

Whitepaper

NVIDIA’s Next Generation

CUDA
TM

 Compute Architecture:

Kepler
 TM

 GK110/210

V1.1

Table of Contents

Kepler GK110/210 GPU Computing Architecture ... 3

Kepler - High Performance Computing ... 4

 Dynamic Parallelism .. 5

 Hyper-Q ... 5

 Grid Management Unit .. 5

 NVIDIA GPUDirect™ ... 5

An Overview of Kepler GK110 and GK210 Architecture ... 6

Streaming Multiprocessor (SMX) Architecture ... 8

SMX Processing Core Architecture ... 9

Quad Warp Scheduler ... 9

New ISA Encoding: 255 Registers per Thread ... 11

Shuffle Instruction ... 11

Atomic Operations .. 12

Texture Improvements ... 12

Kepler Memory Subsystem – L1, L2, ECC .. 13

Configurable Shared Memory and L1 Cache .. 13

48KB Read-Only Data Cache ... 14

Improved L2 Cache ... 14

Memory Protection Support ... 14

Dynamic Parallelism .. 15

Hyper-Q ... 17

Grid Management Unit - Efficiently Keeping the GPU Utilized ... 19

NVIDIA GPUDirect™ .. 20

Conclusion ... 21

Appendix A - Quick Refresher on CUDA ... 21

CUDA Hardware Execution ... 22

Kepler GK110/210 GPU Computing Architecture

As the demand for high performance parallel computing increases across many areas of science,

medicine, engineering, and finance, NVIDIA continues to innovate and meet that demand with

extraordinarily powerful GPU computing architectures. NVIDIA’s GPUs have already redefined and

accelerated High Performance Computing (HPC) capabilities in areas such as seismic processing,

biochemistry simulations, weather and climate modeling, signal processing, computational finance,

computer aided engineering, computational fluid dynamics, and data analysis. NVIDIA’s Kepler

GK110/210 GPUs are designed to help solve the world’s most difficult computing problems.

By offering much higher processing power than the prior GPU generation and by providing new methods

to optimize and increase parallel workload execution on the GPU, Kepler GK110/210 simplify creation of

parallel programs and further revolutionizes high performance computing.

Kepler - High Performance Computing

Comprising 7.1 billion transistors, the Kepler GK110/210 architecture incorporates many new innovative

features focused on compute performance. Kepler GK110 and GK210 are designed to be a parallel

processing powerhouses for Tesla® and the HPC market.

Both Kepler GK110 and 210 provide over 1 TFlop of double precision throughput with greater than 80%

DGEMM efficiency versus 60-65% on the prior Fermi architecture.

Kepler GK110 Die Photo

The following new features in Kepler GK110 enable increased GPU utilization, simplify parallel program

design, and aid in the deployment of GPUs across the spectrum of compute environments ranging from

personal workstations to supercomputers:

 Dynamic Parallelism – adds the capability for the GPU to generate new work for itself,

synchronize on results, and control the scheduling of that work via dedicated, accelerated

hardware paths, all without involving the CPU. By providing the flexibility to adapt to the

amount and form of parallelism through the course of a program's execution, programmers can

expose more varied kinds of parallel work and make the most efficient use the GPU as a

computation evolves. This capability allows less-structured, more complex tasks to run easily

and effectively, enabling larger portions of an application to run entirely on the GPU. In addition,

programs are easier to create, and the CPU is freed for other tasks.

 Hyper-Q – Hyper-Q enables multiple CPU cores to launch work on a single GPU

simultaneously, thereby dramatically increasing GPU utilization and significantly reducing CPU

idle times. Hyper-Q increases the total number of connections (work queues) between the host

and the GK110 GPU by allowing 32 simultaneous, hardware-managed connections (compared to

the single connection available with Fermi). Hyper-Q is a flexible solution that allows separate

connections from multiple CUDA streams, from multiple Message Passing Interface (MPI)

processes, or even from multiple threads within a process. Applications that previously

encountered false serialization across tasks, thereby limiting achieved GPU utilization, can see

up to dramatic performance increase without changing any existing code.

 Grid Management Unit – Enabling Dynamic Parallelism requires an advanced, flexible

grid management and dispatch control system. The new GK110 Grid Management Unit (GMU)

manages and prioritizes grids to be executed on the GPU. The GMU can pause the dispatch of

new grids and queue pending and suspended grids until they are ready to execute, providing the

flexibility to enable powerful runtimes, such as Dynamic Parallelism. The GMU ensures both

CPU- and GPU-generated workloads are properly managed and dispatched.

 NVIDIA GPUDirect™– NVIDIA GPUDirect™ is a capability that enables GPUs within a

single computer, or GPUs in different servers located across a network, to directly exchange

data without needing to go to CPU/system memory. The RDMA feature in GPUDirect allows

third party devices such as SSDs, NICs, and IB adapters to directly access memory on multiple

GPUs within the same system, significantly decreasing the latency of MPI send and receive

messages to/from GPU memory. It also reduces demands on system memory bandwidth and

frees the GPU DMA engines for use by other CUDA tasks. Kepler GK110 also supports other

GPUDirect features including Peer-to-Peer and GPUDirect for Video.

An Overview of Kepler GK110 and GK210 Architecture

Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly

less power and generating much less heat output.

GK110 and GK210 are both designed to provide fast double precision computing performance to

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU

architecture, which is designed primarily for fast graphics performance and single precision consumer

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing

double precision calculations at a rate of up to 1/3 of single precision compute performance.

Full Kepler GK110 and GK210 implementations include 15 SMX units and six 64‐bit memory controllers.

Different products will use different configurations. For example, some products may deploy 13 or 14

SMXs. Key features of the architecture that will be discussed below in more depth include:

 The new SMX processor architecture

 An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O

implementation.

 Hardware support throughout the design to enable new programming model capabilities

 GK210 expands upon GK110’s on-chip resources, doubling the available register file and shared

memory capacities per SMX.

Kepler GK110 Full chip block diagram

Kepler GK110 supports the new CUDA Compute Capability 3.5. (For a brief overview of CUDA see

Appendix A - Quick Refresher on CUDA). The following table compares parameters of different Compute

Capabilities for Fermi and Kepler GPU architectures:

Compute Capability of Fermi and Kepler GPUs

FERMI
GF100

FERMI
GF104

KEPLER
GK104

KEPLER
GK110

KEPLER
GK210

Compute Capability 2.0 2.1 3.0 3.5 3.7

Threads / Warp 32

Max Threads / Thread Block 1024

Max Warps / Multiprocessor 48 64

Max Threads / Multiprocessor 1536 2048

Max Thread Blocks / Multiprocessor 8 16

32-bit Registers / Multiprocessor 32768 65536 131072

Max Registers / Thread Block 32768 65536 65536

Max Registers / Thread 63 255

Max Shared Memory / Multiprocessor 48K 112K

Max Shared Memory / Thread Block 48K

Max X Grid Dimension 2^16-1 2^32-1

Hyper-Q No Yes

Dynamic Parallelism No Yes

Streaming Multiprocessor (SMX) Architecture

The Kepler GK110/GK210 SMX unit features several architectural innovations that make it the most

powerful multiprocessor we’ve built for double precision compute workloads.

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST).

SMX Processing Core Architecture

Each of the Kepler GK110/210 SMX units feature 192 single-precision CUDA cores, and each core has

fully pipelined floating-point and integer arithmetic logic units. Kepler retains the full IEEE 754-2008

compliant single- and double-precision arithmetic introduced in Fermi, including the fused multiply-add

(FMA) operation.

One of the design goals for the Kepler GK110/210 SMX was to significantly increase the GPU’s delivered

double precision performance, since double precision arithmetic is at the heart of many HPC

applications. Kepler GK110/210’s SMX also retains the special function units (SFUs) for fast approximate

transcendental operations as in previous-generation GPUs, providing 8x the number of SFUs of the

Fermi GF110 SM.

Similar to GK104 SMX units, the cores within the new GK110/210 SMX units use the primary GPU clock

rather than the 2x shader clock. Recall the 2x shader clock was introduced in the G80 Tesla-architecture

GPU and used in all subsequent Tesla- and Fermi-architecture GPUs. Running execution units at a higher

clock rate allows a chip to achieve a given target throughput with fewer copies of the execution units,

which is essentially an area optimization, but the clocking logic for the faster cores is more power-

hungry. For Kepler, our priority was performance per watt. While we made many optimizations that

benefitted both area and power, we chose to optimize for power even at the expense of some added

area cost, with a larger number of processing cores running at the lower, less power-hungry GPU clock.

Quad Warp Scheduler

The SMX schedules threads in groups of 32 parallel threads called warps. Each SMX features four warp

schedulers and eight instruction dispatch units, allowing four warps to be issued and executed

concurrently. Kepler’s quad warp scheduler selects four warps, and two independent instructions per

warp can be dispatched each cycle. Unlike Fermi, which did not permit double precision instructions to

be paired with other instructions, Kepler GK110/210 allows double precision instructions to be paired

with other instructions.

Each Kepler SMX contains 4 Warp Schedulers, each with dual Instruction Dispatch Units. A single Warp Scheduler Unit is
shown above.

We also looked for opportunities to optimize the power in the SMX warp scheduler logic. For example,

both Kepler and Fermi schedulers contain similar hardware units to handle the scheduling function,

including:

a) Register scoreboarding for long latency operations (texture and load)

b) Inter-warp scheduling decisions (e.g., pick the best warp to go next among eligible candidates)

c) Thread block level scheduling (e.g., the GigaThread engine)

However, Fermi’s scheduler also contains a complex hardware stage to prevent data hazards in the

math datapath itself. A multi-port register scoreboard keeps track of any registers that are not yet ready

with valid data, and a dependency checker block analyzes register usage across a multitude of fully

decoded warp instructions against the scoreboard, to determine which are eligible to issue.

For Kepler, we recognized that this information is deterministic (the math pipeline latencies are not

variable), and therefore it is possible for the compiler to determine up front when instructions will be

ready to issue, and provide this information in the instruction itself. This allowed us to replace several

complex and power-expensive blocks with a simple hardware block that extracts the pre-determined

latency information and uses it to mask out warps from eligibility at the inter-warp scheduler stage.

New ISA Encoding: 255 Registers per Thread

The number of registers that can be accessed by a thread has been quadrupled in GK110, allowing each

thread access to up to 255 registers. Codes that exhibit high register pressure or spilling behavior in

Fermi may see substantial speedups as a result of the increased available per-thread register count. A

compelling example can be seen in the QUDA library for performing lattice QCD (quantum

chromodynamics) calculations using CUDA. QUDA fp64-based algorithms see performance increases up

to 5.3x due to the ability to use many more registers per thread and experiencing fewer spills to local

memory.

GK210 further improves this, doubling the overall register file capacity per SMX as compared to GK110.

In doing so, it allows applications to more readily make use of higher numbers of registers per thread

without sacrificing the number of threads that can fit concurrently per SMX. For example, a CUDA

kernel using 128 registers thread on GK110 is limited to 512 out of a possible 2048 concurrent threads

per SMX, limiting the available parallelism. GK210 doubles the concurrency automatically in this case,

which can help to cover arithmetic and memory latencies, improving overall efficiency.

Shuffle Instruction

To further improve performance, Kepler implements a new Shuffle instruction, which allows threads

within a warp to share data. Previously, sharing data between threads within a warp required separate

store and load operations to pass the data through shared memory. With the Shuffle instruction,

threads within a warp can read values from other threads in the warp in just about any imaginable

permutation. Shuffle supports arbitrary indexed references – i.e. any thread reads from any other

thread. Useful shuffle subsets including next-thread (offset up or down by a fixed amount) and XOR

“butterfly” style permutations among the threads in a warp, are also available as CUDA intrinsics.

Shuffle offers a performance advantage over shared memory, in that a store-and-load operation is

carried out in a single step. Shuffle also can reduce the amount of shared memory needed per thread

block, since data exchanged at the warp level never needs to be placed in shared memory. In the case of

FFT, which requires data sharing within a warp, a 6% performance gain can be seen just by using Shuffle.

This example shows some of the variations possible using the new Shuffle instruction in Kepler.

Atomic Operations

Atomic memory operations are important in parallel programming, allowing concurrent threads to

correctly perform read-modify-write operations on shared data structures. Atomic operations such as

add, min, max, and compare-and-swap are atomic in the sense that the read, modify, and write

operations are performed without interruption by other threads. Atomic memory operations are widely

used for parallel sorting, reduction operations, and building data structures in parallel without locks that

serialize thread execution.

Throughput of global memory atomic operations on Kepler GK110/210 are substantially improved

compared to the Fermi generation. Atomic operation throughput to a common global memory address

is improved by 9x to one operation per clock. Atomic operation throughput to independent global

addresses is also significantly accelerated, and logic to handle address conflicts has been made more

efficient. Atomic operations can often be processed at rates similar to global load operations. This speed

increase makes atomics fast enough to use frequently within kernel inner loops, eliminating the

separate reduction passes that were previously required by some algorithms to consolidate results.

Kepler GK110 also expands the native support for 64-bit atomic operations in global memory. In

addition to atomicAdd, atomicCAS, and atomicExch (which were also supported by Fermi and Kepler

GK104), GK110 supports the following:

 atomicMin

 atomicMax

 atomicAnd

 atomicOr

 atomicXor

Other atomic operations which are not supported natively (for example 64-bit floating point atomics)

may be emulated using the compare-and-swap (CAS) instruction.

Texture Improvements

The GPU’s dedicated hardware Texture units are a valuable resource for compute programs with a need

to sample or filter image data. The texture throughput in Kepler is significantly increased compared to

Fermi – each SMX unit contains 16 texture filtering units, a 4x increase vs the Fermi GF110 SM.

In addition, Kepler changes the way texture state is managed. In the Fermi generation, for the GPU to

reference a texture, it had to be assigned a “slot” in a fixed-size binding table prior to grid launch. The

number of slots in that table ultimately limits how many unique textures a program can read from at run

time. Ultimately, a program was limited to accessing only 128 simultaneous textures in Fermi.

With bindless textures in Kepler, the additional step of using slots isn’t necessary: texture state is now

saved as an object in memory and the hardware fetches these state objects on demand, making binding

tables obsolete. This effectively eliminates any limits on the number of unique textures that can be

referenced by a compute program. Instead, programs can map textures at any time and pass texture

handles around as they would any other pointer.

Kepler Memory Subsystem – L1, L2, ECC

Kepler’s memory hierarchy is organized similarly to Fermi. The Kepler architecture supports a unified

memory request path for loads and stores, with an L1 cache per SMX multiprocessor. Kepler GK110 also

enables compiler-directed use of an additional new cache for read-only data, as described below.

Thread

Shared
Memory

L1
Cache

L2
Cache

DRAM

Kepler Memory Hierarchy

Read-Only
Data Cache

Configurable Shared Memory and L1 Cache

In the Kepler GK110 architecture, as in the previous generation Fermi architecture, each SMX has 64 KB

of on-chip memory that can be configured as 48 KB of Shared memory with 16 KB of L1 cache, or as 16

KB of shared memory with 48 KB of L1 cache. Kepler now allows for additional flexibility in configuring

the allocation of shared memory and L1 cache by permitting a 32KB / 32KB split between shared

memory and L1 cache. To support the increased throughput of each SMX unit, the shared memory

bandwidth for 64b and larger load operations is also doubled compared to the Fermi SM, to 256B per

core clock.

For the GK210 architecture, the total amount of configurable memory is doubled to 128 KB, allowing a

maximum of 112 KB shared memory and 16 KB of L1 cache. Other possible memory configurations are

32 KB L1 cache with 96 KB shared memory, or 48 KB L1 cache with 80 KB of shared memory. This

increase allows a similar improvement in concurrency of threads as is enabled by the register file

capacity improvement described above.

48KB Read-Only Data Cache

In addition to the L1 cache, Kepler introduces a 48KB cache for data that is known to be read-only for

the duration of the function. In the Fermi generation, this cache was accessible only by the Texture unit.

Expert programmers often found it advantageous to load data through this path explicitly by mapping

their data as textures, but this approach had many limitations.

In Kepler, in addition to significantly increasing the capacity of this cache along with the texture

horsepower increase, we decided to make the cache directly accessible to the SM for general load

operations. Use of the read-only path is beneficial because it takes both load and working set footprint

off of the Shared/L1 cache path. In addition, the Read-Only Data Cache’s higher tag bandwidth supports

full speed unaligned memory access patterns among other scenarios.

Use of the read-only path can be managed automatically by the compiler or explicitly by the

programmer. Access to any variable or data structure that is known to be constant through programmer

use of the C99‐standard “const __restrict” keyword may be tagged by the compiler to be loaded through

the Read‐Only Data Cache. The programmer can also explicitly use this path with the __ldg() intrinsic.

Improved L2 Cache

The Kepler GK110/210 GPUs feature 1536KB of dedicated L2 cache memory, double the amount of L2

available in the Fermi architecture. The L2 cache is the primary point of data unification between the

SMX units, servicing all load, store, and texture requests and providing efficient, high speed data sharing

across the GPU. The L2 cache on Kepler offers up to 2x of the bandwidth per clock available in Fermi.

Algorithms for which data addresses are not known beforehand, such as physics solvers, ray tracing, and

sparse matrix multiplication especially benefit from the cache hierarchy. Filter and convolution kernels

that require multiple SMs to read the same data also benefit.

Memory Protection Support

Like Fermi, Kepler’s register files, shared memories, L1 cache, L2 cache and DRAM memory are

protected by a Single-Error Correct Double-Error Detect (SECDED) ECC code. In addition, the Read-Only

Data Cache supports single-error correction through a parity check; in the event of a parity error, the

cache unit automatically invalidates the failed line, forcing a read of the correct data from L2.

ECC checkbit fetches from DRAM necessarily consume some amount of DRAM bandwidth, which results

in a performance difference between ECC-enabled and ECC-disabled operation, especially on memory

bandwidth-sensitive applications. Kepler GK110 implements several optimizations to ECC checkbit fetch

handling based on Fermi experience. As a result, the ECC on-vs-off performance delta has been reduced

by an average of 66%, as measured across our internal compute application test suite.

Dynamic Parallelism

In a hybrid CPU-GPU system, enabling a larger amount of parallel code in an application to run efficiently

and entirely within the GPU improves scalability and performance as GPUs increase in perf/watt. To

accelerate these additional parallel portions of the application, GPUs must support more varied types of

parallel workloads.

Dynamic Parallelism is introduced with Kepler GK110 and also included in GK210. It allows the GPU to

generate new work for itself, synchronize on results, and control the scheduling of that work via

dedicated, accelerated hardware paths, all without involving the CPU.

Fermi was very good at processing large parallel data structures when the scale and parameters of the

problem were known at kernel launch time. All work was launched from the host CPU, would run to

completion, and return a result back to the CPU. The result would then be used as part of the final

solution, or would be analyzed by the CPU which would then send additional requests back to the GPU

for additional processing.

In Kepler GK110/210 any kernel can launch another kernel, and can create the necessary streams,

events and manage the dependencies needed to process additional work without the need for host CPU

interaction. This architectural innovation makes it easier for developers to create and optimize recursive

and data-dependent execution patterns, and allows more of a program to be run directly on GPU. The

system CPU can then be freed up for additional tasks, or the system could be configured with a less

powerful CPU to carry out the same workload.

Dynamic Parallelism allows more parallel code in an application to be launched directly by the GPU onto itself (right side of

image) rather than requiring CPU intervention (left side of image).

Dynamic Parallelism allows more varieties of parallel algorithms to be implemented on the GPU,

including nested loops with differing amounts of parallelism, parallel teams of serial control-task

threads, or simple serial control code offloaded to the GPU in order to promote data-locality with the

parallel portion of the application.

Because a kernel has the ability to launch additional workloads based on intermediate, on-GPU results,

programmers can now intelligently load-balance work to focus the bulk of their resources on the areas

of the problem that either require the most processing power or are most relevant to the solution.

One example would be dynamically setting up a grid for a numerical simulation – typically grid cells are

focused in regions of greatest change, requiring an expensive pre-processing pass through the data.

Alternatively, a uniformly coarse grid could be used to prevent wasted GPU resources, or a uniformly

fine grid could be used to ensure all the features are captured, but these options risk missing simulation

features or “over-spending” compute resources on regions of less interest.

With Dynamic Parallelism, the grid resolution can be determined dynamically at runtime in a data-

dependent manner. Starting with a coarse grid, the simulation can “zoom in” on areas of interest while

avoiding unnecessary calculation in areas with little change. Though this could be accomplished using a

sequence of CPU-launched kernels, it would be far simpler to allow the GPU to refine the grid itself by

analyzing the data and launching additional work as part of a single simulation kernel, eliminating

interruption of the CPU and data transfers between the CPU and GPU.

–Image attribution Charles Reid

The above example illustrates the benefits of using a dynamically sized grid in a numerical simulation. To

meet peak precision requirements, a fixed resolution simulation must run at an excessively fine

resolution across the entire simulation domain, whereas a multi-resolution grid applies the correct

simulation resolution to each area based on local variation.

Hyper-Q

One of the challenges in the past has been keeping the GPU supplied with an optimally scheduled load

of work from multiple streams. The Fermi architecture supported 16-way concurrency of kernel

launches from separate streams, but ultimately the streams were all multiplexed into the same

hardware work queue. This allowed for false intra-stream dependencies, requiring dependent kernels

within one stream to complete before additional kernels in a separate stream could be executed. While

this could be alleviated to some extent through the use of a breadth-first launch order, as program

complexity increases, this can become more and more difficult to manage efficiently.

Kepler GK110/210 improve on this functionality with their Hyper-Q feature. Hyper-Q increases the total

number of connections (work queues) between the host and the CUDA Work Distributor (CWD) logic in

the GPU by allowing 32 simultaneous, hardware-managed connections (compared to the single

connection available with Fermi). Hyper-Q is a flexible solution that allows connections from multiple

CUDA streams, from multiple Message Passing Interface (MPI) processes, or even from multiple threads

within a process. Applications that previously encountered false serialization across tasks, thereby

limiting GPU utilization, can see up to a 32x performance increase without changing any existing code.

Hyper-Q permits more simultaneous connections between CPU and GPU.

Each CUDA stream is managed within its own hardware work queue, inter-stream dependencies are

optimized, and operations in one stream will no longer block other streams, enabling streams to execute

concurrently without needing to specifically tailor the launch order to eliminate possible false

dependencies.

Hyper-Q offers significant benefits for use in MPI-based parallel computer systems. Legacy MPI-based

algorithms were often created to run on multi-core CPU systems, with the amount of work assigned to

each MPI process scaled accordingly. This can lead to a single MPI process having insufficient work to

fully occupy the GPU. While it has always been possible for multiple MPI processes to share a GPU,

these processes could become bottlenecked by false dependencies. Hyper-Q removes those false

dependencies, dramatically increasing the efficiency of GPU sharing across MPI processes.

Hyper-Q working with CUDA Streams: In the Fermi model shown on the left, only (C,P) & (R,X) can run concurrently due to
intra-stream dependencies caused by the single hardware work queue. The Kepler Hyper-Q model allows all streams to run
concurrently using separate work queues.

Grid Management Unit - Efficiently Keeping the GPU Utilized

New features introduced with Kepler GK110, such as the ability for CUDA kernels to launch work directly

on the GPU with Dynamic Parallelism, required that the CPU-to-GPU workflow in Kepler offer increased

functionality over the Fermi design. On Fermi, a grid of thread blocks would be launched by the CPU and

would always run to completion, creating a simple unidirectional flow of work from the host to the SMs

via the CUDA Work Distributor (CWD) unit. Kepler GK110/210 improve the CPU-to-GPU workflow by

allowing the GPU to efficiently manage both CPU- and CUDA-created workloads.

We discussed the ability of Kepler GK110 GPU to allow kernels to launch work directly on the GPU, and

it’s important to understand the changes made in the Kepler GK110 architecture to facilitate these new

functions. In Kepler GK110/210, a grid can be launched from the CPU just as was the case with Fermi,

however new grids can also be created programmatically by CUDA within the Kepler SMX unit. To

manage both CUDA-created and host-originated grids, a new Grid Management Unit (GMU) was

introduced in Kepler GK110. This control unit manages and prioritizes grids that are passed into the

CWD to be sent to the SMX units for execution.

The CWD in Kepler holds grids that are ready to dispatch, and it is able to dispatch 32 active grids, which

is double the capacity of the Fermi CWD. The Kepler CWD communicates with the GMU via a bi-

directional link that allows the GMU to pause the dispatch of new grids and to hold pending and

suspended grids until needed. The GMU also has a direct connection to the Kepler SMX units to permit

grids that launch additional work on the GPU via Dynamic Parallelism to send the new work back to

GMU to be prioritized and dispatched. If the kernel that dispatched the additional workload pauses, the

GMU will hold it inactive until the dependent work has completed.

The redesigned Kepler HOST to GPU workflow shows the new Grid Management Unit, which allows it to manage the actively
dispatching grids, pause dispatch, and hold pending and suspended grids.

NVIDIA GPUDirect™

When working with a large amount of data, increasing the data throughput and reducing latency is vital

to increasing compute performance. Kepler GK110/210 support the RDMA feature in NVIDIA GPUDirect,

which is designed to improve performance by allowing direct access to GPU memory by third-party

devices such as IB adapters, NICs, and SSDs. When using CUDA 5.0 or later, GPUDirect provides the

following important features:

 Direct memory access (DMA) between NIC and GPU without the need for CPU-side data

buffering.

 Significantly improved MPISend/MPIRecv efficiency between GPU and other nodes in a network.

 Eliminates CPU bandwidth and latency bottlenecks

 Works with variety of 3rd-party network, capture, and storage devices

Applications like reverse time migration (used in seismic imaging for oil & gas exploration) distribute the

large imaging data across several GPUs. Hundreds of GPUs must collaborate to crunch the data, often

communicating intermediate results. GPUDirect enables much higher aggregate bandwidth for this GPU-

to-GPU communication scenario within a server and across servers with the P2P and RDMA features.

Kepler GK110 also supports other GPUDirect features such as Peer-to-Peer and GPUDirect for Video.

GPUDirect RDMA allows direct access to GPU memory from 3rd-party devices such as network adapters, which translates into

direct transfers between GPUs across nodes as well.

Conclusion

With the launch of Fermi in 2010, NVIDIA ushered in a new era in the high performance computing

(HPC) industry based on a hybrid computing model where CPUs and GPUs work together to solve

computationally-intensive workloads. The NVIDIA Kepler GK110/210 GPUs again raise the bar for the

HPC industry.

Kepler GK110 and GK210 are designed to maximize computational performance and throughput

computing with a focus on fast double precision. The architecture has many new innovations such as

SMX, Dynamic Parallelism, and Hyper-Q that make hybrid computing dramatically faster, easier to

program, and applicable to a broader set of applications. Kepler GK110/210 GPUs will be used in

numerous systems ranging from workstations to supercomputers to address the most daunting

challenges in HPC.

Appendix A - Quick Refresher on CUDA

CUDA is a combination hardware/software platform that enables NVIDIA GPUs to execute programs

written with C, C++, Fortran, and other languages. A CUDA program invokes parallel functions called

kernels that execute across many parallel threads. The programmer or compiler organizes these threads

into thread blocks and grids of thread blocks, as shown in Figure 1. Each thread within a thread block

executes an instance of the kernel. Each thread also has thread and block IDs within its thread block and

grid, a program counter, registers, per-thread private memory, inputs, and output results.

A thread block is a set of concurrently executing threads that can cooperate among themselves through

barrier synchronization and shared memory. A thread block has a block ID within its grid. A grid is an

array of thread blocks that execute the same kernel, read inputs from global memory, write results to

global memory, and synchronize between dependent kernel calls. In the CUDA parallel programming

model, each thread has a per-thread private memory space used for register spills, function calls, and C

automatic array variables. Each thread block has a per-block shared memory space used for inter-thread

communication, data sharing, and result sharing in parallel algorithms. Grids of thread blocks share

results in Global Memory space after kernel-wide global synchronization.

Figure 1: CUDA Hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block shared,

and per-application global memory spaces.

CUDA Hardware Execution

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes one or more

kernel grids; a streaming multiprocessor (SM on Fermi / SMX on Kepler) executes one or more thread

blocks; and CUDA cores and other execution units in the SMX execute thread instructions. The SMX

executes threads in groups of 32 threads called warps. While programmers can generally ignore warp

execution for functional correctness and focus on programming individual scalar threads, they can

greatly improve performance by having threads in a warp execute the same code path and access

memory with nearby addresses.

Notice

ALL INFORMATION PROVIDED IN THIS WHITE PAPER, INCLUDING COMMENTARY, OPINION, NVIDIA

DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER

DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA

MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO

MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no

responsibility for the consequences of use of such information or for any infringement of patents or

other rights of third parties that may result from its use. No license is granted by implication or

otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this

publication are subject to change without notice. This publication supersedes and replaces all

information previously supplied. NVIDIA Corporation products are not authorized for use as critical

components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, FERMI, KEPLER and GeForce are trademarks or registered trademarks of

NVIDIA Corporation in the United States and other countries. Other company and product names may

be trademarks of the respective companies with which they are associated.

Copyright

© 2014 NVIDIA Corporation. All rights reserved.

