1 The geometric period

Up to the Seventeenth Century, approximations of m were obtained by mean
of geometrical considerations. Most of the methods were dealing with regular
polygons circumscribed about and inscribed in the circle. The perimeter or the
area of those polygons were calculated with elementary geometrical rules.

During this period the notation 7 was not used and it was not yet a constant
but just a geometrical ratio or even just implicit.

1.1 Ancient estimations

1.1.1 Egypt

In one of the oldest mathematical text, the Rhind papyrus (from the name of the
Egyptologist Henry Rhind who purchased this document in 1858 at Luxor), the
scribe Ahmes copied, around 1650 B.C.E., eighty-five mathematical problems.
Among those is given a rule, the problem 48, to find the area of a circular field of
diameter 9: take away 1/9 of the diameter and take the square of the remainder.
In modern notation, it becomes
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(A is the area of the field and d it’s diameter): so if we use the formula A =
7d? /4, comes the following approximation
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This accuracy is astonishing for such ancient time. See [4] for a possible
justification of this value.
1.1.2 Babylon

On a Babylonian cuneiform tablet from Susa, about 2000 B.C.E., and discovered
in 1936, the ratio of the perimeter of the circle to its diameter was founded to
be
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and this estimation is one of the oldest we know.

1.2 Archimedes’ method

The famous treatise On the measurement of the Clircle from the Greek mathe-
matician and engineer Archimedes of Syracuse (287-212 B.C.E.) is a major step



Figure 1: Archimedes’s hexagons

in the knowledge of the circle properties. Among those are given the following
numerical bounds for 7

3+ 0 Loyl 2
71 T 77

3.140845 < m < 3.142857,

and, that is a novelty, it’s the first algorithm which allows, in theory, to compute
as many digits of 7 as required.

The proof uses a recursive algorithm starting with two regular hexagons (see
figure (1)), one is circumscribed and the other is inscribed. Archimedes then
subdivides both polygons by 2, so the number of sides of the polygons is 6.2"
(respectively 6,12,24,48,96 sides in his computations). The perimeters of the
last polygons gives the announced bounds.

In modern notations this gives, for the circumscribed polygons, the following
recursive sequence (where u,, is half the length of the side of the polygon and
vy, the distance from a vertex of the polygon to the center of the circle)
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starting with the regular hexagon for which: ug = 1/\/3, vy = 2/\/§7 o = 2v/3.
We may observe that Archimedes needed to compute square roots to achieve
his computation, and in particular he used a good approximation of /3 ~



265/153 (this value is one of the partial quotients of the continued fraction of
\/3) The upper bound founded by Archimedes is given with n = 4.
Now we observe the value of the first iterates of this sequence:

To = 3.(46410161513...)
™ = 3.(21539030917...)
T = 3.1(5965994209...)
75 = 3.14(608621513...)
7 = 3.14(271459964...)
mo = 3.141592(92738...)
me = 3.141592653(65...)

The same kind of iteration may be written for the inscribed polygons. Archimedes
method is the first known algorithm, in theory, to compute 7 at a desired accu-
racy.

For example, w1 is a nine digits approximation and it is the perimeter
of a polygon of 393216 sides. This approximation was given much later than
Archimedes by Frangois Viete (1540-1603) after a long calculation. He gave the
bounds [9]:

3.1415926535 < m < 3.1415926537.

1.2.1 Trigonometric formulation

Using trigonometric functions (unknown to Archimedes), it’s easy to show that
the perimeter of the circumscribed polygon with n sides on a circle of radius r
is given by
™
L, = 2nrtan (7) ,
n

and the perimeter of the inscribed polygon is
l,, = 2nrsin (E> .
n
It follows the bounds for m
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and, for example, with n = 6 (hexagon)
3 <7< 2V3.

If we observe that, when n is large,
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this suggests to form (in order to eliminate the term in 1/n?)

%nsin (%) + %ntan (%) =1+0 (7114)

whose convergence is much faster than Archimedes’ method. This was noted
by a geometric mean, in 1621, by Willebrod Snellius (1580-1626) in his work
Cyclometricus. For example with the hexagons (n = 6), it becomes

2
T2+ §\/é = 3.1(547...),

and with the last polygons considered by Archimedes (n = 96)
™~ 3.141592(833...).

See [7] for other accelerations of this method.

1.3 Pfaff formulation

In 1800, Johann Friedrich Pfaff (1765-1825) gave a modern and analytical for-
mulation of the previous geometric iteration. Let a,, and b, be respectively the
length of the circumscribed and inscribed regular polygon with 6.2" sides, then
starting with ap = 2v/3,bo = 3 and

2a,b,

Gn + by,

bn+1 = v an+1bn
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we have

by < bpy1 < apy1 < ap

© = lim a, = lim b,
n—oo n—oo

so that 7 is the common limit of the two sequences (an,b,), and the error is
od4m).
If we set a, = 1/u,, and B, = 1/v, the iteration becomes (starting with

ag=1/(2V3),80 = 1/3)

an + B,
2

5n+1 = VvV an+16n

Ap41

and

— = lim «a, = lim gG,.

T n—o00 n—oo
It’s interesting to note that this formulation is not very far from the AGM
iteration which is one of the recent and very efficient methods used to compute
many digits of .



1.4

Record of computation during the geometric period

Here are some other approximations computed by various mathematicians and
mostly by mean of polygons:

150 : Claudius Ptolemy (c. 85-165, Egypt) published 3.141666... in his
Almagest (an astronomical treatise), the value was given in sexagesimal
fractions 3 + 8/60 + 30/602.

263 : Liu Hui (China) gave 3927/1250 = 3.1416 with a polygon of 3072
sides [6].

4807 : Zu Chongzhi (429-500, China) determined 355/113 and also the
very impressive bounds 3.1415926 < 7 < 3.1415927 probably by Liu’s
method [6].

499 : Aryabhata (c. 476-550, India) gave 3.1416 maybe by mean of a
polygon of 384 sides. In fact, in rule 10 of the Aryabhatiya we are told:
add four to one hundred, multiply by eight and then add sixty-two thou-
sand. The result is approrimately the circumference of a circle of diameter
twenty thousand.

830 : AUKhwarizmi (c. 780-850, Persia): 22/7,4/10 and 62832/20000.
The term algorithm came from his name.

1220 : Leonardo of Pisa (1180-1240, Ttaly): 3.141818. He is better known
as Fibonacci.

1424 : Al-Kashi (c. 1380-1429, Samarkand): 14 digits with a polygon of
6.227sides in his Treatise on the Circumference.

1579 : Francois Viete (1540-1603, France): 9 digits with a polygon of
393216 sides.

1593 : Adrianus Romanus (1561-1615, Netherlands): 15 digits with a
polygon of 23° sides.

1596 : Ludolph van Ceulen (1540-1610, Germany): 20 digits with a poly-
gon of 60.233 sides.

1609 : Ludolph van Ceulen: 35 digits with a polygon of 262 sides. He
spent a considerable part of his life with such computations. 7 was often
known as the Ludolphine Number in Germany and his digits are engraved
on his tombstone.

1621 : Willebrod Snellius (1580-1626, Netherlands): 34 digits with a poly-
gon of only 23Y sides thanks to an acceleration of Archimedes’ method.

A very complete outline of the history of 7 is given in [8] and a more modern
one are in [2] and [3].
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