Hdhnle uses binary variables (variables that can take
only 0 and 1 as values), which represent the same information as new branches
of the tableau would contain. For instance, the decomposition rules for O are:

[<i] (4> B) [Zi] (4> B)
| \
>(1—i+ygy) | A (y<i) <(I—ityj)| A

<(+y)| B [>j] B

In the rule on the left, y is a binary variable. The information contained in
the signs can also be entered into the series of inequations; for instance, from
B we can infer [B]< k. To show that a formula A is a theorem of fuzzy

4dogic, we start a tableau with A and decompose A fully. We then evaluate

the resulting inequations, and say that A is a theorem if and only if the least i
that satisfies every inequation is 1.

Applying the decomposition rules for these tableaux is simple, particularly
since there are no branching rules. The difficult part is determining whether
a branch is open or closed. To do this, Hahnle treats the series of inequations
associated with a tableau as a problem in linear programming, and in his imple-
mentation he passes these inequations off to a linear programming package.

2 Fregean Algebraic Tableaux

The use of signs in tableaux for infinite-valued logics is unnecessarily com-
plicated. Each application of a conditional decomposition rule in constraint
tableaux forces the introduction of a new variable (the variable j in the rule listed
above), in order to relate the constraints found in the signs for antecedent and
consequent to each other. This problem arises because, like classical tableaux,
constraint tableaux permit only syntactic entities to occur in the tableau it-
self. Frege argued that propositions designate their truth-valuesany true propo-
sition designates an object called ‘the true’, and any false proposition designates
‘the false’. (Different propositions have different “senses”; they designate these
objects in different ways, like “the author of Uber Sinn und Bedeutung’ and
“Gottlob Frege” name the person in different ways.)

Fregean algebraic tableaux, or FAT, simplify constraint tableaux by taking
formulas to designate their truth-values. On this approach, we can intelligibly
mix logical formulas and arithmetical signs in the same expressions. This makes
expressions like p < k meaningful; this expression says that the truth-value
named by p is less than k. A formula containing a connective, however, can
be thought of as naming a truth-value that is a function of those named by
the subformulas it contains. Truth-functional constants can be thought of as
propositions that wear their truth-values on their sleeves; the constant C; refers
to the same thing as the number ‘1’, and so we need make no distinction between
them. This approach permits us to express all the information found in the signs
of constraints in the lines of the tableau itself. The result is a system that can
combine the advantages of a tableau procedure with the efficiency of Beavers’s
purely semantic procedure.

Part of our motivation in developing Fregean tableaux was to facilitate the
teaching of fuzzy logic. The only way to really understand a logical system,
especially one that understands truth in such an unusual way, is to work within
it, and thus learn not just what is tautologous, but why. Tableaux are familiar
and intuitive, and the part of the task assigned to the linear programmer in an
automated procedure requires only high-school algebra to perform by hand (for
fairly simple formulas, at any rate).

In the interests of space, we will present the procedure here for the basic con-
nectives of RPLa :D, -, the constants, and the J-operators. As noted above, a
plethora of further connectives can be defined in terms of these. The complete
system implemented in our automated prover. FLAT, uses separate rules fogg

many of these connectives (which eliminates a number of duplicated branches).
The procedure has been proven sound and complete.

We begin with a conclusion A, which we wish to prove, and a possibly empty
set of premises I'. The procedure has three steps.

Step 1. If one wants to prove that the conclusion takes the value 1 whenever the
premises do, the first line of the tableau should be A <1. Then, for any formula
¢ € I', a line of the form ¢ > 1 should be entered in the tableau.

One may want to prove restrictions on the truth-values of one’s conclusion,
or put restrictions on the truth-values of the premises, other than that they are
absolutely true. There are two ways to do this. One can state the restrictions
using the language of RPL A, and then use the rules applying to those connectives
to decompose the formulas in the tableau. It is easier, however, to enter such
restrictions directly into the tableau as inequalities. So, if one wants to prove
that [A]> n for some n other than 1, the first line of the tableau would be A < n.
To say that for some premise B, [B]> k, one would enter the line B > k. Thus
we could evaluate the correctness of the claim: “whenever each of the premises
takes a value greater than or equal to k, the conclusion must take a value > n.
(In the examples of this paper, we always use 1 as the “designated value.”)

Step 2. These two categories of rules may be applied anywhere in the derivation.
(a) Replacement rules.

Rule C: A constant truth function may be replaced by the truth-value it signifies.
Rule N: In any line of a tableau, any expression of the form —¢ may be replaced
with 1 — ¢. (E.g., from —p > Cy 5, infer the line —=p > 0.5 by rule C, and then
1—p > 0.5 by rule N.)

The justification of these rules (as should be obvious) is that, in keeping with our
Fregean outlook, we take —¢ and C; to be names for 1—[¢] and 7, respectively.

(b) Decomposition rules. These can be applied at any time to any formulas of
the forms specified. Names are given above the rules for ease of reference.

DOGE DOLE

pDOY>x ¢DY<x

! / N

p<y—x+1 p>¢Y—x+1 ¢<v

x<1 x>1

DOSG DSL

pDY>x ¢ DY <x

! / N

p<typ—x+1 p>Y—x+1 <

x<l1 x> 1

JGE JLE

Ji¢ > x Jip < x
! N VA RN
o>i o>i o<1 o>1 o<i ¢>i
p<i x<0 x<0 x>0 x>0 o¢<i

46 x<1

x=>1

JSG JSL

Jip > x Jip< x
! N\ 7oL N
o>1 Pp>1 o<1 o >1 o<1 ¢=>1
o<1 x<0 x <0 x>0 x>0 o<1
x <1 x>1

Step 3. When no further decomposition or replacement rules can be applied,
linear programming can determine whether the resulting set of inequations is fea-
sible. When calculating by hand, this question can be resolved by simple algebra.
(In a hand tableau, a branch closes if one can derive impossible inequalities or
equations indicating that some formula must take a truth-values outside [0..1].
The lines of any complete open branch containing no logical symbols except
propositional variables describe a set of valuations where all the premises take a
value greater than the designated value and the conclusion takes a lower value
— i.e., a set of counterexamples to the inference or formula being investigated.)

3 A comparison of FAT and constraint tableaux

The chief advantage of FAT over constraint tableaux is that the former never
introduce new variables to be calculated over; all information is represented using
subformulas of the premises and conclusion at the head of the tableau. The rules
are also simpler (compare Héhnle’s < ¢ (A D B) rule with our DLE), which can
lead in some cases to drastically simpler tableaux. For example, consider

pD(@D(...7p)...),

with p repeated n times excluding the negated instance. Formulas of this form
take the value 1 for [p]< "771, and the value 1—T[M otherwise. Thus, none is a
tautology of Lx. When comparing the two systems, assume for simplicity that
the procedure applies all possible decomposition rules and then checks the results
for feasibility, without checking for closed branches before all formulas have been
decomposed. This is obviously inefficient, but so is using the linear programming
module to check if branches that have not been fully decomposed are closed; since
there are many ways of deciding which branches to continue to decompose and
which not to, we will not assume any particular routine for doing so.

Under that scenario, the reader can easily verify the following statistics. A
constraint tableau generated in that manner for a formula of the above form
has 2n branches (from the possible configurations of the n binary variables gen-
erated); the FAT tableau has n + 1. Each branch of the constraint tableau has
2n lines containing no logical operators (which are the lines that the linear pro-
grammer must work with); the number of lines of that type in the FAT vary from
1 to n on different branches. Each branch of the constraint tableau has n + 1
distinct variables; each branch of the FAT has one (namely, p). The Fregean
tableau allows the linear programming module to calculate the result from far
less data and with far fewer possibilities to consider.

The moral of the story is: do less work; get FAT. 47

4 Conclusion

The FAT method has been implemented in Java and runs on the usual platforms
(Linux/Unix, Mac, Windows). The user is allowed to vary the designated value,
so that we can test whether, if all premises take at least the value r then so
does the conclusion. There is also an option, for use with invalid arguments,
to find the lowest value that the conclusion could take when the premises are
all designated. (A test for what the ‘most invalid’ is for that the argument).
The method of determining the validity of arguments in fuzzy logic is, we be-
lieve, superior to the methods in the literature in various ways. To begin with,
our procedure covers a wider range of operators than other theorem-proving
procedures (excepting [6]) Although Hahnle’s and Beavers’s methods could be
extended to the class of connectives we describe, this has not been done so far.
A more important improvement is that our rules are much more natural ex-
tensions of finitely-many-valued tableau rules. Each tableau rule is a statement
about what truth-values the subformulas must name, which makes them easier
to understand than Beavers’s “general polynomial formulas” or Hahnle’s signs.
The Fregean insight our method uses allows linear programming to be used for
determining validity in an ideal way both for pedagogy and for ease of under-
standing in novel applications.

References

1. Hajek, P.: The Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

2. Williamson, T.: Vagueness. Routledge, London (1994)

3. Paoli, F.: A really fuzzy approach to the sorites paradox. Synthése 134 (2001)
363387

4. Kenevan, J., Neapolitan, R.: A model theoretic approach to propositional fuzzy
logic using beth tableaux. In Zadeh, L., Kacprzyk, J., eds.: Fuzzy Logic for the
Management of Uncertainty. Wiley, NY (1992)

5. Lee, R., Chang, C.L.: Some properties of fuzzy logic. Info. and Contr. 19 (1971)
417-431

6. Gehrke, M., Kreinovich, V., Buochon-Meunier, F.: Propositional fuzzy logics: De-
cidable for some (algebraic) operators; undecidable for more complicated ones.
Inter. Jour. Intel. Systems 14 (1999) 935-947

7. Morgan, C., Pelletier, F.: Some notes on fuzzy logic. Ling. and Phil. 1 (1977)
79-97

8. Beavers, G.: Automated theorem proving for tukasiewicz logics. Studia Logica 52
(1993) 183-196

9. Hihnle, R.: Automated Theorem Proving in Multiple-Valued Logics. Oxford UP,
Oxford (1993)

10. Héahnle, R.: Many-valued logic and mixed integer programming. Annals of Math-
ematics and Artificial Intelligence 12 (1994) 231-264

11. Hé&hnle, R.: Proof theory of many-valued logic — linear optimization — logic design:
Connections and interactions. Soft Computing 1 (1997) 107-119

12. Héhnle, R.: Tableaux for many-valued logics. In D’Agostino, M., Gabbay, D.,
Hahnle, R., Posegga, J., eds.: Handbook of Tableaux Methods. Kluwer, Dordrecht
(1999) 529-580

48

Reasoning on Multimodal logic with the Calculus
of Inductive Constructions

Houda Anoun

LaBRI-Bordeaux 1
anoun@labri.fr

Abstract. Multimodal Categorial grammars are a formalism well suited
for dealing with the syntax-semantics interface in Computational Lin-
guistics. Unfortunately their expressive power is impaired by a loss of
intuition and readability. We introduce Icharate, a collection of tools for
proving syntactic and semantic properties of entire classes of grammars,
which aims at facilitating the study of these classes, and explaining dif-
ferent linguistic phenomena. Icharate is built upon a formalization of
multimodal grammars in the Calculus of Inductive Constructions using
Coq proof assistant.

1 Introduction & Motivations

Human language is an exciting puzzle. During the last decades, several for-

malisms have been defined to model human cognition and to explain people’s
faculty to learn, analyze and understand easily different natural languages.
Amongst these proposals, we find M. Moortgat’s multimodal categorial gram-
mars [Moortgat97]. This model is based on logical type theory and provides an
easy syntax/semantics interface, owing to the Curry-Howard correspondence.
Moreover, this formalism is powerful enough to deal with complex natural lan-
guage phenomena. Unfortunately, the strength of multimodal grammars is coun-
terbalanced by an obvious loss of simplicity and readability. Thereby, there is an
imperious need for tools which facilitate the study and use of such complicated
linguistic formalisms. The ambitious project aiming at producing an automatic
tool for multimodal logics is not realizable as the proof-search problem is unde-
cidable. We believe that the use of a proof assistant such as Coq [CoqA04] will
lead to a satisfactory compromise.
Therefore, we propose a meta-linguistic toolkit, ZCHARAT &, built upon Coq
proof assistant and dedicated to the study of syntactic and semantic properties
of multimodal logics. Our toolkit is a framework intended for both neophytes and
senior researchers in computational linguistics. On the one hand, the combina-
tion between automatic proof steps and manual steps is beneficial as it will help
the beginners improve their comprehension and intuition about these logics. On
the other hand, ZCHAR.AT € is an easily extendable framework: it is well suited
for researchers who want to test their new ideas or formally check their conjec-
tures. The various proofs are then automatically verified by the proof-checker
and recorded in different libraries where they can be consulted at any time.

49

2 Preliminaries

Multimodal logics are composed of two distinct parts: an invariant part namely
the core logic (inference rules), and a structural part which allows a controlled
management of resources (e.g., local associativity, local permutation) [Moortgat97].
Deduction rules do not depend upon the words (i.e., grammar terminals) of
the chosen natural language; they rather express the way in which such words
can combine by using their syntactic types. Each type can be either primitive
or composite. The first class contains atomic types which represent complete
expressions, such as the type np (noun phrases), n (common nouns) and s
(well-formed sentences). Composite categories are built from primitive types by
using families of binary type constructors (/;, \;, ®;) and unary ones (<;, O;)
where indexes (modes of compositions) are employed to encode features or to
restrict the application of structural rules [Moortgat97]. For instance, the im-
proved type ((np\ss)/.(<C+PP))/«np can be assigned to ditransitive verbs (e.g.,
‘give’) whose indirect objects are prepositional phrases starting only with ‘o’
(e.g., ‘I give a present to Sue’).

Semantics and syntax are interdependent in multimodal categorial grammars.
Following Montague semantics [Gamut91], the meaning of words is represented
by simply typed A-terms. The semantics of an expression is built in parallel with
its syntactic derivation in a compositional fashion.

The proof terms that the logical system operates on are sequents of the form
(I' - A > a) where I' is a context (i.e., a structured binary tree that take into
account both linear ordering and hierarchical grouping of resources) of typed
syntactic variables, A is a type and a is a simply typed A-term which encapsu-
lates the derivational semantics. We show below some examples of multimodal
deduction rules.

I'FA/;Bof Ak Bob (Iw:B)i - A f I'tAva AF Bob

Az (I, A)i - A (f b) /B TF A/iBoo.f /il (I, A)i - Ae; B> (a,b)

r:AF Az

The core logic has very limited expressive power. Strength of multimodal
grammars stems from the possibility to add different packages of refined and
constrained structural rules. For example, we can assume that commutativity
is locally accessible when the resources are combined using a particular mode
c. Therefore, we are able to account for the freedom of word order required by
some linguistic constituents such as adjuncts (e.g., ‘yesterday’ whose type s/.s
allows the derivation of both sentences ‘Yesterday Houda slept peacefully’ and
‘Houda slept peacefully yesterday’).

More powerful structural rules can be defined to allow the communication be-
tween different modes. The rule MC(i, j) (rule of controlled contraction) is an
example of such interaction principles.

I[((Ar, As)?, (Ag, A)))'] Coa
I'[((A1, A2)!, A3 F Co

MC(i,7)

50

3 The Icharate toolkit

In [EsslliO4], we presented a first version of the meta-linguistic ZCHARATE
toolkit. This first formalization was restricted to the syntactic level of multimodal
grammars; moreover, it suffered from several shortcomings (loss of readability,
absence of a user friendly interface ...). In this paper, we present three main
improvements of our toolkit! over the previous version.

3.1 Towards a two-level approach to semantics

We use Coq as a meta-language in order to deeply embed our object language,
namely multimodal logic. This deep embedding is obtained by formalizing the
data structures handled by multimodal logic (e.g., syntactic types, contexts,
structural rules, deduction rules, A-terms) in terms of inductive types.

We adopt a two-level approach to semantics: the deep-embedding allows us to
reason about the structure of semantics, while we rely on the shallow embedding
to reason about the semantic contents of expressions.

We use a deep-embedded A-calculus to compute the derivational semantics of
a sentence given its syntactic derivation. This semantics is computed in a com-
positional manner by means of a recursive function which maps each deduction
step into a computational step within the simply typed A-calculus. For example,
the introduction of both connectives /; and \; is semantically interpreted as the
abstraction of a hypothetical resource. Deep embedding of A-terms is worthwhile
as it allows us to reason about the syntactic structure of the derivational seman-
tics. For instance, we are able to prove in a formal way that the derivational
semantics of a sentence is linear (each binder binds exactly one variable) if its
syntactic derivation is established inside a grammar with linear structural rules.
The shallow embedding corresponding to a deeply embedded term is computed
by a recursive translation function which translates this term into Coq inherent
logic. This translation can act as a pretty printer as it replaces all occurrences of
De Bruijn indices with named variables. It is also used to reason about natural
languages semantics thanks to the existing tools of the meta-language (tactics,
induction schemes ...). For example, we are able to establish in a formal way
the validity of meta-mathematical sentences such as ‘Every positive integer has
a predecessor’ whose translation into Coq’s logic yields the provable formula
Y (z:nat), z >0 = 3 y:nat| z=y+1.

3.2 Reasoning on Classes of Multimodal Grammars

Coq is based on higher order logic, thus offering an adequate environment for
the specification and proof of generic syntactic and semantic properties of multi-
modal grammars. Moreover, it provides a framework which harmoniously com-
bines two complementary paradigms namely reasoning and computation. Thanks
to reflection techniques [Alvarado02], we are able to benefit from the complete

! The current version of ZCHARATE is available at www.labri.fr/ “anoun/Icharate

51

automation of the latter tool.

In order to understand the behavior of different interaction principles, we need
to enhance the restricted set of inference rules by a range of derived rules which
can be applied to specific classes of grammars (e.g., grammars containing a spe-
cific structural rule, grammar whose structural rules verify a given predicate).
These derived rules are valuable in that they can help us study the expressive
power of the different interaction principles, together with their ability to explain
various linguistic phenomena. ZCHARAT £’s library contains a wide range of
derived rules dedicated to the processing of various linguistic phenomena such
as unbounded dependencies, crossed dependencies, ellipsis and parasitic gaps ...
[Moortgat97]. For instance, we can account for parasitic gaps within a setting
that contains the structural rule MC(i, j) using the following derived rule:

R
MC(i,/)€R (a: A, c:C)i kDo f

7 PG
(f] : A/]B s fQ : C/]B)L F D/]Bl>/\bf[a = (fl b),c = (fz b)}

This generic rule simplifies the derivation of the noun phrase ‘a book which Mary
did review _ without reading _’which illustrates the parasitic gaps phenomenon
(both extracted elements are semantically dependent). The main steps of the
relative clause’s derivation are summarized below:

(a:np\is,c: (np\is)\i(np\:is)) F np\;s
(did review : (np\;s)/jnp, without reading : ((np\:s)\i(np\is))/jnp)* = (np\is)/jnp

PG

(Mary : np , (did review : (np\;s)/;np , without reading : ((np\;s)\i(np\:is))/;np)")" + s/ np

The whole derivational semantics encapsulated by this derivation is nothing else
but the term ‘Ax. without reading(x, did _review(x))(Mary)’.

ICHARAT E’s library also contains a number of refutation lemmas which
aim at proving the ill-formedness of some sentences within a given multimodal
setting. For example, using a simple polarity computation [Esslli04] we are able
to prove that the expression *(which Mary did review the book) is ungrammatical.

3.3 User-friendly Interface

In order to have a handy toolkit, we provided ZCHARAT £ with a user friendly
interface which guarantees both readable notations and ease of interactive proof
construction. These requirements are achieved by means of PCoq interface
[Bertot01]. This system enables us to define various pretty-printers that can gen-
erate mathematical readable notations (-, e;, /;, <;,...). Moreover, it allows the
interactive construction of proofs through mouse clicks on some relevant places
(proof by _ pointing technique). Such clicks run a collection of tactics which sim-
plify the current goal by generating a range of sub-goals potentially easier to
solve. Figure 1 illustrates the use of some proof-by-pointing rules involved in the
proof of a simple derived rule within the multimodal setting.

52

1

aiA 1 [Ae (B C) /,C /B l/

introduction of hypotheses

2 (application of the rule /; I)

((@:A,b:B),c:C) |I-V*i) Ae;(B o,C)

3

decomposition of context

[((a:A,b:B),c:C)] \—A-,(B ¢ C)

application of the structural
4 Vrule MA(i,j)

(a:A,(b:B,c:C)) ¥ Ae,(B]e C)

application of the rule o1
twice

Qed

Fig. 1. Example of derivation using proof-by-pointing

4 Conclusions & Future work

ICHARATE is a meta-linguistic toolkit dedicated to the study of multimodal
logics. The current version allows users to interactively prove syntactic and se-
mantic properties of different classes of grammars. The adopted approach pro-
vides the user with a convenient means of reasoning about both the structure of
semantics and its contents. Moreover, ZCHARATE comes with an important
range of tactics which allow the combination of manual steps and automatic
steps, thus freeing users from the burden of carrying out the proof of some tech-
nical goals.

Our toolkit can be extended by formalizing other linguistic models and trying to
build bridges between them. We also intend to define more powerful refutation
tactics, decision procedures and automation tools to ease the interaction with
the toolkit

References

[Alvarado02] Alvarado, C.: Réflexion pour la réécriture dans le calcul des constructions
inductives PhD thesis, Paris Sud University, Orsay, (2002)

[Esslli04] Anoun, H., Castéran, P., Moot, R.: Proof Automation for Type-Logical
Grammars Technical report, ESSLLI, Nancy, http://esslli2004.loria.fr, (2004)

[Bertot01] Amerkad, A., Bertot, Y., Pottier, L., Rideau, L.: Mathematics and Proof
Presentation in Pcoq INRIA Reseach report, (2001)

[CoqA04]| Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Devel-
opment: Coq’Art: The CIC, Springer Verlag, (2004)

[Gamut91] GAMUT, L.T.F.: Language and Meaning, Vol 2: Intentional Logic and
Logical Grammar University of Chicago Press, (1991)

[Moortgat97] Moortgat, M.: Categorial Type Logic Chapter 2 in Van Benthem & ter
Meulen (eds) Handbook of Logic and Language, Elsevier (1997)

53

A Hierarchical Logic for Network Configuration

Roger Villemaire, Sylvain Hallé, Omar Cherkaoui, and Rudy Deca *

Université du Québec a Montréal
C. P. 8888, Succ. Centre-Ville, Montréal, Canada H3C 3P8
{villemaire.roger,cherkaoui.omar}Qugam.ca

Abstract. We describe ongoing work on a logic on trees aimed at de-
scribing properties of configurations of network equipments. This logic
generalises first-order logic to a setting where variables form a forest in-
stead of a set. We describe the motivation and the formal approach taken
by this logic. Finally be briefly present the kind of sentence for which a
generalised Herbrand universes construction leads to a finite structure.

1 Introduction

The configuration of a computer network naturally forms a forest of trees whose
nodes contain parameter-value pairs, such as the one shown in Figure 1. Note
that a parameter’s name, such as router is fixed, since it depends on the struc-
ture of the software running on the network equipment. On the other hand, the
values, such as routerl (the name of the router), are configurable.

The main network configuration problem is to assure appropriate values
for the network equipments’ parameters. This hierarchical structure follows the
mode/sub-mode hierarchy of the command line interface used to configure de-
vices.

router = router

N

int = ethQ int = ethl
ip address = 192.168.1.13 ip address = 192.168.1.14
pref=25 mask =255.255.255.128 pref=25 mask = 255.255.255.128

Fig. 1. A portion of the configuration tree for a router

* We gratefully acknowledge the financial support of the National Science and Engi-
neering Council of Canada.

1.1 Two Simple Examples

Example 1: IP addresses A version-4 IP address is a string of four bytes that
uniquely identifies components in a network. According to the Classless Inter-
Domain Routing (CIDR) scheme [7,18], each IP address is described by two
attributes, its mask and prefix, that are linked by a relation. For instance, an
address like 206.13.01.48/25, having a network prefix of 25 bits, must carry
a mask of at least 2565.255.255.128, while the same address with a network
prefix of 27 bits must not have a subnet mask under 255.255.255.224. This
relation must be verified for all IP addresses in all routers of a network such as
the one depicted in Figure 1.

Example 2: Virtual Private Networks While the first example showed a
property between nodes of a single router, we now consider a property between
nodes of different routers.

A Virtual Private Network (VPN) service [17,19,20] is a private network
constructed within a public network such as a service provider’s network. Usually,
the VPN is used to link together several geographically dispersed sites of a
customer by a protected communication throughout the provider’s network.

Most of the configuration of a VPN is realised in routers placed at the border
between the client’s and the provider’s networks. On the client side, these routers
are called customer edge (CE) routers, and on the provider side, they are called
provider edges (PE).

An important issue is to ensure the transmission of routing information be-
tween the sites forming a VPN without making this information accessible from
the outside. One frequently used method consists in using the Border Gateway
Protocol (BGP). This method involves the configuration of each PE to make it
a “BGP neighbour” of the other PEs [17]; this entails that one interface in each
PE router must have its IP address declared as a BGP neighbour in each other
PE router. A typical VPN service involves tens of routers in which an average
of 10 dependencies must be checked at multiple locations in the tree.

1.2 Aim of a Configuration Logic

The above examples are representative of configuration situations that arise
in network management. The usefulness of logic in this setting is to have a
formalism not only to describe properties that must be fulfilled by a correct
configuration but also to provide an algorithm to help automate the configuration
task.

Such a logic should first have decidable model checking in order to check that
a configuration actually fulfills some necessary properties. Furthermore, in order
to help automate the configuration task, one should able to build a finite con-
figuration satisfying some property. This last requirement includes an algorithm
to find (if possible) acceptable values for new parameters of a configuration in
such a way that some conditions, assuring proper function of the network, are

55

satisfied. In logical terminology, this entails the logic should be decidable and
have the small model property.

A logic for configuration could be based on first-order logic, with a binary
relation to encode the tree structure. But in order to get a decidable logic, one
has to restrict oneself to some fragment of first order logic.

Decidable fragments of first-order logic obtained by limiting the types and
alternations of quantifiers have been thoroughly studied [6,14]. But since [8]
showed that the class of V23* (two V followed by any number of 3 in prenex
form) with one binary predicate is undecidable, this considerably limits the ex-
pressiveness of such fragments.

Another approach would be to consider the tree structure to be a part of the
logic. In the context of network configuration, quantifiers are needed to express
things like, “for all routers r, there exists an interface ¢ of r”; however, general
quantification on all nodes (as in “for all parameters”) is never necessary. The
situation is therefore similar to multi-modal logics like LTL and CTL [5] where
the operators {(a) and [a] respectively denote “there exists an action a” and
“for all actions a”. But for configurations, a would rather be a parameter (with
a value) and contrary to multi-modal logics, relations on tuples of nodes are
needed.

Guarded logic is, as a matter of fact, a fragment of first-order logic allowing
n-ary relations, which generalise multi-modal logic. Guarded logic and a further
generalisation called weakly-guarded logic have been showed to have the small
model property [1,11]. Unfortunately, it has been shown in [21] that neither
guarded nor weakly guarded logics are sufficient for describing properties of
configurations.

Since a configuration is a set of trees, another possible approach is to use
query logics for tree-structured documents like the Tree Query Logic (TQL)
[2,3]. This logic was used in [9,10] to verify configuration properties of network
services, so the logic is appropriate, even if natural network properties tend
to be somewhat cumbersome to express. Nevertheless, TQL is a very powerful
query logic, which can express recursion (which is of no need in our setting) and
therefore has undecidable model checking [4]. Since in [9,10] only a very small
fragment of TQL was used, it is interesting to look at a fragment of TQL which
would be sufficient for describing properties of configurations. This was done
in [21] where a configuration logic named CL was introduced.

There are many more applications of logic to configurations which have been
proposed in the literature, for instance [15], [22], [13], [16] or [12]. But neither [15],
[16] nor [22] considers hierarchical parameter-value pairs, while [13] considers a
logic on trees, but its quantifiers are general first-order quantifiers. Moreover,
none of these works (except for [16]) considers model construction.

2 Recasting Configuration logic

Even if [21] shows that CL doesn’t have the small model property, one could ask
for a reasonable fragment of it, expressive enough for usual network properties,

56

but allowing a small model construction. While the approach of [21] was sufficient
to do model-checking, it was not clear how one could build models in that setting.

One possible way to construct a model is to generalise Skolem functions and
Herbrand universes. While Herbrand universes do not have to be in general
finite, one could expect a natural syntactic restriction on formulas which would
be sufficient for finiteness.

In order to generalise Skolem functions to CL one has to introduce a proper
notion of function symbol in CL. The most natural way to do this is to consider
CL as a logical language in which the set of variables forms a forest (set of trees).
A variable = represents a couple formed of a parameter name (which if fixed)
and a value (which has to be given by a valuation).

Consider a fixed set Names of possible parameter names (for short just
names). The variables in CL must be a structure of the following kind.

Definition 1. A named forest is a set of trees whose modes are labelled by
names. If N is a node of a forest, we write label(N) for its label.

A valuation sending variables to nodes in a configuration has to preserve the
hierarchical structure, so it must fulfill the following definition.

Definition 2. A named forest morphism (n.f.m. for short) a : Fy — F5 from a
named forest Fy to a named forest Fy is a partial function from the nodes of Fy
to the nodes of Fy (with domain dom(«)) such that:

— dom(«) is a sub-forest (i.e. the parent of an element of dom(«) is also in
dom(a)).

if N is a root, then a(N) is a root

label(a(N)) = label(N)

if No is a child of Ny, then a(N2) is a child of a(Ny).

The appropriate generalisation of function symbols to CL is to consider a
symbol of the form v.f(w), where v is a variable and @ a finite sequence of
variables. A valuation p will interpret v.f(w) to be a descendant of p(v).

We have succeeded in generalising to this setting a formal definition of se-
mantics and a sound notion of terms and substitutions. This opens the way to a
generalisation of Skolem functions and Herbrand universes constructions to CL.

The remaining question is: under which circumstances is such a Herbrand
universe finite? A complete characterisation is still the topic of ongoing work,
but we succeeded in obtaining a sufficient condition which is true whenever an
existentially quantified variable is not in the scope of a universal variable of
the same type. For instance in example 2, the neighbour entry depends on the
existence of an interface on another router and not on the existence of another
neighbour entry in the same router.

References

1. Andréka, H., van Benthem, J., Németi, I.: Modal Languages and Bounded Fragment
of Predicate Logic. ILLC Research Report ML-96-03, 59 pages, 1996.

57

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

58

Cardelli, L.: Describing semistructured data. SIGMOD Record, vol. 30, no. 4, pp.
80-85, 2001.

Cardelli, L., Ghelli, G.: TQL: A query language for semistructured data based on
the ambient logic. Mathematical Structures in Computer Science, vol. 14 | no. 3,
pp. 285-327, 2004.

Charatonik, W., Talbot, J-M.: The Decidability of Model Checking Mobile Ambi-
ents. Proceedings of the 15th International Workshop on Computer Science Logic,
pp. 339-354, September 10-13, 2001.

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA, 2000.

Dreben, B., Goldfarb W. D.: The Decision Problem: Solvable Classes of Quantica-
tional Formulas. Addison-Wesley, Reading, MA, 1979.

Fuller, V., Li, T., Yu, J., Varadhan, K.: Classless Inter-Domain Routing (CIDR):
an Address Assignment and Aggregation Strategy. RFC 1519, 1993.

Goldfarb, W. D.: The Unsolvability of the Gédel Class. Journal of Symbolic Logic,
vol. 49, pp. 1237-1252, 1984.

Hallé, S., Deca, R., Cherkaoui, O., Villemaire, R.: Automated Validation of Ser-
vice Configuration on Network Devices. Proceedings of Management of Multimedia
Networks and Services: 7th IFIP/IEEE International Conference, (MMNS 2004),
San Diego, CA, USA, October 2004, LNCS 3271, pp. 176-188, 2004.

Hallé, S., Deca, R., Cherkaoui, O., Villemaire, R., Puche, D.: A Formal Validation
Model for the Netconf Protocol. Proceedings of Utility Computing: 15th IFIP /TEEE
International Workshop on Distributed Systems: Operations and Management,
(DSOM 2004), Davis, CA, USA, November 15-17, LNCS 3278, pp. 147-158, 2004.
Hodkinson, I. M.: Loosely Guarded Fragment of First-Order Logic has the Finite
Model Property. Studia Logica, vol. 70, no. 2, pp. 205-240, 2002.

Jackson, D.: Automating First-Order Relational Logic. Proceedings of the 8th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, San
Diego, California, ACM Press, New York, NY, pp. 130-139, 2000.

Klarlund, N., Koistinen, J., Schwartzbach M. 1.,: Formal Design Constraints, SIG-
PLAN Notices, vol. 31, no. 10, pp. 370-383, ACM Press, New York, NY, 1996.
Lewis, H. R.: Unsolvable Classes of Quanticational Formulas. Addison-Wesley,
Reading, MA, 1979.

Lowe, H.: Extending the Proof Plan Methodology to Computer Configuration Prob-
lems. Applied Artificial Intelligence, vol. 5, no. 3, pp. 227-252, 1991.

Narain, S.: Network Configuration Management via Model Finding. ACM Work-
shop On Self-Managed Systems, October 31-November 1, 2004, Newport Beach,
CA.

Pepelnjak, 1., Guichard, J.: MPLS VPN Architectures., Cisco Press, 2001.
Rekhter, Y., Li, T.: An Architecture for IP Address Allocation with CIDR. RFC
1518, 1993.

Rosen, E., Rekhter, Y.: BGP/MPLS VPNs. RFC 2547, 1999.

Scott, C., Wolfe, P. Erwin, M.: Virtual Private Networks. O’Reilly, 1998.
Villemaire, R., Hallé, S., Cherkaoui, O.: Configuration Logic: A Multi-Site Modal
Logic. Proceedings of the 12th International Symposium on Temporal Representa-
tion and Reasoning, TIME 2005, June 23-25, Burlington, Vermont, USA, 2005.
Zeller, A., Snelting, G.: Unified Versioning through Feature Logic, ACM Transac-
tions on Software Engineering and Methodology, vol. 6, no. 4, pp. 398-441, ACM
Press, New York, NY, 1997.

