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Elementary notes

Assume a circle of unit radius, that is, of area π.

1. A square circumscribed, that is, tightly drawn outside the circle so that the middle of each
side touch the circle, will have side length 2, and therefore area 4.

2. A square inscribed, that is, tightly drawn inside the circle so that its four corners touch the
circle, has area 2. This can be seen by adjusting the inscribed square to the circumscribed
square so that the inscribed square is the adjoining of the midpoints of the circumscribed
square’s edges. Consider the outside square as a piece of paper. The inside square is realized
by folding the outside square’s four corners to the middle. This means that the area of the
outside square is enough to cover the inside square twice. From area 2, we conclude the inside
square has side length

√
2.

3. An inscribed regular octagon is realized from an inscribed square by pushing out from the
mid-point of each side to touch the circle. This adds to the area of the square 4 triangles,
of base the square’s width,

√
2. The height of the triangle is calculated by drawing a radial

line from the center of the circle to the new point of contact. The height is the length of this
radial line, 1, minus the distance to the triangle base, which is half the width of the square,√

2/2. The area of one triangle is therefore,

(1/2)
√

2(1−
√

2/2) = (1/2)(
√

2− 1)

and of all four triangles, plus the square’s area of 2,

4(1/2)(
√

2− 1) + 2 = 2
√

2− 2 + 2 = 2
√

2.

4. A circumscribed regular octagon is realized from a circumscribed square by cutting off four
triangles from the points of the square. Drawing a radial line from the center of the circle to
the corner of the outside square, the height of a cut triangle is the length of this line minus
the distance to where the line cuts the circle. The length of this line is one half the diagonal
of a 2 by 2 square,

√
2, and the length to the circle is 1, so the triangle’s height is

√
2 − 1.
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To calculate the base, one must recognize that this triangle has two equal angles, and hence
these angles are 45 degrees. The radial line bisects the 90 degree angle of the square, making
a 45 degree angle, hence the height cuts the triangle into two smaller isoceles triangles. This
gives that the base is twice the height, 2(

√
2− 1). The area of one triangle is therefore,

(1/2)(
√

2− 1)2(
√

2− 1) = 2− 2
√

2 + 1 = 3− 2
√

2

and subtracting four such triangles from the original area of 4,

4− 4(3− 2
√

2) = 4− 12 + 8
√

2 = 8
√

2− 8 = 8(
√

2− 1).

This completes the heavy math for Archimedes Dream’s parts 1 and 2.

We can continue with continued fraction expansions of
√

2 to get bounds as rational numbers, I
would not like to use decimal approximations since this is not beautiful.

Further explorations

How so we continue from 8 to 16, 16 to 32, and so on, to regular 2k-gon’s, circumscribed and
inscribed, which give an infinite sequence of ever improving upper and lower bounds to pi? To
this end I would like to quickly jot down the following observations and proofs, before I throw out
the scrap paper. I acknowledge G. M. Phillips, Archimedes the numerical analyst, Amer. Math.
Monthly, 88(3), March 1981, reprinted in Pi: A source book, Lennart Berggren, Jonathan Borwein
and Peter Borwein, Springer 1997.

Let An by the area of a regular circumscribed n-gon, an the same for the inscribed n-gon, Pn be
the semi-perimeter of a regular circumscribed n-gon, and pn the same for the inscribed n-gon.

Lemma 1 A regular n-gon circumscribed around a unit circle has area equal to its semi-perimeter,
Pn = An.

Proof: Consider a single triangular sector of the circumscribed n-gon. It has height 1 and base x.
Therefore both the area and the semi-perimeter are nx/2.

Lemma 2 A regular n-gon inscribed in a unit circle has semi-permeter equal to the area of a
regular inscribed 2n-gon, pn = a2n.

Proof: Consider a single triangular sector of the inscribed n-gon. It has height 1 and base x.
Therefore the semi-permeter is pn = nx/2. Consider the two triangular sectors of the 2n-gon which
fit neatly inside this one sector of the n-gon. They are two triangles back to back, of common base
1 and each of height x/2. This gives area a2n = nx/2 = pn.

I consider this very interesting. Using trigonometric functions, we can quickly get formulae for an

and such, and show the simple relationships between these quantities used by Archimedes.
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Lemma 3 an = n sin(π/n) cos(π/n).

Proof: Consider a single triangular sector of the inscribed n-gon, and bisect with a radial line from
the circle’s center. This forms two right triangles with hypotenuse 1 and angle is π/n, so sin(π/n)
and cos(π/n) are the height and base, respectively. Add up the area of these 2n triangles.

Lemma 4 An = n tan(π/n).

Proof: Consider a single triangular sector of the circumscribed n-gon, and bisect with a radial line
from the circle’s center. This forms two right triangles of base 1 and angle π/n. Hence tan(π/n) is
the triangle’s height. Add up the area of these 2n triangles.

Lemma 5 The area of an regular inscribed 2n-gon is the geometric mean of the areas of regular
inscribed and circumscribed n-gons, a2n =

√
anAn.

Proof: Verify the identity,√
anAn =

√
n sin(π/n) cos(π/n)n tan(π/n) = n sin(π/n).

Now apply the double angle formula,

n sin(2π/(2n)) = n sin(π/(2n)) cos(π/(2n)) = a2n.

Lemma 6 The semi-perimeter of a regular circumscribed 2n-gon is half the harmonic mean of the
semi-perimeters of regular inscribed and circumscrbied n-gons,

1/P2n = (1/2)(1/pn + 1/Pn).

The same is true of perimeters.

Proof: Given the relationships between semi-perimeters and areas, we show,

1/A2n = (1/2)(1/a2n + 1/An).

Using a form of the half-angle formula for tangent,

tan θ = ± sin(2θ)/(1 + cos(2θ))

we have,

1/A2n =
1

2n tan(π/(2n))
= ±

(
1

2n sin(π/n)
+

1
2n tan(π/n)

)
= (1/2)(1/a2n + 1/An).

To get the statement for perimeters, multiply both sides by 1/2 and rename variables.

As stated, there are some very nice symmetries in these formulas, adding to the curious interrela-
tionships of these quantities. Other forms of the these equations are:
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Corollary 1 1/A2n = (1/2)(1/a2n + 1/An) and p2n =
√

P2npn.

As a note, if one attempts to construct relationships working with the other version of the half-angle
formula,

tan θ = ±(1− cos 2θ)/ sin 2θ

This gives,

Lemma 7 A2n/(2n2) = 1/An − 1/a2n.

Note that this formula is numerically unstable due to a subtraction and then a large amplification
of the truncated result. Not only did Archimedes derive his formulas without aid of a developed
theory of trigonometry, but also he found numerically well-conditioned recurrence relations and
avoided the badly behaved relations.

Here are some values for an and An,

n an An an/An

4 2 4 1/2
8 2

√
2 8(

√
2− 1) (2 +

√
2)/4

16 4
√

2−
√

2 8
√

2(2−
√

2)/(2 +
√

2 +
√

2)

Figure 1: Values for n = 2i

There is another approach to recurrence, which might be easier for hand calculation. Here is a
simple consequence of our other formulas.

Corollary 2 an/An = cos2 π/n.

Lemma 8

a2n

A2n
=

√
an/An + 1

2

Proof: Follows from half-angle formula,

cos2(θ/2) = (cos θ + 1)/2

and the previous corollary.

The result of this formula is the following sequence for an/An:

2
4
,
2 +

√
2

4
,
2 +

√
2 +

√
2

4
,
2 +

√
2 +

√
2 +

√
2

4
, . . .
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Finally, it is easy enough to derive,
a2n = an

√
An/an

giving the sequence for an,

2,
4√
2
,

8
√

2
√

2 +
√

2
,

16
√

2
√

2 +
√

2
√

2 +
√

2 +
√

2
, . . .

Note that now we can continue with continued fractions or with a geometric construction (straight-
edge and compass) to construct convergents to π.

Beging with the special property of a hexagon, that it is six equalateral triangles, and if inscribed in
a unit circle then the side length is one, we have the follow tabled derived from our recurrences or by
direct reasoning. The direct reasoning begins with the hexagon and, to get an inscribed triangle,
connects alternate vertices. The side length is twice the height of a side length one equilateral
triangle. Further, the circumscribed triangle is seen to be equilateral with side length twice that of
the inscribed triangle. To go the 12-gon, subdivide the 6-sector to get two triangles of height one
and base 1/2. Immediately it follows that the area is one.

n an An pn Pn

3 3
√

3/4 3
√

3 3
√

3/2 3
√

3
6 3

√
3/2 3

12 3

Figure 2: Values for n = 3(2i)
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