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The algorithm

Initial step: if n is a^b, b>1, return composite
While loop:

Find a prime r such that q, the largest prime factor of r-1 satisfies:
1) q>=4 Sqrt[r] log n
2) n^((r-1)/q) != 1 (mod r)
If find a factor of n in while loop ( gcd(n,r)!=1) return composite

For loop:
For a=1,...,2 Sqrt[r] log n, check.
1) gcd(a,n)=1
2) (x-a)^n = (x^n-a) (mod x^r-1,n)
If ever fails, return composite

Return prime

Regarding initial step of algorithm

Lemma 1 (Detecting pure powers) There is a polynomial time algorithm for deciding if n is
of the form mj, where n, m, j are integers.

Proof: Suppose n = mj , with j a positive integer and m a real. Then,

j =
log2 n

log2 m
≤ log2 n.

Attempt the integer j-th root of n for j = 2, . . . , blog2 nc. The j-th root of n can be determined
by binary search for the m between 1 and n such that mj = n. The process is O(logk n) for some
integer k. �
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Regarding while loop of algorithm

There are two items at issue here. First is the finding of a prime r for which prime q, q | (r − 1),
is large, the second item is to get that q | or(n), where or(n) is the order of n mod r. We use the
facts,

Lemma 2 (Density of Primes) Let π(x) be the number of primes less than or equal to x. For
x ≥ 1,

x

6 log2 x
≤ π(x) ≤ 8x

log2 x
.

Lemma 3 (Density of Special Primes) Let P (n) denote the greatest prime divisor of n. Exists
c > 0 and no such that for all n ≥ no,

| { p ≤ x | p prime and P (p− 1) > x2/3 } | ≥ c
x

log2 x
.

Such primes are called special.

Lemma 4 (Existence of a special prime) Exists c1, c2, c3 such that there is a prime r,

c1 log6 n ≤ r ≤ c2 log6 n

such that r − 1 has a prime factor q ≥ 4
√

r log2 n. In fact, the number of such primes is
c3 log6 n/ log log n.

Proof: First count the number of primes r in the given interval which have large enough divisors
of r− 1. Since large enough will be r2/3, and also greater than 4

√
r log2 n, we will need to consider

large enough r as well.

b = (number of special primes < c2 log6 n)− (number of primes < c1 log6 n )

≥ cc2 log6
2 n

log2(c2 log6
2 n)

− 8c1 log6 n

log2(c1 log6 n)

≥
(

cc2

7
− 8c1

6

)
log6

2 n

log log2 n
.

Chose c1 ≥ 46 and then choose c2 so that the above bound is positive, say c3. For this r,

q > r2/3 =
√

rr1/6 ≥
√

r(c1 log6
2 n)1/6 ≥ 4

√
r log2 n.

�

We now pick from the special primes those for which the large prime factor q of r−1 divides or(n).

2



Lemma 5 (Detecting q divides or(n)) Let r and q be primes, and q | r − 1. Let or(n) be the
order of n in Fr. Then n(r−1)/q 6= 1 mod r implies q | or(n).

Proof: Since or(n) | r − 1,
nr−1 = nor(n)k = 1 mod n

for some integer k. If q 6 | or(n) then q | k and,

n(r−1)/q = nor(n)(k/q) = 1 mod n

�

Lemma 6 There are at most blog2(n)c prime factors in n.

Proof: Denote by k the number of prime factors. Let n = Πpei
i be the prime decomposition of n.

Then
log2 n =

∑
ei log2 pi ≥

∑
ei ≥ k.

�

Lemma 7 There are at most x2/3 log2 n prime factors in the product π = (n−1)(n2−1) . . . (nx1/3−
1).

Proof: We upper bound the size of π and take the log.

π =
x1/3∏
i=1

(ni − 1) ≤
∏

ni = n
∑

i ≤ nx2/3

�

Lemma 8 Among the special primes the Special prime lemma, there are r such that the q dividing
(r − 1) also divides or(n).

Proof: Consider the product π from the previous lemma with x = c2 log6
2 n. Then,

x2/3 log2 n = (c2)2/3 log5
2 n <

c3 log6
2 n

log log2 n

Hence there must be some special prime r which is not among the prime factors of π. For this r,
or(n) > (c2 log6

2 n)1/3 > r1/3. Since or(n)|(r − 1), the order must include enough large factors of
r − 1, but (r − 1)/q ≤ r1/3, so q|or(n). �
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Regarding for loop of algorithm

Let l = 2
√

r log2 n. We investigate the consequence of,

(x− a)n = (xn − a) mod (xr − 1, n), ∀a = 1, 2, . . . , l.

We first establish a fact about what could be called the cyclotomic extension of Fp.

Lemma 9 Suppose h(x) is a factor of xr − 1, r prime, and m1 = m2 mod r. Then xm1 =
xm2 mod h(x).

Proof: Since xr = 1 mod h(x), then,

xm1−m2 = xrt = 1 mod h(x).

so xm1 = xm2 mod h(x). �

Lemma 10 (Degree of a cyclotomic extension) Let p and r be distinct primes and or(p) the
order of p in Fr. The irreducible factors of (xr − 1)/(x− 1) in Fp are all of degree or(p).

Proof: Let h(x) be an irreducible factor of (xr −1)/(x−1). Working in Fp[x]/h(x) = GF (pk) some
k, g(xp) = g(x)p, so g(xpd

) = g(x)pd
. Let d = or(p), so that pd = 1 mod r. By the mod r lemma,

g(x) = g(x)pd
. So g(x)pd−1 = 1. Thus (pk − 1) | (pd − 1), implying k | d (consider formal division).

Also, h(x) | (xr − 1) implies xr = 1 mod h(x). Since r is prime, the order of x in Fp[x]/h(x) is r so
r | (pk − 1), the order of the group. But d = or(p), so d | k. We conclude that k = d. �

Lemma 11 Let the prime factors of n be pi. Since q|or(n), then among the the pi there is a prime
factor p such that q | or(p), where q is the largest prime factor of r − 1.

Proof: If pt
i = 1 mod r for all i, then nt = 1 mod r. Hence or(n)|lcm{or(pi)}. Since q is prime and

q|or(n), there must be some pi, say p, such that q|or(p). �

Guidance: We can consider the situation Fp[x]/h(x) = GF (pd), where the irreducible factor h(x) of
xr−1 is of degree d = or(p). Since p|n and h(x)|(xr−1), the tested congruences hold in Fp[x]/h(x).
The jist of the for loop is that if the congruences under consideration hold, then n = pk, some k.
We look at the group generated by the binomials which have been verified, and define a certain set
based on the generator for that group.

Lemma 12 (Group of checked polynomials) In the field Fp[x]/h(x), where p is a prime divid-
ing n and h(x) is an irreducible factor of xr−1 of degree d = or(p), consider the set G of polynomials
generated by binomials (x−a), where 1 ≤ a ≤ l. This is a cyclic subgroup of (Fp[x]/h(x))∗ of degree
greater than n2

√
r.
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Proof: As a subgroup of a finite cyclic group, it is cyclic. We have verified that all the constants
are coprime to p. For generated polynomials of degree less than d, no two will be congruent mod
h(x). This gives

(
l+d−1

l

)
distinct polynomials. We have a bound on d since q|d, and q ≥ 4

√
r log2 n,

and l = 2
√

r log2 n, (
l + d− 1

l

)
>

(
d

l

)l

≥
(q

l

)l
≥ 2l = n2

√
r.

�

Definition 1 Let g(x) be a generator for the cyclic group G. Define,

Ig = {m ∈ Z | g(xm) = g(x)m mod (xr − 1, p) }

Lemma 13 p, n ∈ Ig

Proof: Since (x − a)n = xn − a mod (xr − 1, p) has been verified for all generators of G, it is true
for any element of G including g. Since the ground field Fp has characteristic p, g(x)p = g(xp). �

Lemma 14 The set Ig is closed under multiplication.

Lemma 15 Denote by og the order of g(x) in Fp[x]/h(x). Suppose m1,m2 ∈ Ig and m1 = m2 mod
r. Then m1 = m2 mod og.

Proof: In Fp[x]/h(x),
g(x)m1 = g(xm1) = g(xm2) = g(x)m2

Hence g(x)m1−m2 = 1, therefore og |m1 −m2. �

Theorem 16 If the l = 2
√

r log2 n congruences (x − a)n = (xn − a) mod (xr − 1, p) hold, then
n = pj, some j.

Proof: Consider the set,
E = {nipj | 0 ≤ i, j,≤

√
r }

By the multiplicative closure of Ig, E ⊆ Ig. There are (1 + b
√

rc)2 > r elements in this set, and
therefore two are equal mod r. Hence two elements are equal mod og. Since og = |G| > n2

√
r and

n|i1−i2|, n|j1−j2| < n
√

r, the congruence is an equality, that is, ni′ = pj′
. �
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