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1. NECESSARY NUMBER THEORY

1.1. Notation. The typical notation for working modulo n is a tag such as,
y=azr+b (modn)

While this makes clear in what algebraic system does one interpret the arithmetic.
However, it is cumbersome and therefore I do not use this notation often. It just
needs to be kept in mind what is the algebraic system, and there are often many.

[ will write (a,b) for ged(a,b).

1.2. Bezout’s Theorem. A key theorem here is Bezout’s, which notes that the
greatest common divisor of two elements is the linear combination of the two ele-
ments. The euclidean algorithm that efficiently computes (a,b) can be extended to
give the numbers s and ¢ as described in Bezout’s.

E(a,n) — (s,t) s.t. sa+tn=(a,n)
The group of units in Z,, is defined as Z* = {a € Z,,| (n,a) = 1}. The Bezout result
then gives a multiplicative inverse for any unit.
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1.3. Little Fermat Theorem. Given a € Z; being invertible, the map a(x) — ax
is a permutation on Z,,. Hence,

Hpezzx = lliezzazx
a¢(”)Ha;e 2T
since this is entirely in the group of units we can cancel the large product across
both sides, for all a € Z,
a®m — 1
This is the Little Fermat Theorem (LFT).
For p a prime, ¢(p) =p — 1.
For distinct primes, p,q and n = pq, in Z,, among the n — 1 non-zero elements that
are not relatively prime to n are kp and k'q, fork=1,...,g—1land k' =1,...,p—1.
Therefore,

p(pg) =pg—1-(q—1)—(p—-1)=pg—q—p+1=(p—1)(¢g—1)

1.4. Square Roots mod n = pq. In Z, with n the product of two distint primes,
there are four solutions to 2% = 1.
Given the relation z p + y g = 1, the square is also equal to one. Then,

(xp+yq)?=(rp—yq?®=1 (modn)
so ( = xp—yqis a square root of 1 mod pg, and is not 1 or -1. Note that,
(+l=zp-—yq+l=xp—-—yq+arp+yq=_2zp,
and
(—l=zp-yq-—l=xp-—yq—rp—-yqg=—-2yq.

Sincd ¢ fa and p fy, so, ((+1,pq) = p and (¢ —1,pg) = q.
This result can also be shown using 22 — 1 = (x + 1)(z — 1) = 0 (mod n).

2. RSA CRYPTOSYSTEM

2.1. Description of RSA.

e Generation:

(1) Chose distinct primes p,q € Z and let n = pg;

(2) Choose an e € Z5, .

(3) Compute d = e (mod ¢(n)).

(4) The public key is (n,e).

(5) The secret key is (n,d).
e Encryption: For a message m € Z7, the encryption is ¢ = m® (mod n).
e Decryption: The decryption of ¢ € Z* is m = ¢? (mod n).
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As e and d are inverses in Zj,, then (m®)? = m*M+! = (m?™)km =1 (mod n).

2.2. The security of RSA. Given n and ¢(n), then p+¢qg =n+1— ¢(n). The
factors p,q are then the roots of the quadraic (x — p)(x — ¢q) = 0. This form is
expressable in n and ¢(n).

(z—p)z—q)=2>—pr—qr+n=2"—(n+1-9n)z+n
Therefore, given n, ¢(n) we easily compute the factors p, ¢ using the quadratic for-
mula.

To keep d a secret, ¢(n) must not be known. It is therefore necessary that the
factors of n not be known. We have seen above, that knowing ¢(n) and n gives the
factors of n, so either we factor n or we know ¢(n) by some other way.

However, perhaps d can be known without ¢(n) being known. Write ed — 1 = 2°t.
Suppose a decryption exponent d is found out, by any method, with the property
that for any z € 27,
l,edfl — (l’t)2s =1

There is a sequence leading to 1, that must pass through one fo the four square roots
of one,

(a2, B, 87 =1
If B = £, the non-trivial square root of one mod n, then we can factor n.
Therefore, we have a probabilistic factoring algorithm for n, if we have the exponent
d, showing that calculation of the exponent d is at least as hard as factoring.



