
COMPUTATION: DAY 7

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Review of the sixth day 1
2. Reduction and NP Completeness 2
3. Probabilistic Turing Machines and BPP 2
4. RP: Primality Testing 3
5. Proving things in co-NP 4
6. An Interactive Proof system for graph non-isomorphism 4
7. Zero Knowledge Proof Systems 5
7.1. Graph Isomorphism in Zero-knowledge 6
7.2. Zero-knowledge 6

1. Review of the sixth day

Definition 1.1. A language A ⊆ Σ∗ is in the class P of polynomially recognizable
languages if there is a Turing machine MA, in any reasonable time bounded model,
and some time bound t(n) = O(nc) for some c, and

A = {x |MA(x; t(|x|)) = T }

where |x| is the string length of x.

Definition 1.2. A language A ⊆ Σ∗ is in the class NP of nondeterministic poly-
nomially recognizable languages if there is a Turing machine MA, in any reasonable
time bounded model, and some time bound t(n) = O(nc) for some c, and

A = {x | ∃y, MA(x, y; t(|x|)) = T }

where |x| is the string length of x.
1
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2. Reduction and NP Completeness

Wednesday, 12 April 2023

The notion of a P-time reduction was introduced, and the overview of its use to show
there are universal problems in the class NP. The problem of Boolean Satisfiability
was introduced,

The Cook-Levin theorem were discussed. I just referenced the book for the proof
sketch and proof for the Cook-Levin theorem; however we noted that this works
because the satisfiability problem that was being solved was solved in a model that
can be captured by a satisfiable boolean predicate.

Friday, 14 April 2023

The problems 3SAT and k-Clique were defined. The construction of the reduction
from 3SAT to k-Clique was given.

Monday 17 April 2023

The Vertex cover problem was presented. The construction of the reduction from
3SAT to Vertex Cover was given.

Wesdnesday, 19 April 2023

The Hamiltonian path problem was presented. The construction of the reduction
from 3SAT to Hamiltonian Cover was given.

3. Probabilistic Turing Machines and BPP

Friday, 21 April 2023

A probabilistic Turing machine modifies the definition of the non-deterministic
machine where the non-determinism is replaced with a random choice.

The computation is now a random variable for each for each input s,

M(s) : Ω → { 0, 1 }
ω 7→ M(s, ω)

and the acceptance or rejection is probability that the machine will accept or reject.
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Definition 3.1. A language A is BPP if there is a polynomial time probabilistic
Turing machine M such that,

a ∈ A =⇒ P{ωa} ≥ 2/3

a 6∈ A =⇒ P{ωa } ≤ 1/3

where,

ωa = {ω ∈ Ω |M(a, ω) = 1 }

.

4. RP: Primality Testing

The recognition of primes by a non-probabilistic machine, as far as we know, is
difficult. It requires an attempt to factor the integer. However, if even the smallest
amount of error is allowed, the problem becomes easy.

Theorem 4.1. Little Fermat: If p is a prime, then wp−1 = 1 (mod p) for all
1 ≤ w < p.

The converse is not true, but is likely. That is, if n is not a prime (and not even
and not a pure power) then for about 1/2 of the numbers between 1 and n − 1
will contradict Fermat’s theorem. That is, unless n is a certain number called a
Carmichael number Let us assume we have been made a promise that we shall be
presented with Carmichael numbers.

Therefore we have probabilistic algorithm that when given a prime will never proof
it to be not a prime, and with probability 1/2 when given a composite will provide
a proof it is composite.

composite

False (no witness)prime

True (witness)

The witness can be seen as a proof. If a mathematical system does not proof false
things, the system is called sound. If all true things can be proved, the system is
called complete. The class RP is a more restricted version of BPP where it is sound
but only probabilistically complete.
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The class RP is in NP. The difference is an RP protocol is likely to find a proof
and gives up quickly if it cannot.

The class BPP contains RP. This case is instructive as BPP would require the
given protocol to find a proof at last 2/3 of the time, not 1/2. To satisfy this, if
the first random choice does not yield a witness we try again. The probability that
both numbers will not be a witness, given that the number is a (non-Carmichael)
composite is only 1/4.

The relationship between RP and P is at the moment unknown.

5. Proving things in co-NP

Monday, 25 April 2023

The class RP is very conservative in that it is sound. When it can prove things it
does, but never states a falsehood. If however one is will to have an un-sound system.
the class co-NP becomes recognizable. The co-NP class is the class of verifiable things
for which there is no witness, and is the complement of an NP problem.

The possibility to recognize co-NP sets comes from,

(1) Allowing for probabilistically sound proof system,
(2) Proving for interaction with an oracle.

While this might seem a big wish list, it does away with the case by case elimination
of an exponential number of candidate witnesses.

6. An Interactive Proof system for graph non-isomorphism

Definition 6.1. Two graphs, G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there exists a permutation between the vertex sets, π : V1 → V2, such that

(v1, v2) ∈ Ei ⇐⇒ (π(v1), π(v2)) ∈ E2.

The problem of graph isomorphism is NP complete. It is in NP because the witness
can be the isomorphism π, and the polynomial time verification is checking the edge
condition.

What we are about to do is to give a program to recognize the complement of this
language. There will be a verifier that is a probabilistic polynomial time machine,
and a prover that hasn’t any bounds at all. However, it suffices here that it can solve
exponential time problems. The verifier will chose a bit b ∈ { 1, 2 } at random, and
a permutation π at random. It will send the prover the graph H which is graph Gb

permuted by π. The prover will send back b̃ ∈ { 1, 2 }.
If b == b̃ the verifier concludes that the graphs are non isomorphic; else it con-

cludes that they are isomorphic. The sense of this is that if they are isomorphic, the
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prover has no way of knowing if the verifier generated H from G1 or G2 so it simply
guesses and gets it right (b == b̃) half the time. However, if they are non-isomorphic,
it is quite clear to the prover which of G1 or G2 was used to create H, so it gets it
right all the time.

non-isomorphic

Falseisomorphic

True

This is the opposite situation than for RP. While RP will never bear false witness,
a witness might not come forward to testify. In this protocol the witness will always
testify, it it might be testifying falsely.

In general, IP does not demand perfect completeness. The definition is like BPP
with errors allowed in both directions. BPP is a therefore a restriction on IP without
interaction. However, the problem will drop into NP if the algorithm will work with
perfect soundness. Therefore our picture is,

RP

NP

BPP

IP

7. Zero Knowledge Proof Systems

Wednesday, 27 April 2023
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Extending proof to only likely soundness and interactivity gives us a new technol-
ogy, that of Zero Knowledge. A ZK-proof system is an interaction between a Prover
and a Verifier such that the Verifier learns the truth of a fact of the form a ∈ A
but nothing more. The difficulty for the Verifier is that the fact is NP-hard, so it
cannot “learn”’ this fact without help from the Prover, where to know and to learn
are defined as whatever is computable in polynomial time by a probabilistic Turing
machine.

In an NP proof system, the prover sends the witness w and the Verifier runs a
program V (a, w, ω) using perhaps some coins ω, and verifies that a ∈ A. However,
the Verifier also learns w, which is something it could not have computed.

7.1. Graph Isomorphism in Zero-knowledge. Graph Isomorphism can be solved
with an NP proof systems with perfect completeness and perfect soundness. A ZK-
proof system for graph Isomorphism is the following.

(1) The Prover generates a permutation π′, flips a coin b′ and sends H = π′(Gb′)
to the Verifier.

(2) The Verifier sends bit b of its choosing to the Prover.
(3) The Prover the calculates the permutation π such that π(Gb) = π′(Gb′) and

sends π to the Verifier.
(4) The Verifier verifies π(Gb) = H and accepts if it does.

Completeness: If the graphs are isomorphic, the Prover calculates the isomor-
phism π and the Verifier accepts.

Soundness: An important point for the soundness proof is it must be for any
Prover, not just those following the protocol. If the graphs are not isomorphic, the π
only exists if b = b′, which occurs 1/2 the time. Hence no Prover can be right more
than 1/2 the time, and the Verifier rejects with probability 1/2.

7.2. Zero-knowledge. We need to prove that in the case where the graphs are
isomorphic, the run of the protocol does not teach the Verifier anything it could not
compute itself.

From the point of view of the Verifier, it is enhanced by the communication of a
random triple (H, b, π). There is a consistency formula among this triple: H = π(Gb).

Rather than receive this triple from the conversation, the Verifier can generate it
itself.

Suppose that the Verifier choose b at random. Then the Verifier generates a random
π and sets H = π(Gb). As a random variable, this triple is identical to that achieved
through the interaction. Hence any use of the run of the protocol can be replaced
by a probabilistic polynomial time sampler.

Hence the protocol is zero-knowledge.
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There is however a catch. The Verifier can pick b is it wishes. Hence sampling at
(H, b, π) identically to a run of the protocol needs more care. For instance, a b′ and
π′ are generated and fed to a copy of the Verifier to see what b is would choose. With
probably 1/2 it choses b′ and the sample provided is (H, b′, π′). Else the new b′, π′ is
tried. In expected linear time at last a (H, b′, π) is acceptable and will be a random
variable with the same distribution as an authentic conversation with the Prover.

However, this is only expected linear time. If the simulator where to give up and
send a ⊥ exponentially rarely, and the original Prover modified to send a ⊥ with the
same frequency; the Verifier accept on ⊥ with some small probability. Therefore a
cheating Prover that is attempting to lie its way to getting the Verifier to accept,
can only use the ⊥ to do so very infrequently.


