Gauss and AGM

Burton Rosenberg

January 30, 2004

Introduction

derivation of equation.

what has it to do w/ the lemniscate
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properties of I

elliptic integrals

The Elliptic Integral of the First Kind

Define the a lemniscate, 72 = cos26. In analogy to the unit circle, whose circumference is 2, the
circumference (total arc length) of the lemniscate is 2w, using Gauss’ notation. Using the polar

form for arc length,
/\/r2 + (dr/d6)? do

and implicitely differentiating the leminscate equation,
r dr = —sin 20 df

the arc length for one quadrant of the lemniscate is,

w/4 \/ . . " w/4 do
w/2 = cos 20 —sin20/r =
/ /o / /o v/ cos 20

We substitute cos 20 = cos? ¢. Taking differentials,
sin 260 df = cos ¢ sin ¢ d¢
and then manipulating sin 26,
sin?20 = 1 — cos?20 = 1 — cos* ¢ = sin? ¢(1 + cos® @)

to obtain,

df = cosp/+/1+ cos? ¢ do



The result of the substitution is then,

CD/Q:/N/Q do :/'71'/2 do
0 14cos2¢ 0 V/2cos2¢+sin ¢

This last integral is an elliptic integral of the first kind.

Definition 1 The Elliptic Integral of the First Kind is defined as,

w/2
I(a7 b) :/ d¢ <2
0 Va?cos? ¢+ b2sin? ¢

The Arithmetic-Geometric Mean

Given two reals a and b, their arithmetic-geometric mean AGM(a, b) is the common limit of a and
b under the iteration,

The convergence is extremely fast.

Theorem 1 Let a,,b, be the neat iterate of a,b in the AGM procedure, a, = (a+b)/2 and b, = /ab.
Then I(a,b) = I(ao,bo).

Proof: Gauss’s proof is to indicate the remarkable substitution,

2a sin ¢/

We give this proof in an appendix. Here is a simpler proof by Nick Lord, who seems to credit
Schoenberg. We express the integral after the substitution ¢t = btan ¢,

1 [ dt
la.b) =3 /oo JE+ ) + 12

Substitute ¢ = (x—ab/x)/2. Considering in turn each factor in the denominator and the differential,

(2 — ab/z)/2)* + ((a +b)/2)°

1/42%)(z* — 2abz® + (ab)?) + (a® + b* 4 2ab)2?
1/422)(x* + (a* 4 b*)2® + (ab)?)

1/42%)(* + a®)(2* + b?).

t2+a(2, =

(
(
(
(

242 = ((z—ab/x)/2)?+ (Vab)?
= (1/42%)(z* — 2abz® + (ab)?) + 4abz?



(1/42%)(x* + 2abx* + (ab)?)

(1/42%)(x* + ab)?.

dt = d(x—ab/x)/2
(2% 4 ab)/(22?) dx
Therefore,
I(ap,by) = 1/ dt
2 J oo /(2 + a2)(2 + 12)

B o 2z 20 2?4 ab .

- V@2t ad)(@Z+b2) a2 +ab 22

B 1/°° dx

2 ) oo /(22 + a2)(22 + b?)

= I(a,b)
The Elliptic Integral of the Second Kind
Definition 2 Let J(a,b) be the Elliptic Integral of the Second Kind,

w/2
J(a,b) = / \/&2 cos? ¢ + b2 sin? ¢ dé.
0
Theorem 2 Define the special function,
L(a,b) / sin? ¢
Va2 cos? ¢ + b2 sin? ¢
Then (a® — b*)L(a,b) = a*I(a,b) — J(a,
Proof:
_p2) ain?
@-Pray = [ A g
0 VaZcos? ¢+ b2sin? ¢
/”/2 a® — (a® cos? ¢ + b? sin? ¢) do
0 Va2 cos? ¢ + b2 sin? ¢
= a?*I(a,b) — J(a,b)
AGM and 7
Let k = AGM(v/2,1), then
w/2 d d
@/2—/ ¢ —/ ¢ =x/(2k).
0 2cos?2¢+sin® o 0 Vk2cos2 g+ k2sin’ ¢
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This results in the remarkable identity, due to Gauss,

T/o = AGM(V2,1)

Gauss proof of invariance

Gauss was the first to notice and prove that the Elliptic Integral is invariant by substitution of
parameters by their AGM. He states simply that the proof is by the substition,
2a sin ¢’

a+b+ (a—b)sin® ¢/

sin ¢ =

C. Jacobi gave further guidance by indicating three identities, which we state and prove in the
following lemmas. I found that even with this guidance, the proof involves a great deal of algebra.
Certainly Gauss saw something in these formulas which lead him rationally along this path.

Lemma 1
2 cos ¢'\/a? cos? ¢ + b2 sin? ¢/
cosp = —
a+b+ (a—b)sin® ¢’
Proof:
cos¢ =1/1—sin?¢ = A_l\/AQ — 4a2sin® ¢/
where,
A=a+b+ (a—b)sin® ¢
SO
A% —4a®sin’ ¢ = (a+Db)*(cos® ¢/ +sin® @) +2(a + b)(a — b)sin® ¢/
+(a — b)?*sin* ¢ — 4a? sin? ¢/
= (a+b)2cos®¢ — (a—0b)?sin® ¢’ + (a —b)?sin* ¢
= cos’¢'((a+b)* — (a — b)*sin® ¢)
but
(a+0)* = (a—b)*sin®¢’ = (a+b)*(cos® ¢’ +sin®¢’) — (a — b)*sin? ¢’
= (a+b)*cos® ¢ + dabsin® ¢
Lemma 2

a+b— (a—b)sin? ¢
a+b+ (a—b)sin? ¢/

\/@20082¢+625in2d>:a



Proof: Sustitute cos ¢ and sin ¢ from our identities,
a?cos? ¢+ b2sin? ¢ = A2’ T
where,
I = 4cos® ¢/ (a’? cos® ¢’ + b? sin? ¢') + 4b% sin? ¢/
To the sum inside the parenthesis, un-prime the constants and preform a trignometric substitution,
4(a” cos® ¢’ + ?sin?¢') = (a+ b)?cos® ¢’ + dabsin® ¢’
= (a+b)?*(1 —sin®¢') + 4absin® ¢
= (a+b)?—(a—0b)?sin’¢
Preform another trignometric substitution and collect powers of sin ¢/,
(1 —sin?¢')((a +b)? — (a — b)*sin? ¢') + 4b*sin® ¢/ = (a + b)*
+(4b% — (a — b)? — (a + b)?)sin? ¢’
+(a — b)*sin ¢/

Since 4b? — (a — b)? — (a + b)? = —2(a + b)(a — b),

I = (a+b)?2—2a+b)(a—>b)sin?¢’ + (a —b)?sin* ¢/
((a+0b)—(a—0) sin? ¢/)2

Lemma 3

(CLQ COSQ¢ + b2 sin2 ¢)_l/2d¢ — (a/2 C082 (b/ + b/2 Sin2 ¢/)_1/2d¢/

Proof: The differential of,
2a sin ¢’

a+b+ (a—b)sin® ¢/

sin ¢ =

is,
2a cos ¢’ A — 2asin ¢'(a — b)2sin ¢’ cos ¢’
A2

cos g dop = dg’
where A = a + b+ (a — b)sin® ¢'. So,

A?cospdp = 2acosd' (A —2(a—b)sin®¢)
= 2acos¢ (a+b—(a—Db)sin?¢) d¢/

Substituting for (A cos @) and canceling 2 cos ¢/,
A(d" cos® ¢ + 1% sin? ¢')/? d = a(a + b — (a — b) sin® ¢) d¢’

Then apply the previous lemma.
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