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QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 usa)
Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

When elementary quantum systems, such as polarized
photons, are used to transmit digital information,
the uncertainty principle gives rise to novel cryp-
tographic phenomena unachieveable with traditional
transmission media, e.g. a communications channel on
which it is impossible in principle to eavesdrop
without a high probability of disturbing the trans-
mission in such a way as to be detected. Such a
quantum channel can be used in conjunction with or-
dinary insecure classical channels to distribute
random key information between two users with the
assurance that it remains unknown to anyone else,
even when the users share no secret information ini-
tially. We also present a protocol for coin-tossing
by exchange of quantum messages, which is secure
against traditional kinds of cheating, even by an
opponent’ with unlimited computing power, but, ironi-
cally can be subverted by use of a still subtler
quantum phenomemon, the Einstein-Podolsky-Rosen par-
adox.

I. Introduction

Conventional cryptosystems such as ENIGMA,
DES, or even RSA, are based on a mixture of guess-
work and mathematics. Information theory shows that
traditional secret-key cryptosystems carnot be to-
tally secure unless the key, used once only, is at
least as long as the cleartext. On the other hand,
the theory of computational complexity is not yet
well enough understood to prove the computational
security of public-key cryptosystems.

In this paper we use a radically different
foundation for cryptography, viz. the uncertainty
principle of quantum physics. In conventional in-
formation theory and cryptography, it is taken for
granted that digital communications in principle can
always be passively monitored or copied, even by
someone ignorant of their meaning. However, when
information is encoded in non-orthogonal quantum
states, such as single photons with polarization
directions 0, 45, 90, and 135 degrees, one obtains a
communications channel whose transmissions in prin-
ciple cannot be read or copied reliably by an eaves-
dropper ignorant of certain key information used in
forming the transmission. The eavesdropper cannot
even gain partial information about such a transmis-
sion without altering it a random and uncontrollable
way likely to be detected by the channel's legiti-
mate users.

Quantum coding was first described in (W],
along with two applications: making money that is in

principle impossible to counterfeit, and multiplex-
ing two or three messages in such a way that reading
one destroys the others. More recently [BBBW],
quantum coding has been used in conjunction with
public key cryptographic techniques to yield several
schemes for unforgeable subway tokens. Here we show
that quantum coding by itself achieves one of the
main advantages of public key cryptography by per-
mitting secure distribution of random key informa-
tion between parties who share no secret information
initially, provided the parties have access, besides
the quantum channel, to an ordinary channel suscep-~
tible to passive but not active eavesdropping. Even
in the presence of active eavesdropping, the two
parties can still distribute key securely if they
share some secret information initially, provided
the eavesdropping is not so active as to suppress
communications completely. We also present a proto-
col for coin tossing by exchange of quantum mes-
sages. Except where otherwise noted the protocols
are provably secure even against an opponent with
superior technology and unlimited computing power,
barring fundamental violations of accepted physical
laws.

Offsetting these advantages is the practical
disadvantage that quantum transmissions are neces-
sarily very weak and cannot be amplified in transit.
Moreover, quantum cryptography does not provide di-
gital signatures, or applications such as certified
mail or the ability to settle disputes before a
judge.

II. Essential Properties of Polarized Photons

Polarized light can be produced by sending an
ordinary light beam through a polarizing apparatus
such as a Polaroid filter or calcite crystal; the
beam's polarization axis is determined by the orien-
tation of the polarizing apparatus in which the beam
originates. Generating single polarized photons is
also possible, in principle by picking them out of a
polarized beam, and in practice by a variation of an
experiment [AGR] of Aspect, et. al.

Although polarization is a continuous varia-
ble, the uncertainty principle forbids measurements
on any single photon from revealing more than one
bit about its polarization. For example, if a light
beam with polarization axis a is sent into a filter
oriented at angle B, the individual photons behave
dichotomously and probabilisticaqlly, being transmit-
ted with probability cosz(a—B) and absorbed with the

complementary probability sinQ(a-B). The photons
behave deterministically only when the two axes are
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parallel (certain transmission) or perpendicular
(certain absorbtion).

If the two axes are not perpendicular, so that
some photons are transmitted, one might hope to
learn additional information about « by measuring
the transmitted photons again with a polarizer ori-
ented at some third angle; but this is to no avail,
because the transmitted photons, in passing through
the B polarizer, emerge with exactly J polariza-
tion, having lost all memory of their previous po-
larization «a.

Another way one might hope to learn more than
one bit from a single photon would be not to measure
it directly, but rather somehow amplify it into a
clone of identically polarized photons, then perform
measurements on these; but this hope is also vain,
because such cloning can be shown to be inconsistent
with the foundations of quantum mechanics [WZ].

Formally, quantum mechanics represents the
internal state of a quantum system (e.g. the polari-
zation Sf a photon) as a vector ¢ of unit length
in a linear space H over the field of complex num-
bers (Hilbert space). The inner product of two vec-
tors <¢|¢>, is defined as 2j¢-‘wj, where * indi-
cates complex conjugation. The éimensionality of
the Hilbert space depends on the system, being larg-
er (or even infinite) for more complicated systems.
Each physical measurement M that might be performed
on the system corresponds to-a resolution of its
Hilbert space into orthogonal subspaces, one for
each possible outcome of the measurement. The num-
ber of possible outcomes is thus limited to the
dimensionality 4 of the Hilbert space, the most
complete measurements being those that resolve the
Hilbert space into d 1-dimensional subspaces.

Let Mp represent the projection operator onto
the k'th subspace of measurement M, so that the
identity operator on H can be represented as a sum
of projections: I = Mj+My+.... When a system in
state ¢ is subjected to measurement M, its behavior
is in general probabilistic: outcome k occurs with
a probability equal to IMk¢|2, the square of the
length of the state vector's projection into sub-
space Mk. After the measurement, the system is left
in a new state M y/IM¥|, which is the normalized
unit vector in the direction of the old state
vector's projection into subspace Mk. The measure-
ment thus has a deterministic outcome, and leaves
the state vector unmodified, only in the exceptional
case that the initial state vector happens to lie
entirely in one of the orthogonal subspaces charac-
terizing the measurement.

The Hilbert space for a single polarized pho-
ton is 2-dimensional; thus the state of a photon may
be completely described as a linear combination of,
for example, the two unit vectors ry = (1,0) and
r, = (0,1), representing respectively horizontal and
vertical polarization. In particular, a photon po-
jarized at angle a to the horizontal is described
by the state‘vector (cosa, sina). When subjected
to a measurement of vertical-vs.-horizontal polari-
zation, such a photon in effectzchooses to become
horizontal with probability cos®a and vertical with
probability sin“a. The two orthogonal vectors r,
and r, thus a exemplify the resolution of a 2-

dimensional Hilbert space into ‘2 orthqunal 1-

dimensional subspaces; henceforth ry and ry will be
said to comprise the 'rectilinear' basis for the
Hilbert space.

An alternative basis for the same Hilbert
space is provided by the two 'diagonal' basis vec-
tors dq = (0.707,0.707), representing a 45-degree
photon, and dz = (0.707,-0.707), representing a
135-degree photon. Two bases (e.g. rectilinear and
Qiagonal) are said to be 'conjugate' [W], if each
vector of one basis has equal-length projections
onto all vectors of the other basis: this means that
a system prepared in a specific state of one basis
will behave entirely randomly, and lose all its
stored information, when subjected to a measurement
corresponding to the other basis. Owing to the com-
plex nature of its coefficients, the two-dimensional
Hilbert space also admits a third basis conjugate to
both the rectilinear and diagonal bases, comprising
the two so-called 'circular' polarizations
¢, = (0.707,0.707i) and €, = (0.7071,0.707); but
the rectilinear and diagonal bases are all that will
be needed for the cryptographic applications in this
paper.

The Hilbert space for a compound system is
constructed by taking the tensor product of the Hil-
bert spaces of its components; thus the state of a
pair of phntons is characterized by a unit vector in
the 4—dimensiona1 Hilbert space spanned by the or-
thogonal basis vectors ryry, rqr,, rprq, and ryry.
This formalism entails that the state of a compound
system is not generally expressible as the cartesian
product of the states of its parts: e.g. the

‘Einstein-Podolsky-Rosen state of two photons,

0.7071(r1r2—r2r1), to be discussed later, is not
equivalent to.any product of one-photon states.

III. Quantum Public Key Distribution

In traditional public-key cryptography, trap-
door functions are used to conceal the meaning of
messages between two users from a passive eavesdrop-
per, dgpite the lack of any initial shared secret
information between the two users. In quantum pub-
lic key distribution, the quantum channel is not
used directly to send meaningful messages, but is
rather used to transmit a supply of random bits be-
tween two users who share no secret information ini-
tially, in such a way that the users, by subsequent
consultation over an ordinary non-quantum channel
subject to passive eavesdropping, can tell with high
.probability whether the original quantum transmis-
sion has been disturbed in transit, as it would be
by an eavesdrooper (it is the qguantum channel's pe-
culiar virtue to compel eavesdropping to be active).
If the transmission has not been disturbed, they
agree to use these shared secret bits in the well-
known way as a one-time pad to conceal the meaning
of subsequent meaningful communications, or for oth-
er cryptographic applications (e.g. authentication
tags) requiring shared secret random information.

If transmission has been disturbed, they discard it
and try again, deferring any meaningful .communica-
tions until they have succeeded in transmitting
enough random bits through the quantum channel to
serve as a one-time pad.
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In more detail one user ('Alice') chooses a
random bit string and a random sequence of polariza-
tion bases (rectilinear or diagonal). She then
sends the other user (Bob) a train of photons, each
representing one bit of the string in the basis cho-
sen for that bit position, a horizontal or 45-degree
photon standing for a binary zero and a vertical or
135-degree photon standing for a binary 1. As Bob
receives the photons he decides, randomly for each
photon and independently of Alice, whether to meas-
ure the photon's rectilinear polarization or its
diagonal polarization, and interprets the result of
the measurement as a binary zero or one. As ex-
plained in the previous section a random answer is
produced and all information lost when one attempts
to measure the rectilinear polarization of a diago-
nal photon, or vice versa. Thus Bob obtains mean-
ingful data from only half the photops he detects--
those for which he guessed the correct polarization
basis. Bob's information is further degraded by the
fact that, realistically, some of the photons would
be lost in transit or would fail to be counted by
Bob's imperfectly-efficient detectors.

Subsequent steps of the protocol také place
over an ordinary public communications channel, as-
sumed to be susceptible to eavesdropping but not to
the injection or alteration of messages. Bob and
Alice first determine, by public exchange of mes-
sages, which photons were successfully received and
of these which were received with the correct basis.
If the quantum transmission has been undisturbed,
Alice and Bob should agree on the bits encoded by
these photons, even this data has never been dis-
cussed over the public channel. Each of these pho-
tons, in other words, presumably carries one bit of
random information (e.g; whether a rectilinear pho-
ton was vertical or horizontal) known to Alice and
Bob but to no one else.

Because of the random mix of rectilinear and

diagonal photons in the quantum transmission, any
eavesdropping carries the risk of altering the
transmission in such a way as to produce disagree-
ment between Bob and Alice on some of the bits on
which they think they should agree. Specifically,
it can be shown that no measurement on a photon in
transit, by an eavesdropper who is informed of the
photon's' original basis only after he has performed
his measurement, can yield more than 1/2 expected
bits of information about the key bit encoded by
that photon; and that any such measurement yielding
b bits of expected information (b £ 1/2) must induce
a disagreement with probability at least b/2 if
the measured photon, or an attempted forgery of it,
is later re-measured in its original basis.  (This
optimum tradeoff occurs, for example, when the ea-
vesdropper measures and retransmits all intercepted
photons in the rectilinear basis, thereby learning
the correct polarizations of half the photons and
inducing disagreements in 1/4 of those that are lat-
er re-measured in the original basis.)

Alice and Bob can therefore test for eaves-
dropping by publicly comparing some of the bits on
which they think they should agree, though of course
this sacrifices the secrecy of these bits. The bit
positions used in this comparison should be a random
subset (say one third) of the correctly received
bits, so that eavesdropping on more than a few pho-
tons is unlikely to escape detection. If all the
comparisons agree, Alice and Bob can conclude that
the quantum transmission has been free of signifi-
cant eavesdropping;, and those of the remaining bits
that were sent and received with the same basis also
agree, and can safely be used as a one time pad for
subsequent secure communications over the public
channel. When this one-time pad is used up, the
protocol is repeated to send a new body of random
information over the quantum channel.

The following example illustrates the above proto-

QUANTUM TRANSMISSION

Alice's random bits...... ceeens Ceeecaciesaenanenns @
Random sending bases.........cccveeenennnn ceanenens D
Photons Alice sends............ . 7z
Random receiving bases.......... creenecens ceeeeses R
Bits as received by Bob.....veevencnnn ceeeesesenn |
PUBLIC DISCUSSION
Bob reports bases of received bits................ R
Alice says which bases were correct...............
Presumably shared information (if no eavesdrop)...
Bob reveals some key bits at random...............
Alice confirms them..... cereceenteenn Ceenn ceeenn
OUTCOME
Remaining shared secret bits.........cc0euen e

Oexn -

1 0 1 1 ¢} 0 1 0 1 1 0. O 1
D R R R R R D D R D D D R
Ne ]l eeoeNd NS
D R R D D R D R D D D D R
1 1 0 0 0 1 1 1 0 1
D R D D R R D D D R
OK OK OK OK OK OK
1 1 0] 1 0 1

1 0

OK OK

The need for the public (non-quantum) channel
in this scheme to be immune to active eavesdropping
can be relaxed if the Alice and Bob have agreed be-
forehand on a small secret key, which they use to
create Wegman-Carter authentication tags [WC] for
their messages over the public channel. In more .
detail the Wegman-Carter multiple-message authenti-
cation scheme uses a small random'key to produce a
message-dependent ‘tag' (rather like a check sum)
for an arbitrary large message, in such a way that

an eavesdropper ignorant of the key has only a small
probability of being able to generate any othex va-
1id message-tag pairs. The tag thus provides evi-
dence that the message is legitimate, and was not
generated or altered by someone ignorant of the key.
(Key bits are gradually used up in the Wegman-Carter
scheme, and cannot be reused without compromising
the system's provable security; however, in the
present application, these key bits can be replaced
by fresh random bits successfully transmitted
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through the quantum channel.) The eavesdropper can
still prevent communication by suppressing messages
in the public channel, as of course he can by sup-
pressing or excessively perturbing the photons sent
through the quantum channel. However, in either

technology.
other hand,
gy.

The honestly-followed protocol, on the
could be realized with current technolo-

1. Alice chooses randomly one basis (say rectili--

case, Alice and Bob will conclude with high proba- near) and a sequence of random bits (one thousand

bility that their secret communications are being should be sufficient). She then encodes her bits as
L B . . . N

suppressed, and will not be fooled into thinking a sequence of photons in this same basis, using the

their communicaticns are secure when in fact they're
not.

IV. Quantum Coin Tossing

'Coin Flipping by Telephone' was first dis-
cussed by Blum [Bl]. The problem is for two dis-
trustful parties, communicating at a distance with-
out the help of a third party,
winner and a loser in such a way that each party has
exactly 50 per cent chance of winning. Any attempt
by either party to bias the outcome should be de-
tected by the other party as cheating. Previous
protocols for this problem are based on unproved
assumptions in computaticnal complexity theory,
wvhich makes them vulnerable to a breakthrough in
algorithm design.

-
st,

By corntra we present here a scheme involv-
ing classical and quantum messages which is secure
against traditional kinds of cheating, even by. an
cpponernt with unlimited computing power. Ironical-
ly, it can be subverted Ly a still subtler quantum
rhenonmenon, the so-called Einstein-Podolsky-Rosen
effect. This threat is merely theoretical, becausc
it requires perfect efficiency of storage and detec-
tion of photons, which though not impossible in
rrinciple is £ beyond the capabilities of current

ai

to come to agree on a

same coding scheme as before. She sends the result-
ing train of polarized photons to Bob.

2. Bob chooses, independently and randomly for each
photon, a sequence of reading bases. He reads the
photons accordingly, recording the results in two
tables, one of rectilinearly received photons and
one of diagonally received photons. Because of
losses in his detectors and of the transmission
channel, some of the photons may not be received at
all, resulting in holes in his tables. At this
time, Bob makes his guess as to which basis Alice
used, and announces it to Alice. He wins if he
guessed correctly, loses otherwise.

3. Alice reports to Bob whether he won, by telling
him which basis she had actually used. She certif-
les this information by sending Bob, over a classi-
cal channel, her entire original bit sequence used
in step 1.

4. Bob verifies that no cheating has occurred by
comparing Alice's sequence with both his tables.
There should be perfect agreement with the table
corresponding to Alice's basis and no correlation
with the other table. 1In our example, Bob can be
confident that Alice's original basis was indeed
rectilincs as claimed.

Illustrating the protocol by a specific example,

Alice's bit striny

t ...................... e e e e 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0
Zlice's random buatiS...iuue it rianianennnessennn Rectilinear
fhotons Alice sends..... e e i reeee e I «~> l «r > 1 P $ Y=Y t t > >
Bob's random Destb. e eeien s e oo nannrane o en -R D D D R R D R R D R R D D R
Bob's rectilineer table..........voiiih tiiain. 1 1 0 0
Eok's diagonal tawl 0 9 1 0
Bob's guess..... ‘Rectilinear’
hlice's reply.. 'You win'
Alice sends her ociginal bit string to certify.... rj 0 1 0 0 1 1 1 0 1 0 1 1 0 0’
Bob's rectilinecr table......cvveiiniiiunnennnnnn, 1 1 0- 0
roo's diagonal tablu.....aciiiiiil i iieii e e 0 1 1 0

In order “o cheat, Bob would necd to guess

Zlice's basis w.th probability grecate: than 1/2.
This amounts tco distingushing a train of photons
randomly polarized in one basis from a train random-
ly polarized in another basis. However, it can be
shown that any measuring apparatus capable of making
this distincticn can also be used, in conjunction
with the Einstein-Podolskv-Rosen effect described
F¢low, to transmit useful information faster than
the specd of light, in violation of well-establis ied
physical laws.

Alice could attempt cheating either at step 1

would need to convince Bob that her photons were
diagonally polarized, which she can only do by prod-
ucing a sequer.ce of bits in perfect agreement with
Bob's diagonal table. This she cannot do reliably
because this table is the result of probabilistic
behavior of the photons after the left her hands.
Suppose she gocs ahecad anyway and sends Bob a new
‘original' sequence, different from the one that she
used in step 1, in hopes that it will by luck agree
perfectly with Bob's diaognal table. This attempt
to cheat requires Alice to be not only lucky but
daring, because in the vast majority of cases, the
gamble would fail and would be detected as cheating.

ov step 2. Let us first assume that she follows

step 1 honestly and finds herself los.ng at the end
:% step z. because Bob made he correct guess, here
~citliniear. In order to pretend she has won, she

By contrast, in traditional coin-tossing schemes,
analogous attempts to seize a lucky victory from the
jaws of defeat, though unlikely to succeeed, are
unaccompanied by any danger of detection.
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It is easy to see that things are even worse
for Alice if she attempts to cheat in step 1, by
sending a mixture of rectilinear and diagonal pho-
tons, or photons which are polarized neither rectil-
inearly or diagonally. In this case she will not be
able to agree with either of Bob's tables in step 3,
since both tables will record the results of proba-
bilistic behavior not under her control.

In order to say how Alice can cheat using
quantum mechanics it is necessary to describe the
Einstein-Podolsky-Rosen (EPR) effect [Bo,AGR], often
called a paradox because it contradicts the common-
sense notion that for two individually random events
happening at distance from one another to be corre-
lated, some physical influence must have propagated
from the earlier event to the later, or else from
some common random cause to both events.

The EPR effect occurs when certain -types of
atom or molecule decay with the emission .of two pho-
tons, and consists of the fact that the two photons
are always found to have opposite polarization, re-
gardless of the basis used to observe them, provided
both are observed in the same basis. For example,
if both photons are measured rectilinearly, it will
always be found that one is horizontal and the other
vertical, though which is horizontal will vary ran-
domly from one decay to the next. If both photons
are measured diagonally, one will always be 135-
degree and the other 45-degree. A moment's reflec-
tion will show that this behavior cannot be ex-
plained by assuming the decay produces a distribu-

tion over a of oppositely polarized (a and a+90)
photons, since, in that case, if such a pair of pho-
tons were measured in an intermediate basis (say
a+45), both would behave probabilistically so as to
sometimes come out with the same polarization.

Probably the simplest, but paradoxical-
sounding, verbal explanation of the EPR effect is to
say that the two photons are produced in an initial
state of undefined polarization; and when one of
them is measured, the measuring apparatus forces it
to choose a polarization (choosing randomly and
equiprobably between the two characteristic direc-
tions offered by the apparatus) while simultaneously
forcing the other unmeasured photon, no matter how
far away, to choose the opposite polarization. This
implausible-sounding explanation is supported by
formal guantum mechanics, which represents the state
of a pair of photons as a vector in a 4-dimensional
Hilbert space obtained by taking the tensor product
of two 2-dimensional Hilbert spaces. The EPR state
produced by the decay is descripbed by the vector
0.7071(rqyr, - rpry), and the EPR effect is explained
by the fact that this vector has anticorrelated pro-
jections into the 2-dimensional Hilbert spaces of
the two photons no matter what basis is used to ex-
press the tensor product (e.g. the same state vector
is demonstrably equal to 0.7071(d1d2 - d2d1), and
to 0.7071(cqc5 - €ycq)) -

In order to cheat, Alice produces a number of
EPR photon-pairs instead of individual random pho-
tons in step 1. In each case she sends Bob one mem-
ber of the pair and stores the other ncrself, per-

haps between perfectly reflecting mirrcvs. When Bob

makes his guess (e.q. ractilinear) she then measures
all her stored protecns in the opposite (diagonal)
basis, thereby obtainir: results perfectly correlat-
ed with his diagcnal talle but uncorrelated with his
rectilinear table. She thzn announces these re-
sults, pretending them to e the random bits she was
supposed to have encoded .a the photons in step 1;
and thereby forces a win “:om which Bob cannot es-
cape even by delaying his mecasurements until after
his guess. This cheat requires that Alice be able
to store the twin photons fur a considerable time
and then measure them with high detection efficien-
cy, and thus would be possii'e only in principle,

not in practice. Any photons lost by Alice during
storage or measurement would result in holes in her
pretended bit sequence, which she would have to fill
by guessing, and these guesses would risk detection
by Bob if they failed to agr=e¢ with his tables.
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