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Abstract

Security prices are set by a continuous auction, the rules of which are set

by the exchange or by the government. For many exchanges, there is a general

free-flow of price information resulting in stock prices which can be modelled

by a random walk following a Weiner-Levy process. However, many markets

have collars, under which the rules of the auction will not let prices move too

rapidly. In this paper we present methods for estimating the volatility of the

underlying price data when the true price information is obscured by such

collars. Numerical simulations are presented which demonstrate and contrast

the methods.
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1 Introduction

Security prices are set by a continuous auction. The rules of the auction are set

by the exchange or by the government. For many exchanges, there is a general

free-flow of price information resulting in stock prices which can be modelled by a

random walk following a Weiner-Levy process, perhaps with an added component

of drift depending on the season, investor psychology, or other poorly understood

factors. This model of stock prices has been very important both theoretically and

practically to the development of option pricing.

However, many markets have collars, under which the rules of the auction will

not let prices move too rapidly. We consider the case where the previous day’s

closing price is set as the center of a percentage band outside of which the stock

will not trade for that day. Since this affects the volatility of stock prices, and

options are priced as a function of volatility, the question arises as to the proper

pricing of options in markets with collars.

We propose a simply model in which there is an ideal stock price and an exchange

price. The ideal stock price is the market clearing price which may be outside of a

legally allowed price range. The exchange price is the price quoted by the exchange

and is subject to the exchange or government restrictions on price ranges. We

assume that the ideal or market-clearing price is not affected by the exchange

price, that the exchange price is derived by applying a deterministic algorithm to

the ideal price. We also assume that the exchange price will always return to the

ideal price, so that investors will always have the opportunity to trade at the ideal

price. Conditions on collar size can insure that this is so.

In this paper we present three methods by which the volatility of the ideal price

can be estimated by looking only at the exchange price:

1. a method based on the measure of waiting times;

2. a method based on the estimate of the likelihood of an at-market day being

followed by an at-limit day (definitions follow);

3. the renewal time method introduced by Chiang and Wei.
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The renewal time method is due to Chiang and Wei. In this paper we provide a

rigorous proof of strong consistency for their method.

In addition, we compare the results of these methods to the volatility of the

actual stock price and perform simulations on which of the two values are more

appropriate for option pricing.

2 Methods

2.1 Definitions

Our ideal stock trace is a sequence of closing prices S0, S1, . . .. The inter-day incre-

ments are independent, identically distributed random variables with log-normal

distribution of common mean µ and variance σ2,

Zi = ln(Si/Si−1) ∼ N (µ, σ2).

If r is the risk-free rate, then µ = r − σ2/2.

Collars are applied to the ideal price trace Si to create an observable sequence

S∗
i of exchange prices. Given lower and upper collars,

κl < 1 < κu,

we define S∗
i , i = 0, 1, 2, . . . according to,

S∗
i =





S0 if i = 0,

κl S
∗
i−1 if Si < κl S

∗
i−1,

κu S∗
i−1 if Si > κu S∗

i−1,

Si otherwise.

We classify each observation S∗
i as either at-market or at-limit. Since we cannot

always observe Si, an observation S∗
i will be considered at-market only if it is strictly

within that observation’s collar. Else we must conclude that the observation is at-

limit. Formally, the set of market observations is,

T = {i > 0 | (κl S
∗
i−1) < S∗

i < (κu S∗
i−1)} ∪ {0}
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and the set of limit observations is the complement,

L = T c = {i > 0 |S∗
i = (κl S

∗
i−1) or S∗

i = (κu S∗
i−1)}.

We enumerate the indices of T and L in ascending order as T0, T1, . . . and L0, L1, . . ..

Note that by construction T0 = 0, and that L might be empty.

An example trace of 90 day data is given in figure 1. The ideal price, exchange

price and their difference are plot, with the difference trace shifted and scaled for

display. The simulated stock has zero mean, σ = 47%, and the collars were set to

(5/4) σ.

2.2 Estimation of the mean

We estimate the mean µ of Si and prove some additional lemmas.

If we consider any two consecutive at-market observations, we have a random

variable,

Xi = ln
(
STi

/STi−1

)
=

Ti∑

j=Ti−1+1

Zj .

Since Zi and Zj are independent for i 6= j, the Xi are independent identically

distributed random variables. This is also true that the random variable T ′
i =

Ti − Ti−1 are independent and identically distributed.

Define Bk(a) to be the event that the ideal price is above the upper limit of the

exchange price for at least k consecutive days given that at day zero the ideal price

is a above the zero-th day upper limit,

Bk(a) = { (a + Z1 + . . . + Zj) > j ln κu, for j = 1, . . . , k },

Lemma 1 Let λ = (ln κu − µ)/σ. If λ > 0 then for large enough k and a ≥ 0,

Prob (Bk(a)) <
e−kλ2/4

λ
√

πk
.

Proof: To remain above the exchange limit for k steps requires that the current

ideal price exceeds by k ln κu the exchange price k days earlier. Since,

Y = a + Z1 + . . . + Zk ∼ N (a + kµ, kσ2),
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then,

Prob ( Y > k ln κu ) =
1√

2πkσ2

∫ ∞

k ln κu

e−(x−kµ−a)2/(2kσ2) dx

=
1√
2π

∫ ∞

(λ
√

k)−a/(σ
√

k)

e−x2/2 dx.

Because λ > 0, we can select a K such that for all k ≥ K,

(λ
√

k) − a/(σ
√

k) > λ
√

k/2 > 0

and we can use the approximation for the tail of the normal distribution,

1√
2π

∫ ∞

x

e−y2/2 dy <
1

x
√

2π
e−x2/2

for x > 0, see Feller, Vol. 1, Lemma VII.1.7. Since the bound is increasing with

decreasing x, for simplicity of notation we set x = λ
√

k/2 to complete the proof.
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Lemma 2 If ln κl < µ < ln κu then E(T1) and E(T 2
1 ) are bound.

Proof: A sequence of days which stay outside of the market will consist of

segments of days in one collar alternating with segments of days in the other collar.

Consider now the random variable Bu which gives the number of days we can

stay within the upper collar. Note that Bu
k =

⋂k
j=1 Bj . Using the previous lemma,

E(Bu) <

∞∑

k=0

Prob (Bk)

< CN +

∞∑

k=N

e−kλ2/4

λ
√

πk
< ∞,

where λ = (ln κu −µ)/σ. An similar bound exists for expectation time in the lower

collar E(Bl).

Now consider the random variable C which gives the number of passages from

upper to lower collars before the next consecutive day at-market. The probability

to pass from one collar to the other must be at least,

pc = Prob ( Zj ≥ (ln κu − ln κl) ).
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Considering the various cases by which a random walk might stay outside of either

collar, we arrive at, essentially, a sum over i changes from upper to lower of walks

of approximate length weighted by the probability of i changes of collars,

E(T1) ≈ Prob ( ln κl < Z1 < ln κu ) +

∞∑

i=1

(pi−1
c )(i/2)(E(Bu) + E(Bl) + i)

< Kc + K

∞∑

i=1

i2pi
c < ∞.

The proof for E(T 2
1 ) is similar. 4

Lemma 3 E(XT1
) = µE(T1).

Proof: It is now more convenient to work with increments µ + σZi with respect

to normalized random variables Zi.

E(XT1
) = E




T1∑

j=1

µ + σZj




=
∑

k≥1

∫

{T1=k}

k∑

j=1

(µ + σZj) dP

=
∑

k≥1

kµP (T1 = k) + σ
∑

k≥1

k∑

j=1

∫

{T1=k}
Zj dP

The first term on the right-hand side is obviously µE(T1). Rearranging the sum of

the second term on the right hand side,

σ
∑

k≥1

k∑

j=1

∫

{T1=k}
Zj dP = σ

∑

j≥1

∑

k≥j

∫

{T1=k}
Zj dP

= σ
∑

j≥1

∫

{T1≥j}
Zj dP

= σ
∑

j≥1

(
E(Zj) −

∫

{T1<j}
Zj dP

)

Since Zj and {T1 < j} are independent,

E(Zj) −
∫

{T1<j}
Zj dP = E(Zj)(1 − P (T1 < j)) = 0
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because E(Zj) = 0. We conclude that the second term is zero. 4

Since E(XT1
) and E(T1) are finite, the Strong Law of Large Numbers gives us

strong consistency for the sample expectations of of XT1
and T1,

̂E(XT1
) = (1/n)

n∑

i=1

Xi

Ê(T1) = (1/n)

n∑

i=1

(Ti − Ti−1) = Tn/n

and a strongly consistent approximation µ̂ to µ,

µ̂ = E(XT1
)/E(T1) = (ln STn

− ln S0)/Tn

where n = |T | is the number of days observed at-market in our sample.

Theorem 1 Under the given assumptions µ̂ is strongly consistent.

2.3 Estimation of σ: the waiting time method

To estimate the variance, we look at the waiting time for the next at-limit observa-

tion beginning from an at-market observation. Define T ′ to be the first at-market

day in a sequence of at market days, and L′ to be the first at-limit day in a sequence

of at-limit days,

T ′ = {i ∈ T | i > 1, i − 1 6∈ T} ∪ {0}

L′ = {i ∈ L | i− 1 ∈ T}

Enumerate these indices as T ′
1, T

′
2, . . . , T

′
m and L′

1, L
′
2, . . . , L

′
m. Pairing them up we

calculate the i-th waiting time Wi = L′
i − T ′

i . The Wi are independent identically

distributed random variables with geometric distribution {pqk−1} where q is the

probability that Zi falls within the collar ln κl < Zi < ln κu. Hence,

E(W1) = 1/(1− q) < ∞.

This gives us the implicit relation between E(W1) and σ,

1 − 1

E(W1)
=

1√
2π

∫ (ln κu−µ)/σ

(ln κl−µ)/σ

e−x2/2 dx.
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Since E(W1) < ∞, the Strong Law of Large Numbers allows that the sample mean

̂E(W1) is a strongly consistent estimate for E(W1),

̂E(W1) = (1/m)
m∑

i=1

Wi.

We use numerical methods to solve for σ̂ given ̂E(W1). Due to the continuity of

this relation, that ̂E(W1) is a strongly consistent estimate for E(W1) implies that

σ̂ is a strongly consistent estimate for σ.

Theorem 2 Under the given assumptions σ̂ is strongly consistent.

2.4 Estimation of σ: the transition counting method

As referred to in the previous section, we can view the outcome of what follows an

at-market day as the flip of a biased coin. The bias on this coin relates to the area

under the gaussian distribution which might put the next market step into the limit

region — and this is related monotonically to the variance. By observing the ratio

of at-market days followed by at-market days versus by at-limit days, this bias can

be estimated.

Define R to be the set of indices such that two consecutive days are at market

and S to be the set of indices such that the first day is at market and the next is

at limit,

TMM = {i | (i ∈ T ) ∧ (i + 1 ∈ T )},

TML = {i | (i ∈ T ) ∧ (i + 1 ∈ L)}.

We are flipping a coin which comes up “limit” with probability |TML|/(|TML| +

|TMM |). Therefore,

E(W ) = 1 + (|TMM |/|TML|).

This formula agrees with the formula for E(W ) of the waiting time method if

the sequence of observations ends on an at-limit day. Else the estimate of E(W )

will be slightly lower, as the sequence of ending observations will bias downward

the estimation of the probability of hitting the limit.
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Because this method agrees so closely with the method of waiting times, we will

not consider it further.

2.5 Estimation of σ: the renewal time method

Recall that our at-market days have indices T0, T1, . . .. The renewal time from one

at-market day to another is T ′
i = Ti−1 − Ti, for i = 1, 2, . . .. The T ′

i are i.i.d.

random variables. The change in log market price during interval T ′
i is,

XT ′

i
=

Ti∑

j=Ti−1−1

(µ + σZj)

where the Zi are i.i.d. standard gaussian normal random variables.

Lemma 4 E
(
(XT1

− µ T1)
2
)

= σ2E(T1).

Proof: Since, XT1
− µ T1 =

∑
σZj , it is sufficient to show that E

(
(
∑

Zj)
2
)

=

E(T1).

E







T1∑

j=1

Zj




2

 =

∑

k≥1

∫

{T1=k}




k∑

j=1

Zj




2

dP

=
∑

k≥1

k∑

i=1

∫

{T1=k}
Z2

i dP + 2
∑

k≥1

k−1∑

i=1

k∑

j=i+1

∫

{T1=k}
ZiZj dP

Consider the first term on the right-hand side,

∑

k≥1

k∑

i=1

∫

{T1=k}
Z2

i dP =
∑

i≥1

∑

k≥i

∫

{T1=k}
Z2

i dP

=
∑

i≥1

∫

{T1≥i}
Z2

i dP

=
∑

i≥1

(
E(Z2

i ) −
∫

{T1<i}
Z2

i dP
)

=
∑

i≥1

E(Z2
i )(1 − P (T1 < i))

because {T1 < i} ∈ Fi−1 and is independent of Zj . Noting that E(Z2
i ) = 1, we

have that this first term is
∑

P (T1 ≥ i) = E(T1).
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The second term is rearranged and shown to equal zero,

2
∑

k≥1

k−1∑

i=1

k∑

j=i+1

∫

{T1=k}
ZiZj dP = 2

∑

i≥1

∑

j≥i+1

∑

k≥j

∫

{T1=k}
ZiZj dP

= 2
∑

i≥1

∑

j≥i+1

∫

{T1≥j}
ZiZj dP

= 2
∑

i≥1

∑

j≥i+1

(
E(ZiZj) −

∫

{T1<j}
ZiZj dP

)

For i 6= j, E(ZiZj) = E(Zi)E(Zj) = 0. Also, since I{T1<j}Zi is independent of Zj

when i < j, the integral is zero. 4

Theorem 3 The estimate,

σ̂2 =

∑n
i=1(XT ′

i
− µ̂T ′

i )
2

∑n
i=1 T ′

i

is strongly consistent.

Proof: Rewriting the numerator,

n∑

i=1

(XT ′

i
− µ̂T ′

i )
2 =

n∑

i=1

(
(XT ′

i
− µT ′

i ) + (µ − µ̂)T ′
i

)2

=

n∑

i=1

(XT ′

i
− µT ′

i )
2 + 2

n∑

i=1

(XT ′

i
− µT ′

i )(µ − µ̂)T ′
i

+

n∑

i=1

(
(µ − µ̂)T ′

i

)2
.

By the previous lemma and the Law of Large Numbers, the first term of the sum

converges to nσ2E(T1). We have shown that the denominator converges to nE(T1).

Therefore to prove σ̂2 is strongly consistent it is sufficient to show,

(µ − µ̂)2
n∑

i=1

T ′
i
2
/

n∑

i=1

T ′
i → 0

and
n∑

i=1

(XT ′

i
− µT ′

i )(µ − µ̂)T ′
i/

n∑

i=1

T ′
i → 0

with probability 1.
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We have shown that E(T1
2) exists and is finite, and that µ − µ̂ → 0 with

probability 1, so the first of these limits is proven.

The second limit is shown using the Cauchy-Schwarz inequality,

0 ≤
(

n∑

i=1

(XT ′

i
− µT ′

i )(µ − µ̂)T ′
i/

n∑

i=1

T ′
i

)2

≤
(

n∑

i=1

(XT ′

i
− µT ′

i )/

n∑

i=1

T ′
i

)(
n∑

i=1

(µ − µ̂)T ′
i /

n∑

i=1

T ′
i

)

→ σ2 · 0 = 0

with probability 1. 4

3 Results

In graphs in Figures 1 through 5 plot results of the estimation of σ for the waiting

time method, the renewal time method, and the direct calculation on the observed

price stream, with this data displayed as box charts, left to right as listed.

For each trial, a random walk of 250 days was generated, with µ = 0 and σ = 1.

The upper and lower collars equal a common κ, where these collars are applied to

the log data,

ln κl = ln κu = κ.

Various ratios κ/σ are tried. A plot of 100 trials with a bisected box indicating the

median and one quartile above and below the median is given.

For lower κ/σ, the waiting time method shows greater accuracy (median is

closer to 1) and less dispersion (quartiles are closer to median). By κ/σ = 2 the

two methods perform about equally, and above that the renewal time method tends

to excel. In this region, hitting a collar is rare, so we do not get enough waiting

time events to accurately measure σ.
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