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Abstract

The Russian Option is a two-party contract which creates a liability for the option seller

to pay the option buyer an amount equal to the maximum price attained by a security over

a specific time period, discounted for the option’s age. The Russian option was proposed by

Shepp and Shiryaev (1993). Kramkov and Shiryaev (1994) first examined the option in the

binomial model. We improve upon their results and give a near-optimal algorithm for price

determination.
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1 Introduction

The Russian Option is a two-party contract which creates a liability for the option seller to pay

the option buyer an amount equal to the maximum price attained by a security over a specific

time period, discounted for the option’s age. For an N + 1 step time period 0, 1, 2, . . . , N , the

option seller’s liability at time step n, 0 ≤ n ≤ N , is,

L(n) = βn max
0≤t≤n

st

where st is the security price at time t and β is the discount factor. In this paper we consider

the value of this option under a standard binomial model of security prices, and give efficient

algorithms for value calculation.
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The Russian option was proposed by Shepp and Shiryaev (1993). At this time it is not

traded. Their work gives the optimal expected present value and the optimal exercise strategy

under the Black-Scholes market model. Kramkov and Shiryaev (1994) first examined the option

in the binomial model of Cox, Rubinstein and Ross (1979). They present an O(N2) algorithm

for calculating option price at the first time step.

This work gives an O(N) algorithm determining the option price at all time steps as well as

optimal execution and the execution boundary. We also present an O(N2) algorithm for general

determination of option value given option structure and security price history up to time n,

0 ≤ n ≤ N .

2 Definitions and basic facts

The binomial model, introduced by Cox, Ross and Rubinstein (1979), assumes discrete price

announcements at equal time intervals with each price related to the previous price by either

an up-step or down-step, according to a random process. For si the security price at time i, the

price process is given by,

si+1 = uεisi, εi ∈ { 1,−1 },

with u > 1. The probability of an up-step, εi = 1, is p, independent of i. The probability of a

down-step is q = 1− p. The existence of a risk-free bond is also assumed,

bi+1 = (1 + r)bi,

where r > 0 is the bond’s interest rate.

The rational markets theory stipulates that the price sequence si is a martingale,

E(si+1 | si) = (1 + r)E(si).

This determines the martingale measure for the random process,

p =
u(1 + r)− 1

u2 − 1
.

Note that this implies u ≥ (1 + r), that is, that the risky security must return at least the

risk-free rate in order that the martingale measure exist.

The option value and liability depends only on the current time step n, the current security

price sn, and the maximum value s∗n attained by the security in the time period 0 up to n. The

current and maximum price can be expressed as integers j and k such that sn = ujs0, s
∗
n = uks0.

Without loss of generality we assume s0 = 1. Hence the process can be modeled as a graph
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V whose nodes are 3-tuples (n, j, k), indicating time step n, current price uj and maximum

price uk, and whose edges indicate up-steps and down-steps labeled with probabilities p and q,

respectively.

(n, j + 1,max(k, j + 1))
p

↗
(n, j, k)

q

↘
(n, j − 1, k)

Figure 1: Example subgraph of V .

The liability at any node (n, j, k) ∈ V is L(n, j, k) = βnuk. At each time step but the last,

the option’s owner can either exercise and receive the liability or hold. The expected value of

the option at node (n, j, k) is therefore given by the backwards recurrence,

E(n, j, k) = max
(
βnuk, α(pE(n + 1, j + 1,max(k, j + 1)) + qE(n + 1, j − 1, k))

)
where α = 1/(1 + r) is the discount to present value for one time step. At the last time step,

the owner must exercise. This gives the boundary condition E(N, j, k) = βNuk, for all j and k.

This recurrence defines values only for those nodes reachable in the graph V starting from

node (0, 0, 0). These are called accessible nodes. Inaccessible nodes are of no importance and

their values are ignored.

Lemma 1 (Node accessibility) The nodes (n, j, k) is accessible if and only if,

0 ≤ k ≤ n ≤ N, −n ≤ j ≤ k, and j + n = 2(k + i)

for some non-negative integer i.

Proof: Let eu be the number of up-steps and ed be the number of down steps,

n = eu + ed, j = eu − ed, therefore n + j = 2eu = 2(k + i).

The integer i is the number of up-steps which do not contribute to attaining the maximum k.

Given appropriate n, j, k and i, access the node (n, j, k) by first taking k up-steps, then n−k− i

down-steps, and finally i up-steps. Since n+ j ≤ 2n, then k + i ≤ n. Therefore the construction

is well defined.

We assume that β < 1, else the incentive to hold the option is too strong. The recurrence

insures that for accessible nodes, E(n, j, k) ≥ βnuk. If it is not true that for accessible nodes
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this inequality is strict when j = k, then the incentive to hold the option would be too weak.

Assuming the contrary,

βnuk < E(n, k, k)

= α(pE(n + 1, k + 1, k + 1) + qE(n + 1, k − 1, k))

< α(pβn+1uk+1 + qβn+1uk).

Using the martingale measure for p, this reduces to the following constraints on β,

(1 + u)(1 + r)
u(2 + r)

< β < 1

We have thus proved the following lemma,

Lemma 2 (Option viability) Let (1 + u)(1 + r)/(u(2 + r)) < β < 1, p be the martingale

measure, and (n, k.k) be an accessible node. Then βnuk < E(n, k, k) for n < N .

For the remainder of this paper, we will assume that β is as required for option viability and p

is the martingale measure.

Lemma 3 (Option monotonicity) Assuming nodes are accessible, E(n, j, k) ≤ E(n, j′, k) if

j ≤ j′ and E(n, j, k) ≤ E(n, j, k′) if k ≤ k′.

Proof: Use induction starting at n = N and working towards smaller n. Note that for

(n, j, k) and (n, j′, k) to both be accessible, j′ − j must be even.

3 Analysis of the Russian option

We first prove some technical theorems and they apply them to determine the exercise boundary.

Finally, an efficient algorithm is given to determine the boundary.

3.1 Induction theorems concerning option value

Theorem 1 (First induction theorem) Suppose (n, j, k) is accessible and l is an integer

satisfying 0 ≤ k+2l ≤ n. Then (n, j +2l, k+2l) is accessible and u2lE(n, j, k) = E(n, j +2l, k+

2l).

Proof: We begin by proving that if (n, j, k) is accessible and l is an integer 0 ≤ k +2l ≤ n then

(n, j + 2l, k + 2l) is accessible.

Reduce to the case l = 1. Hence k + 2 ≤ n. Since (n, j, k) is accessible, 0 ≤ k ≤ n ≤

N, −n ≤ j ≤ k and n + j = 2(k + i) for a non-negative integer i. In fact, because k + 2 ≤ n, i
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must be positive. Therefore 0 ≤ k+2 ≤ n ≤ N, −n ≤ j +2 ≤ k+2 and n+ j +2 = 2(k+2+ i′)

where i′ = i− 1 ≥ 0.

We now prove the equality. Reduce to the case l = 1 and proceed by induction on n. For

n = N , the result is immediate, since E(N, j, k) = βNuk.

Assume the theorem for n + 1. We first consider the case E(n, k, k). The option viability

lemma allows us to insert and remove the max() operation in the following calculation,

u2E(n, k, k) = u2 max
(
βnuk, α(pE(n + 1, k + 1, k + 1) + qE(n + 1, k − 1, k))

)
= u2

(
α(pE(n + 1, k + 1, k + 1) + qE(n + 1, k − 1, k)

)
= α

(
pE(n + 1, k + 3, k + 3) + qE(n + 1, k + 1, k + 2)

)
= max

(
βnuk+2, α(pE(n + 1, k + 3, k + 3) + qE(n + 1, k + 1, k + 3))

)
= E(n, k + 2, k + 2).

We consider the final case, E(n, j, k) where j < k,

u2E(n, j, k) = u2 max
(
βnuk, α(pE(n + 1, j + 1,max(k, j + 1)) + qE(n + 1, j − 1, k))

)
= u2 max

(
βnuk, α(pE(n + 1, j + 1, k) + qE(n + 1, j − 1, k))

)
= max

(
βnuk+2, α(pE(n + 1, j + 3, k + 2) + qE(n + 1, j + 1, k + 2))

)
= max

(
βnuk+2, α(pE(n + 1, j + 3,max(k + 2, j + 3)) + qE(n + 1, j + 1, k + 2))

)
= E(n, j + 2, k + 2).

This completes the induction and the proof.

Theorem 2 (Second induction theorem) Suppose (n, j, k) is accessible and l is an integer

satisfying (N − n) ≥ l ≥ 0. Then (n + l, j + l, k + l) is accessible and (βu)lE(n, j, k) ≥

E(n + l, j + l, k + l).

Proof: We begin by proving that if (n, j, k) is accessible and l is an integer 0 ≤ l ≤ N −n then

(n + l, j + l, k + l) is accessible.

Reduce to the case l = 1. Hence n + 1 ≤ N . Since (n, j, k) is accessible, 0 ≤ k ≤ n ≤

N, −n ≤ j ≤ k and n+ j = 2(k + i) for a non-negative integer i. Therefore 0 ≤ k +1 ≤ n+1 ≤

N, −n ≤ j + 1 ≤ k + 1 and n + 1 + j + 2 = 2(k + 1 + i).

We now prove the inequality. We reduce to the case l = 1 and proceed by induction on n.

The similarity with the proceeding proof allows us to omit some steps.

For n = N − 1,

βuE(N − 1, j, k) = βu max
(
βN−1uk, α(pE(N, j + 1,max(k, j + 1)) + qE(N, j − 1, k))

)
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≥ βu(βN−1uk)

= E(N, j + 1, k + 1).

Assume the theorem for n + 1. We first consider the case E(n, k, k),

βuE(n, k, k) = βu max
(
βnuk, α(pE(n + 1, k + 1, k + 1) + qE(n + 1, k − 1, k))

)
≥ α

(
pE(n + 2, k + 2, k + 2) + qE(n + 2, k, k + 1)

)
= E(n + 1, k + 1, k + 1).

We consider the final case, E(n, j, k) where j < k,

βuE(n, j, k) = βu max
(
βnuk, α(pE(n + 1, j + 1,max(k, j + 1)) + qE(n + 1, j − 1, k))

)
≥ max

(
βn+1uk+1, α(pE(n + 2, j + 2, k + 1) + qE(n + 2, j, k + 1))

)
= E(n + 1, j + 1, k + 1).

This completes the induction and the proof.

Theorem 3 (Third induction theorem) Suppose (n, j, k) is an accessible node with k > 0.

Then (n, j − 2, k − 1) is accessible and uE(n, j − 2, k − 1) ≤ E(n, j, k).

Proof: We begin by proving that if (n, j, k) is accessible and k > 0 then (n, j − 2, k − 1) is

accessible.

Since (n, j, k) is accessible, 0 ≤ k ≤ n ≤ N, −n ≤ j ≤ k and n+j = 2(k+i) for a non-negative

integer i. Since k > 0 then n + j − 2 ≥ 0. Therefore 0 ≤ k − 1 ≤ n ≤ N, −n ≤ j − 2 ≤ k − 1

and n + j − 2 = 2(k − 1 + i).

We now prove the inequality. The proof is by induction on n. For n = N the result is

immediate.

Assume the theorem for n + 1. We first consider the case E(n, j, k) where j < k,

uE(n, j − 2, k − 1) = u max
(
βnuk−1, α(pE(n + 1, j − 1, k − 1) + qE(n + 1, j − 3, k − 1))

)
≤ max

(
βnuk, α(pE(n + 1, j + 1, k) + qE(n + 1, j − 1, k))

)
= E(n, j, k).

For j = k,

uE(n, k − 2, k − 1) = u max
(
βnuk−1, α(pE(n + 1, k − 1, k − 1) + qE(n + 1, k − 3, k − 1))

)
≤ max

(
βnuk, α(puE(n + 1, k − 1, k − 1) + qE(n + 1, k − 1, k))

)
,
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using the first induction theorem,

uE(n + 1, k − 1, k − 1) < u2E(n + 1, k − 1, k − 1) = E(n + 1, k + 1, k + 1),

so,

uE(n, k − 2, k − 1) ≤ max
(
βnuk, α(pE(n + 1, k + 1, k + 1) + qE(n + 1, k − 1, k))

)
= E(n, k, k).

This completes the induction and the proof.

3.2 Determining the exercise boundary

In this section we show that the value of a russian option obtains its liability value once the

difference between the peak security price and current security price, k − j, differ by at least

an integer hn, this integer depending on n. This integer is called the exercise boundary. The

examination of the exercise boundary leads to an optimal strategy for exercise of russian options.

Lemma 4 Suppose (n, j, k) and (n, j′, k′) are accessible and k− j ≤ k′ − j′. Then E(n, j, k) =

βnuk implies E(n, j′, k′) = βnuk′
.

Proof: Various cases are argued. First, assume k − j = k′ − j′. Since j and j′ must agree with

n mod 2, 2|(j′ − j). The result follows by using the first induction theorem with l = (j − j′)/2.

Now assume k− j < k′− j′. If 2|(k′− k) use the first induction theorem with l = (k′− k)/2,

u2lE(n, j, k) = E(n, j + 2l, k + 2l) = E(n, j + 2l, k′).

Note k − j = k′ − (j + 2l) < k′ − j′ so j′ < j + 2l. Using option monotonicity,

E(n, j′, k′) ≤ E(n, j + 2l, k′) = βnuk+2l = βnuk′
.

The definition of E(n, j′, k′) implies a lower bound βnuk′ ≤ E(n, j′, k′). Hence equality holds.

Now assume k − j < k′ − j′ and 2|(k′ − k + 1). If k > 0 apply the third induction theorem,

then the first induction theorem with l = (k′ − k + 1)/2,

u2lE(n, j, k) ≥ u2luE(n, j − 2, k − 1) = uE(n, j − 2 + 2l, k − 1 + 2l) = uE(n, j − 2 + 2l, k′).
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Note k − j = (k′ − 2l + 1)− j < k′ − j′ so j′ ≤ j − 2 + 2l. Using option monotonicity,

E(n, j′, k′) ≤ E(n, j − 2 + 2l, k′) ≤ u2l−1E(n, j, k) = βnuk+2l−1 = βnuk′
.

Matching the lower bound on E(n, j′, k′). Hence equality holds.

If k = 0 we must assume n ≥ 2. For the remaining cases, n = 0, 1 the theorem is trivial. We

apply the first induction theorem with l = 1 and the third induction theorem,

u2E(n, j, 0) = E(n, j + 2, 2) ≥ uE(n, j, 1).

We apply the first induction theorem with l = (k′−1)/2 and, since k−j = −j < k′−j′ = 2l+1−j′

implies j′ − 2l ≤ j, we can apply option monotonicity,

E(n, j′, k′) = E(n, j′, 2l + 1) = u2lE(n, j′ − 2l, 1) ≤ u2lE(n, j, 1) ≤ u2l+1E(n, j, 0) = βnuk′
,

Matching the lower bound on E(n, j′, k′). Hence equality holds.

This concludes consideration of all cases.

Definition 1 The exercise boundary at n is the least integer hn such that E(n, k − hn, k)

obtains its liability value βnuk, if such an integer exists. The execution boundary is the maximal

sequence of execution boundaries at n starting from some no and continuing in consecutive n

up to N .

The consequence of the previous lemma is that if the execution boundary at n exists, then

E(n, j, k) = βnuk whenever k − j ≥ hn.

Lemma 5 If hn exists then hn′ exists for all n ≤ n′ ≤ N and hn′ ≤ hn.

Proof: Directly from the second induction theorem.

Lemma 6 If hn exists and n < N , then hn+1 exists and 0 ≤ hn − hn+1 ≤ 1.

Proof: For hn = 1 or 0 there is nothing to show. We assume hn ≥ 2.

Since k − j ≥ 2 and (n, j, k) is accessible, so are (n, j, k − 1) and (n + 1, j + 1, k − 1). It is

sufficient to show that if E(n, j, k) = βnuk and E(n, j, k−1) > βnuk−1 then E(n+1, j+1, k−1) >

βn+1uj−1.

Arguing by contradiction, assume E(n+1, j+1, k−1) = βn+1uk−1. By option monotonicity,

E(n + 1, j − 1, k − 1) = E(n + 1, j + 1, k − 1) and,

E(n, j, k − 1) = max
(
βnuk−1, α(pE(n + 1, j + 1, k − 1) + qE(n + 1, j − 1, k − 1))

)
= α(pE(n + 1, j + 1, k − 1) + qE(n + 1, j − 1, k − 1))
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= αβn+1uk−1

< βnuk−1,

where the last inequality is justified by β < 1 ≤ 1 + r = α−1. The contradiction completes the

proof.

Theorem 4 (Execution boundary) Let,

no = min{n |E(n, j, k) = βnuk for some accessible (n, j, k) }.

The set is non-empty hence the execution boundary exists and is,

hno
≥ hno+1 ≥ . . . ≥ hN−1 = 1 > hN = 0

where 0 ≤ hn − hn+1 ≤ 1.

Proof: Since E(N, j, k) = βNuk the set is non-empty. It is easy to show from the definition of

E(N − 1, k− 1, k) and the inequality αβ < 1 that E(N − 1, k− 1, k) = βN−1uk. Hence hN−1 is

at least, and at most, 1.

3.3 Efficient algorithms for optimal exercise

Lemma 7 (Canonical node) Let π(i, j) equal 0 or 1 depending on whether i and j agree

modulo 2 or not, respectively. For every accessible node (n, j, k) there is an accessible node

κ(n, j, k), said to be canonical, defined by,

κ(n, j, k) = (n, π(n, δ)− δ, π(n, δ)) where δ = k − j.

Furthermore, E(n, j, k)/E(κ(n, j, k)) = uk−π(n,δ), where k − π(n, δ) is an even, non-negative

integer. Conversely, for each value of δ, 0 ≤ δ ≤ n, there is a canonical node.

Proof: Either δ or δ − 1 agrees with n modulo 2, so at most one of (n,−δ, 0) and (n, 1 − δ, 1)

can be accessible. Rearranging one of the accessibility conditions, δ = n − k − 2i for some

non-negative integer i. Setting i = bδ/2c and k = π(n, δ) gives any δ provided 0 ≤ δ ≤ n.

Starting from an arbitrary accessible node (n, j, k), use the first induction theorem to shift

j and k down by an even integer l such that k − l is either 0 or 1. Since δ = k − j is invariant,

k − l = π(n, δ), so l = k − π(n, δ). This proves the lemma.

The practical consequence of this lemma is that for the purpose of tabulating values of E

we can arrange nodes in a triangular table table indexed by n, 0 ≤ n ≤ N , and δ, 0 ≤ δ ≤ n.
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getValue(n, j, k)
delta := k - j ;
if n >= n_o and delta >= h[n] then return beta^n * u^k ;
l = k - pi(n,delta) ;
return u^l * E[n,delta] ;

initValues(N)
h[N] = 0 ;
n_o = N ;
for n = N-1 downto 0

for delta = 0 to n
k = pi(n,delta) ;
j = k - delta ;
e = alpha * ( p * getValue(n+1,j+1,max(j+1,k))

+ q * getValue(n+1,j-1,k) ) ;
if e < ( beta^n * u^k ) then

h[n] = delta ;
n_o = n ;
break ; // next n

E[n,delta] = e ;
// end for delta

// end for n

Figure 2: Dynamic programming algorithm for E(n, j, k).

As an improvement, the table can be truncated by returning a calculated value for E whenever

δ is greater than or equal to the exercise boundary.

Theorem 5 The algorithm given (see Figure 2) is an O(N2) dynamic programming algorithm

determining E(n, j, k) for all accessible (n, j, k). Since there are Ω(N2) nodes to determine, the

algorithm is optimal. The algorithm gives the optimal exercise strategy. It is possible to give

only the optimal exercise strategy using this algorithm in O(N) time.

Proof: The algorithm’s correctness and efficiency are easy to show.

When the option reaches its liability value, that is, it touches the exercise boundary, exercise

the option. Since by the maximum, the option is worth more exercised than held.

Only the option boundary is needed to decide the optimal exercise strategy. In an appendix

we show that hno
is independent of N , and only a function of the market structure: α, β and

u. Hence a variation of the algorithm which terminates once no has been found runs in time

O(N).
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4 Conclusions

We have given a near optimal algorithm for the pricing of Russian options under the binomial

model. We have also given some insight into the price process which these options follow.

For such options to be traded, a risk-neutral hedging strategy must be found, and this is an

interesting area for future research.

5 Appendix: no is a function of β, α and u.

Kramkov and Shiryaev (1994) studied the Russian option in the binomial model using a different

approach, which we follow for this result.

Let Sn = S0u
ε1+...+εn be the option price, where εi ∈ {+1,−1 } is a random variable. Let

Yτ = max0≤t≤τ{St } be the option pay-out. Define Xn = Yn/Sn. Note that the range of Xn is

in the set H = { 1, u, u2, . . . , un }. For all x ∈ H let,

Vn(x) = max{E∗x(βτXτ ) | 0 ≤ τ ≤ n }

for n = 0, . . . , N and E∗x(βτXτ ) is the conditional expectation of βτXτ with respect the the

probability measure P ∗ given X0 = x. Note Xn+1 = max{ 1, Xn/uεn+1 } for n = 0, . . . , N − 1.

Then the optimal stopping time τN for the buyer of the option at time 0 is,

τN = min{n | 0 ≤ n ≤ N, VN−n(Xn) = Xn }.

Kramkov and Shiryaev (1994) gave the following algorithm to compute Vn(x). For all n =

0, 1, . . . and x ∈ H, for all functions f defined on H,

Qβf(x) = max{ f(x), β
(
p∗f(max{1, x/u}) + (1− p∗)f(xu)

)
}.

Then Vn(x) = Qn
βg(x) where g(x) = x and Qn

βg(x) is the n-th degree operator Qβ applied to

the function g(x).

For all x ∈ H, let V (x) = limn→∞ Vn(x). It is easy to see that,

V (x) = sup{E∗x(βτXτ ) | 0 ≤ τ < ∞}

Kramkov and Shiryaev (1994) show that there exists an x0 = uk0 such that V (x) = x for all

x ∈ H such that x ≥ x0. This implies that E(n,−k0, 0) = βn for all n ≥ k0. The value k0
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depends only on β, α and u, hence the length of the chain

1 = hN−1 ≤ hN−2 ≤ . . . ≤ hno ≤ k0

is likewise bounded.
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