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Abstract

The well-known Russian lookback option offers the buyer reduced regret in paying
the maximum price of the asset (discounted in time) at any execution time selected
by the buyer. In the continuous case an exact formula is known for the fair price
of the option when there is no limit on the expiration time (pertpetual case). In
the more realistic case when the expiration time is fixed at N, an exact formula is
impossible but we give an elegant algorithm to compute the fair price and the optimal
execution boundary in order N computations. This is possible only because we prove
that the optimal execution boundary must have a specific form which is exploited in
our algorithm. We also give a fast algorithm to compute the fair prices of the option
at all possible nodes in order N2 computations.
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As in [1], we consider a N -period binomial model of a security market, consisting
of two assets: a ”risk-free” savings account {Bn|0 ≤ n ≤ N} and a ”risky” security
{Sn|0 ≤ n ≤ N} whose price processes are given by the following recurrence relations:

Bn = (1 + r)Bn−1, 1 ≤ n ≤ N, B0 = 1,

Sn = (1 + ρ)Sn−1, 1 ≤ n ≤ N, S0 > 0,

where r > 0 is the risk free interest rate and 1+ρ = u or 1
u

for some constant u > 1+r.

By [6], a ”Russian option” (or a discounted look back option of American type) can
be viewed as a contract between two parties, a buyer and a seller. Specified as data
is the risky security price process {Sn|n = 0, 1, 2, ..., N}. If they make an agreement
at time n with price history {Si|i = 0, 1, 2, ..., n}, the buyer pays the seller an amount
Zn equal to the option fair price at time n with the price history {Si|i = 0, 1, 2, ..., n}.
The buyer then has the right to exercise his option at any time τ, where n ≤ τ ≤ N.
If the option is exercised at time τ, then the seller pays βτYτ to the buyer, where
Yτ = max{S0, S1, S2, ..., Sτ} is the maximum price of the risky security up to time τ
and β (0 < β ≤ 1) is the discounting factor agreed between the buyer and seller.

Without loss of generality, we can and do assume S0 = 1. Since Sn = uSn−1 or
Sn−1/u for all n = 1, 2, ..., N, Sn = uj and Yn = uk, where 0 ≤ k ≤ n, j ≤ k, and j =
2k−n + 2i for some non-negative integer i. For each price history {S0, S1, S2, ..., Sn},
there is a node (a triple) (n, j, k) associated with this price history, where Sn = uj

and Yn = uk. The option price at time n with price history {S0, S1, S2, ..., Sn} is a
function of n, j, k. Let E(n, j, k) denote the option price at node (n, j, k). For the
ease of presentation, we will call a node (n, j, k) accessible if 0 ≤ k ≤ n, j ≤ k, and
j = 2k− n + 2i for some non-negative integer i. It is easy to see that there are O(n2)
accessible nodes for each time n and there are O(N3) accessible nodes in total. If we
just use a backward induction procedure, it will take O(N3) computations to compute
all option prices at all accessible nodes since we need them to determine the optimal
execution boundary and the optimal execution time for the buyer. In this paper, we
prove some theorems showing that the optimal execution boundary for the buyer of a
Russian option is of a monotonic form and bounded, and the option fair price at time
0 depends only on the specific values on and below this optimal execution boundary.
By a backward induction procedure on these specific values, we can determine the
optimal execution boundary and the option price at time 0 in order N computations.
We can also compute the option prices at all O(N3) accessible nodes in order N2

computations. This is possible only because we can prove that for each time n, even
though there are O(n2) possible nodes, only O(n) option prices are relevant.
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If the buyer has not exercised his option before the expiration time N , then he
certainly should exercise his option at time N and receives βNuk, where SN = uj and
YN = uk. Therefore, E(N, j, k) = βNuk if (N, j, k) is accessible. For any time n < N,
if the buyer has not exercised his option before time n, then he will get βnuk if he
exercises his option now, where Sn = uj, Yn = uk, and (n, j, k) is accessible. If he
still does not want to exercise his option now, then the expected value of his option
at time n + 1 will be

pE(n + 1, j + 1, max(j + 1, k)) + (1− p)E(n + 1, j − 1, k),

where p = {u(1+r)−1}/{u2−1}. Hence the value of the expected value of his option
at time n is

α{pE(n + 1, j + 1, max(j + 1, k)) + (1− p)E(n + 1, j − 1, k)},

here α = (1 + r)−1. Therefore, for any accessible node (n, j, k),

E(n, j, k) =

max{βnuk, α{pE(n + 1, j + 1, max(j + 1, k)) + (1− p)E(n + 1, j − 1, k)}}.

E(N − 1, k, k) = βN−1uk if β ≤ {(u + 1)(1 + r)}/{(2 + r)u} and (N − 1, k, k)
is accessible. By mathematical induction we can show that E(n, j, k) = βnuk for all
accessible nodes (n, j, k), i.e., the buyer will either not buy the contract or will buy
the contract and then exercise his option right away. Therefore, we will assume in
this paper that {(u + 1)(1 + r)}/{(2 + r)u} < β ≤ 1.

The following lemmas are useful for identifying the optimal execution boundary
and the optimal execution time for the buyer. They are exploited in our algorithm
which requires only O(N) computations to compute the option price at time 0, the
optimal execution boundary, and the optimal execution time for the buyer. They
are also exploited in another algorithm which requires only O(N2) computations to
compute the option prices E(n, j, k) for all O(N3) accessible nodes. Lemmas 1 and 2
can be easily proved by mathematical induction. For the ease of reference, we include
them.

Lemma 1. For fixed n and k, E(n, j, k) ≤ E(n, j + 2, k) if (n, j, k) and (n, j + 2, k)
are accessible. Similarly, for fixed n and j, E(n, j, k) ≤ E(n, j, k + 1) if (n, j, k) and
(n, j, k + 1) are accessible.

Lemma 2. For all n = 0, 1, 2, ..., N − 1 and k = 0, 1, 2, ..., n, E(n, k, k) > βnuk if
(n, k, k) is accessible.
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Lemma 2 means that before the expiration time the buyer should never exercise
his option at a situation in which the current security price is equal to the maximum
security price up to now.

Lemma 3. For all n = 0, 1, 2, ..., N and k = 0, 1, 2, ..., n− 2, E(n, j + 2, k + 2) =
u2E(n, j, k) if (n, j, k, ) and (n, j + 2, k + 2) are accessible.

Proof: Suppose that n = N, j ≤ k, and k ≤ N − 2, then it is easy to see that
Lemma 3 holds. Assuming that Lemma 3 holds for n ≥ m + 1 and suppose that
n = m. Then, by Lemma 2,

u2E(m, k, k) = u2{α[pE(m + 1, k + 1, k + 1) + qE(m + 1, k − 1, k)]}

= α{pu2E(m + 1, k + 1, k + 1) + qu2E(m + 1, k − 1, k)}

= α{pE(m + 1, k + 3, k + 3) + qE(m + 1, k + 1, k + 2)} = E(m, k + 2, k + 2).

So Lemma 3 holds for n = m, k ≤ n−2, and j = k. Now suppose that n = m, k ≤ n−2,
and j < k, then

u2E(m, j, k) = u2max{βmuk, α[pE(m + 1, j + 1, k) + qE(m + 1, j − 1, k)]}

= max{βmuk+2, α[pu2E(m + 1, j + 1, k) + qu2E(m + 1, j − 1, k)]}

= max{βmuk+2, α[pE(m+1, j+3, k+2)+qE(m+1, j+1, k+2)]} = E(m, j+2, k+2).

By mathematical induction, Lemma 3 holds.

Lemma 4. For n = 1, 2, ..., N and k = 1, 2, ..., n, E(n, j, k) ≥ uE(n, j − 2, k − 1) if
(n, j, k) is accessible.

Proof: It is easy to check that Lemma 4 holds if n = N. Suppose that Lemma 4
holds for n = m + 1, m + 2, ..., N, k = 1, 2, ..., n, and accessible (n, j, k). Now suppose
that n = m, 1 ≤ k ≤ m, and (m, j, k) accessible. If j < k, then

uE(m, j−2, k−1) = u{max{βmuk−1, α[pE(m+1, j−1, k−1)+qE(m+1, j−3, k−1)]}}

= max{βmuk, α[puE(m + 1, j − 1, k − 1) + quE(m + 1, j − 3, k − 1)]}

≤ max{βmuk, α[pE(m + 1, j + 1, k) + qE(m + 1, j − 1, k)]} = E(m, j, k).

If j = k, then

uE(m, k−2, k−1) = u{max{βmuk−1, α[pE(m+1, k−1, k−1)+qE(m+1, k−3, k−1)]}}

= max{βmuk, α[puE(m + 1, k − 1, k − 1) + quE(m + 1, k − 3, k − 1)]}
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≤ max{βmuk, α[pu2E(m + 1, k − 1, k − 1) + quE(m + 1, k − 3, k − 1)]}

≤ max{βmuk, α[pE(m + 1, k + 1, k + 1) + qE(m + 1, k − 1, k)]} = E(m, k, k)

since u > 1, E(m+1, k−1, k−1) > 0, u2E(m+1, k−1, k−1) = E(m+1, k+1, k+1),
and uE(m + 1, k − 3, k − 1) ≤ E(m + 1, k − 1, k). Therefore, Lemma 4 holds for
n = m, k = 1, 2, ...,m, and (n, j, k) accessible. By mathematical induction, Lemma 4
holds.

Lemma 5. For n = 0, 1, 2, ..., N − 1, E(n + 1, j + 1, k + 1) ≤ βuE(n, j, k) if (n, j, k)
is accessible.

Proof: If n = N − 1, then

βuE(N − 1, j, k) ≥ βu(βN−1uk) = βNuk+1 = E(N, j + 1, k + 1).

Suppose that Lemma 5 holds for n = m + 1, m + 2, ..., N − 1, k = 0, 1, 2, ..., n, and
(n, j, k) accessible. Now suppose that n = m. If j = k, then by Lemma 2,

βuE(m, k, k) = βu{αpE(m + 1, k + 1, k + 1) + αqE(m + 1, k − 1, k)}

= αp[βuE(m + 1, k + 1, k + 1)] + αq[βuE(m + 1, k − 1, k)]

≥ αpE(m + 2, k + 2, k + 2) + αqE(m + 2, k, k + 1) = E(m + 1, k + 1, k + 1).

If j < k, then

βuE(m, j, k) = βumax{βmuk, α[pE(m + 1, j + 1, k) + qE(m + 1, j − 1, k)]}

= max{βm+1uk+1, α[pβuE(m + 1, j + 1, k) + qβuE(m + 1, j − 1, k)]}

≥ max{βm+1uk+1, α[pE(m+2, j+2, k+1)+qE(m+2, j, k+1)]} = E(m+1, j+1, k+1).

Therefore, Lemma 5 holds for n = m. By mathematical induction, Lemma 5 holds.

Theorem 1. Suppose that (n, j, k) and (n, j′, k′) are accessible. Then E(n, j, k) =
βnuk implies that E(n, j′, k′) = βnuk′ if k − j ≤ k′ − j′.

Proof: By Lemma 3, we can and do assume that k = 0 or 1 and k′ = 0 or 1. If k = k′

and k − j ≤ k′ − j′, then j′ ≤ j. By Lemma 1, E(n, j′, k′) = E(n, j′, k) ≤ E(n, j, k).
Therefore, Theorem 1 holds. If k = 1 and k′ = 0, then j′ ≤ j − 1. Since (n, j, 1)
and (n, j′, 0) are accessible, j = 2 − n + 2i for some non-negative integer i and
j′ = 0− n + 2i′ for some non-negative integer i′. Since j′ ≤ j − 1, 2i′ ≤ 1 + 2i. Since
i and i′ are non-negative integers, i′ ≤ i and j′ ≤ j − 2. By Lemma 1, we can assume
that j′ = j − 2. By Lemma 4, E(n, j′, 0) = E(n, j − 2, 0) ≤ E(n, j, 1)/u. Therefore,
Theorem 1 holds. If k = 0 and k′ = 1, then j′ ≤ j + 1. Since (n, j, 0) and (n, j′, 1)
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are accessible, j = 0 − n + 2i for some non-negative integer i and j′ = 2 − n + 2i′

for some non-negative integer i′. Since j′ ≤ j + 1, 2i′ ≤ 2i − 1. Since i′ and i are
non-negative integers, i′ ≤ i− 1 and j′ ≤ 2− n + 2(i− 1) = j. By Lemmas 1 and 4,
E(n, j′, 1) ≤ E(n, j, 1) ≤ E(n, j + 2, 2)/u. By Lemma 2, E(n, j + 2, 2) = u2E(n, j, 0).
Hence E(n, j′, 1) ≤ uE(n, j, 0). Therefore, Theorem 1 holds.

For each expiration time N, let nN = min{n|1 ≤ n ≤ N, E(n, j, k) = βnuk

for some accessible node (n, j, k)}. Since E(N, j, k) = βNuk for any accessible node
(N, j, k), nN is well-defined. For each n = nN , nN +1, ..., N − 1, let tn be the smallest
positive integer such that E(n, j, k) = βnuk if (n, j, k) is accessible and k− j ≥ tn. By
Lemma 2 and Theorem 1, tn is well defined for all n = nN , nN + 1, ..., N − 1. For the
ease of presentation, we will let tN = 0 and tn = tnN

for all n = 0, 1, 2, ..., nN − 1.

Theorem 2. For n = 0, 1, ..., N−1, tn is decreasing in n, tN−1 = 1, and tn ≤ tn+1+1.

Proof: Suppose that n = nN , , nN +1, ..., N −2, (n, j, k) is accessible, and E(n, j, k)
= βnuk, by Lemma 5, E(n + 1, j + 1, k + 1) ≤ βuE(n, j, k) = βn+1uk+1. Since
E(n + 1, j + 1, k + 1) ≥ βn+1uk+1, E(n + 1, j + 1, k + 1) = βn+1uk+1. By Theorem 1,
we can conclude that tn+1 ≤ tn for all n = nN , nN + 1, ..., N − 1. It is also easy to
check that tN−1 = 1.

To show that tn ≤ tn+1+1, by Lemma 4, it suffices to show that if βnuk = E(n, j, k)
and βnuk−1 < E(n, j, k − 1), then E(n + 1, j + 1, k − 1) > βn+1uk−1 if (n, j, k) is
accessible. If E(n+1, j+1, k−1) = βn+1uk−1, then by Lemma 1, E(n+1, j−1, k−1) =
βn+1uk−1. If j ≤ k − 2, then α[pE(n + 1, j + 1, k − 1) + qE(n + 1, j − 1, k − 1)] =
αβn+1uk−1 < βnuk−1 since 0 < α < 1 and 0 < β ≤ 1. Hence E(n, j, k − 1) =
max{βnuk−1, α[pE(n+1, j +1, k− 1)+ qE(n+1, j− 1, k− 1)]} = βnuk−1 and we get
a contradiction. Therefore, tn ≤ tn+1+1 for all n = nN , nN+1, ..., N−1. Since tn = tnN

for all n = 0, 1, 2, ..., nN − 1 and tN = 0, Theorem 2 holds for n = 0, 1, ..., N − 1.

For all n = 0, 1, 2, ..., N, let Xn = Yn/Sn and τN,n be the optimal execution time
for the buyer if he bought the option at time n.

Theorem 3. For each security price process {S0, S1, S2, ..., SN} and each n = 0, 1,
2, ..., N, the optimal execution time τN,n is given by τN,n(S0, S1, ..., SN) = min{m|m ≥
n, Xm ≥ utm}. Moreover, the optimal execution boundary is {ut0 , ut1 , ut2 , ..., utN−1 , utN}.

In [5], Peskir studied this problem in a continuous time setting. He (Theorem
3.1 of [5]) showed that the optimal execution boundary is the unique continuous
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decreasing solution of a nonlinear integral equation. The results of Theorems 2 and
3 here are consistent with his result in a discrete time setting.

In [4], Kramkov and Shiryaev studied this problem in a different approach which
can be stated as follows: For each n = 1, 2, ..., N , εn is a random variable and takes
two values +1,−1. So Sn = S0u

ε1+ε2+...+εn for all n = 1, 2, ..., N. If the buyer exercises
his option at time n, then his payoff is βnYn. From the general pricing theory of
American type options, the option fair price at time 0 is

VN(1) = max{E(ατβτYτ )|0 ≤ τ ≤ N},

where τ is a stopping time and E is the expectation with respect to the martingale
measure, i.e., ε1, ε2, ..., εN are i.i.d. random variables such that

E(αuεi) = pαu + (1− p)α/u = 1.

Since Xn = Yn/Sn, it is easy to see that Xn takes values in the set {1, u, u2, ..., un}
and

VN(1) = max{E∗(βτXτ |X0 = 1)|0 ≤ τ ≤ N},

where E∗ is the expectation with respect to the new probability measure P ∗. With
respect to this new probability measure P ∗, ε1, ε2, ..., εN are i.i.d. random variables
such that P ∗(εi = 1) = p∗ = αup and P ∗(εi = −1) = 1− p∗ = α(1− p)/u. It is easy
to check that p∗ = αup = (u− α)/(u− 1/u) > 1/2 since u > 1 + r = 1/α.

Notice that Xn+1 = max{Xn/u
εn+1 , 1} for all n = 0, 1, 2, ..., N − 1. So we can

compute VN(1) by the following backward induction procedure: For n = 0, 1, 2, ..., N
and k = 0, 1, 2, ..., n, let

GN(n, k) = max{E∗(βnXn|Xn = uk), E∗(βτXτ |n ≤ τ ≤ N, Xn = uk)}.

Since GN(N, k) = βNuk for all k = 0, 1, 2, ..., N. For all n = 0, 1, 2, ..., N − 1 and
k = 0, 1, 2, ..., n,

GN(n, k) = max{βnuk, p∗GN(n + 1, max(0, k − 1)) + (1− p∗)GN(n + 1, k + 1)}.

It is clear that VN(1) = GN(0, 0) since we assume that S0 = 1. This procedure
requires O(N2) computations to compute the option price GN(0, 0) at time 0 (the
node (0, 0, 0)). However, this procedure can not produce the option prices at other
accessible nodes. Theorem 5 below gives an elegant algorithm which computes the
optimal execution boundary and the option price at time 0 in order N computations.
Theorem 6 below gives another algorithm which computes the option prices at all
possible accessible nodes time in order N2 computations.
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To determine the optimal execution time for the buyer who bought the option at
time 0, Kramkov and Shiryaev gave the following algorithm. For each n = 1, 2, ...,
each x in the set H = {1, u, u2, ..., }, and each function f defined on H let Qβf(x) =
max{f(x), β[p∗f(max(1, x/u)) + (1 − p∗)f(xu)]}, and let Qn

βf(x) = Qβ[Qn−1
β f(x)].

Then Vn(x) = Qn
βg(x), where g(x) = x. The optimal execution time τN,0 for the buyer

who bought the option at time 0 is given by τN,0 = min{n|0 ≤ n ≤ N, VN−n(Xn) =
Xn}. This procedure is complicated and slow. The procedure given in Theorem 5
below is much easier and faster.

For each x in H, let V (x) = limn→∞Vn(x). Kramkov and Shiryaev showed that
V (x) = sup{E∗

x(β
τXτ )|0 ≤ τ < ∞} and that there exists a x0 = uk0 such that

V (x) = x for all x in H and x ≥ x0. Since Qβf(x) ≥ f(x), Vn+1(x) = Qβ[Vn(x)] ≥
Vn(x) ≥ x for all x in H. Since V (x) = limn→∞Vn(x), Vn(x) = x for all x ≥ x0 and
all n = 1, 2, ... Hence E(n,−k0, 0) = βn for all n ≥ k0. Based on this observation and
Theorem 2, we have the following theorem.

Theorem 4. There exists a positive integer k0 which depends only on β, r, and u
such that for any positive integer N, tn ≤ k0 for all n = 1, 2, 3, ..., N.

Notice that GN(n, k) = βnuk if and only if k ≥ tn. Based on Theorem 2, we can use
the following backward induction procedure to compute tN−1, tN−2, ..., t1 and VN(1).
First let tN−1 = 1, GN(N − 1, 0) = p∗βN + (1− p∗)βNu, and GN(N − 1, 1) = βN−1u.
Next let tN−2 = tN−1 if βN−2u ≥ p∗GN(N − 1, 0) + (1− p∗)βN−1u2, tN−2 = tN−1 + 1
otherwise. Let GN(N−2, k) = p∗GN(N−1, max(0, k−1))+(1−p∗)GN(N−1, k+1)
for k = 0, tN−2 − 1 and GN(N − 2, tN−2) = βN−2utN−2 . Now suppose that we have
computed 1 = tN−1 ≤ tN−2 ≤ ... ≤ tn+1 for some positive integer nN ≤ n ≤ N−2 and
have computed all GN(m, k) for all m = n + 1, n + 2, ..., N − 1 and k = 0, 1, 2, ..., tm.
Let tn = tn+1 if βnutn+1 ≥ p∗GN(n + 1, tn+1 − 1) + (1− p∗)βn+1utn+1+1, tn = tn+1 + 1
otherwise. Let GN(n, k) = p∗GN(n + 1, max(0, k− 1)) + (1− p∗)GN(n + 1, k + 1) for
all k = 0, 1, 2, ..., tn − 1 and GN(n, tn) = βnutn . By this procedure, we will construct
the the sequence {tnN

, tnN+1, ..., tN−1}. For n = 0, 1, 2, ..., nN − 1, let GN(n, k) =
p∗GN(n + 1, max(0, k − 1)) + (1 − p∗)GN(n + 1, k + 1) for all k = 0, 1, 2, ..., n. The
option price VN(1) at time 0 is equal to GN(0, 0), the optimal execution boundary for
the buyer will be {ut0 , ut1 , ut2 , ..., utN−1 , 1}. Notice that n < tn for n = 0, 1, 2, ..., nN−1.
Since tn is bounded for all n = 1, 2, ..., N − 1, and on each step, we need only at most
tn + 2 computations, the total computations will be O(N). Therefore, we have the
following theorem.

Theorem 5. The procedure described above requires in order N computations to
compute the optimal execution boundary {ut0 , ut1 , ut2 , ..., utN−1 , utN} and the option
price VN(1) at time 0.
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Based on Theorems 4 and 5, we can use the following algorithm to compute
E(n, j, k) for all accessible nodes (n, j, k). First let E(N, j, k) = βNuk for all k =
0, 1, 2, ..., N and j = 2k − N, 2k − N + 2, ...,≤ k. Then for n = 0, 1, 2, ..., N − 1 and
k = 0, 1, 2, ..., n, let E(n, j, k) = βnuk for all j = 2k − n, 2k − n + 2, ...,≤ k − tn and
E(n, j, k) = α[p(n+1, j+1, max(j+1, k))+qE(n+1, j−1, k)] for all k−tn < j ≤ k and
accessible (n, j, k). For n = 0, 1, 2, ..., N − 1, there are only n(tn + 2)/2 computations.
Since t0, t1, t2, ..., tN−1 are bounded, we need only O(N2) computations to compute
E(n, j, k) for all O(N3) accessible nodes. Therefore, we have the following theorem.

Theorem 6. The procedure described above requires only O(N2) computations to
compute all option values E(n, j, k) at all O(N3) accessible nodes.

Theorems 3 and 5 show that for fixed β, r, and u, the optimal execution time
depends only on n and Xn and the optimal execution boundary is of a monotonic
form and bounded. These facts are exploited in our algorithms for computing the
option prices and the optimal execution boundary.

Notice that for each n = 0, 1, 2, ..., N , there are n + 1 possible values for Xn. So
there are (N +1)(N +2)/2 entries for the whole table VN−n(Xn), Xn = 1, u, u2, ..., un,
and n = 0, 1, 2, ..., N. We either use this table to find the optimal execution time
for each price process {S0, S1, S2, ..., SN}. Or we compute VN−n(Xn) each time when
we get a new Xn, suppose we did not exercise the option yet, then check whether
VN−n(Xn) = Xn or not. It requires O((N − n)2/2) computations. In this respect,
our approach is faster and simpler since we need only keep N + 1 entries of utn . For
each price process {S0, S1, S2, ..., SN}, we can update Xn easily, then decide we should
exercise the option or not right away.

In fact, noticing that if x = uk for some non-negative integer k, VN−n(x) =
max{E∗(βτXτ |X0 = x)|0 ≤ τ ≤ N −n} = GN−n(0, k). By Theorem 5, we can have a
procedure which requires only O(N−n) computations to compute VN−n(x). It will be
more efficient than the procedure VN−n(x) = QN−n

β g(x) which requires O((N−n)2/2)
computations.

Suppose that we have computed the set {t1, t2, ..., tN} by the backward induction
procedure described in Theorem 5 for the option with expiration time N and let
{t′1, t′2, ..., t′N+M} be the counter part for the option with expiration time N+M, where
M is a positive integer. Do we have to compute the entire set {t′1, t′2, ..., t′N+M}? The
following theorem reveals that there is a relationship between the set {t1, t2, ..., tN}
and the set {t′1, t′2, ..., t′N+M}.

Theorem 7. Let {t1, t2, ..., tN} and {t′1, t′2, ..., t′N+M} be as defined above. Then
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t′N+M−j = tN−j for all j = 0, 1, 2, ..., N − nN .

Proof: We will prove Theorem 7 when M = 1. The general case can be proved by
mathematical induction.

Notice that GN+1(N+1, k) = βN+1uk and GN(N, k) = βNuk for all k = 0, 1, 2, ..., N.
Also notice that

GN(n, k) = max{βnuk, p∗GN(n + 1, max(0, k − 1)) + (1− p∗)GN(n + 1, k + 1)}

and
GN+1(n + 1, k)

= max{βn+1uk, p∗GN+1(n + 2, max(0, k − 1)) + (1− p∗)GN+1(n + 2, k + 1)}

for all k = 0, 1, 2, ..., N and n = 0, 1, 2, ..., N − 1. By mathematical induction, it is
easy to see that GN+1(n+1, k) = βGN(n, k) for all k = 0, 1, 2, ..., n and n = nN , nN +
1, ..., N. GN(n, k) = βnuk if and only if GN+1(n+1, k) = βn+1uk for n = nN , nN +1, ....
It implies that tN = t′N+M , tN−1 = t′N+M−1, ..., tnN

= t′nN+M .

Based on Theorem 7, we can use the optimal execution boundary of an option
and some additional computations to get the optimal execution boundary for a new
option with a longer expiration time. Conversely we can use the tail segment of the
optimal execution boundary of an option for the optimal execution boundary of a new
option with a shorter expiration time. This is another nice property of the approach
presented in this paper. Theorem 7 also confirms that if the time horizon is infinite,
then the optimal execution boundary is a horizontal line and the optimal execution
time for the buyer is the first n such that Xn = ut1 since t1 = t2 = ... = b for some
positive constant b if the time horizon is infinite. The results presented in this paper
are consistent with the results in [6] by Shepp and Shiryaev.
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