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1. Proof of indistinguishability for the ideal block cipher

The adversarial indistinguishability game is the interaction of two probabilistic poly-
nomial time machines, the protocol Π and the adversary A. A manner of thinking
about that interaction is to consider the sequence of messages exchanged as a random
variable, called the transcript. In the [Π,A] interaction, Π is in effect a sampling
algorithm choosing from the distribution of possible transcripts. When we take this
from the adversary’s point of view, it is called the adversary’s view, and the draw
from the space of transcripts conditioned on all of the adversary’s messages.

Refer to Figure 1 in the description of the protocol and the notational definitions
that follow.

The protocol encrypts using a random function,

f : Ul(n) → Ul(n),

where Ul(n) is the space of strings over l(n) bits with the uniform distribution, and
l(n) is a polynomial that gives the block size. The distinction between key size n
and block size l(n) has no meaning here, but is retained to agree with notation for
pseudo-random functions Fk, which take an n bit key k.
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Figure 1. The CPA game on an Ideal Block Cipher

The transcript of messages is the sequence of message pairs from the adversary to
the protocol, during a protocol run,

M = 〈mL
i ,m

R
i 〉i.

The transcript of responses by the protocol is the sequence of encryptions in the
return message,

T = 〈 ri, ci 〉i.
We will also refer to the sequence of random choices of the protocol, which is not
sent to the adversary,

T̃ = 〈 ri, f(ri) 〉i.
We argue that the protocol is a sampling procedure for a random variable taking

values in on of two spaces, depending on the coin flip. We will ultimately argue that
the two random variables are identically distributed, so the protocol does not need to
flip a coin in order to interact faithfully with the adversary. Therefore the adversary
cannot predict the coin b, as the value of the coin is irrelevant for the interaction.

1.1. A note on notation. The angle signifies a sequence. For instance, a sequence
s1, s2, . . . of elements from S is denoted 〈 si 〉i. The subscript of the bracket helps
identify which variable is the indexing variable, and reminds the reader that the
shown element is just an example of a sequence of elements.

1.2. A note on time bounds. Both the protocol and the adversary are polynomial
bound. The counting of time for the protocol will not include the encryption requests.
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Despite any implications of the drawing, the adversary has oracle access to the LR–
encryption, and the encryption is polynomial bound in the length of the presented
messages.

In this way, the time bound of Π can be stated independently of the time bound
of A. Π provides the encryption oracle with a key of length n, and the single bit b.
It receives from A the single bit b̃. The adversary’s queries are all charged to its own
data communication with the encryption oracle, and the encryption oracle charges
one unit to the adversary for its use. The encryption oracle itself is polynomial time
bound. In the case of the random function, the random function charges only the
bit complexity of its input and output for its use.

2. Proof of security

We can fix the coin, and consider the queries of the adversary as part of the
domain of a random variable. For the case the where protocol will always answer by
encrypting the left message,

XL : Ω×M → T,
ω, 〈mL

i ,m
R
i 〉i 7→ 〈 ri, f(ri)⊕mL

i 〉i
and for the case where the protocol will always answer by encrypting the right mes-
sage,

XR : Ω×M → T,
ω, 〈mL

i ,m
R
i 〉i 7→ 〈 ri, f(ri)⊕mR

i 〉i
Finally there is a random variable for the workings of the protocol,

XT̃ : Ω×M → T̃ ,
ω, 〈mL

i ,m
R
i 〉i 7→ 〈 ri, f(ri) 〉i

Condition on the event R that each ri is distinct, so that the random function f
acts as a sequence of independent choices. Then,

Pr(XT̃ = 〈 ri, f(ri) 〉 |R) =
∏
i

Pr(Ul(n) = ri) ∧ Pr(Ul(n) = f(ri)).

The probability on XL conditioned on event R is provided by the probability
preserving bijection to XT̃ ,

φL : T̃ ×M → T,
〈 ri, f(ri) 〉, 〈mL

i ,m
R
i 〉 7→ 〈 ri, f(ri)⊕mL

i 〉
and φR is defined similarly.

Theorem 2.1.
Pr([Π,A](n)) ≤ 1/2 + negl(n)

.
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Proof. Π samples either XL or XR. Conditioned on event R, these are the same
distributions, therefore A has no information on the bit b. For instance, Π can
provide A with a perfectly correct interaction without even flipping the coin or
looking at the messages, by returning samples from XT̃ . Hence,

Pr([Π,A](n) |R) = 1/2.

The result follows by the rule of total probability, and that Pr(∼ R) is negligible,

Pr([Π,A](n)) = Pr([Π,A](n) |R)Pr(R) + Pr([Π,A](n)) | ∼ R)Pr(∼ R))

≤ (1/2) (1− Pr(∼ R)) + Pr(∼ R)

≤ 1/2 + negl(n)

�

3. For the Nonce

The proof did not need to contemplate the case of repeated blinding factors ri,
since the probability of this occurring is negligible. However, it the value is repeated,
ri = rj for distinct i and j, it is highly likely the adversary can win the game. Given
ri = rj the adversary will know for which i and j the encryption will cancel,

ci ⊕ cj = mb
i ⊕ f(ri)⊕mb

j ⊕ f(rj) = mb
i ⊕mb

j

If it happens that,
mL

i ⊕mL
j 6= mR

i ⊕mR
j

then the adversary definitely wins the game.
In practice, it is often required that the ri be unique, and is called a nonce.1 This

can be achieved by building the number out of components whose combination is
sure to be unique (assuming honest players!). For instance, an ethernet address, a
time and a process identification number.

In terms of concrete security, a birthday attack is possible if the block size is too
small, so that the ri so repeat, out of chance. For an n bit number, a repeat is likely
after

√
2n samples. For instance, a cipher with 64 bit block size would seem secure,

but after only four billion packets we should begin to see collisions on the ri, and
hence a break in security.

1Wiktionary doubts that the etymology of the word is from “number used once”, and thinks it
is from Middle English “for the nonce”, meaning “for the once”.


