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1. Review of the fifth day

Languages are either decidable or undecidable. Decidable languages are also called
recursive. Among the undecidable languages some are recognizable, also known as
recursively enumerable, such as the language of items accepted by a Turing machine
itself, hence a bit of an obvious statement,

L(M) = {x ∈ Σ∗ | ∃t M(x; t) = T }

Some languages are not Recursively enumerable, and if a language and its com-
plement are recursively enumerable, the language is recursive. Examples are the RE
set of Turing machines, known by there index, which accept some input,

¬ETM = { i ∈ N | ∃x, t Mi(x; t) = T }

and its co-RE complement,

ETM = { i ∈ N | ∀x, t Mi(x; t) 6= T }

Among those languages which are not RE, some are the complements of RE lan-
guage and are called co-RE. Some languages are neither RE nor co-RE. If A is an
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RE language, and there are the two reductions

A ≤M B and A ≤M ¬B

then B is neither RE nor co-RE. Such a language is the equality and inequality of
Turing machines (known by their indices in some enumeration of Turing machines),

¬EQTM = { (i, j) ∈ N× N | ∃x∀′t Mi(x; t) 6= Mj(x; t) }

where the notation ∀′t is read eventually for all t,

∀′t ≡ ∃t0 ∀t > t0

It follows that equality is also neither RE nor co-RE, and is defined

EQTM = { (i, j) ∈ N× N | ∀x∃′t Mi(x; t) = Mj(x; t) }

where the notation ∃′ is read exists infinitely often ,

∃′t ≡ ∀t0 ∃t > t0

Note that eventually for all and exists infinitely often are complements, If some-
thing is not eventually always true, it is untrue infinitely often.

2. Complexity classes of Languages

Monday, 3 April 2023

We would like to categorize decidable sets by the difficulty of recognizing them.
The focus at the moment is a difficulty related to the number of steps of the most
efficient Turing machine that recognizes the language. Several conceptualizations
need to be employed to make this work.

3. Algorithms

An algorithm is the idea of a a program on a Turing machine or otherwise reason-
ably related model of computation. The notion of reasonably related is the strong
Turing-Church hypothesis concerning the number of steps taken by the algorithm
compared between the two computational models. While what is being counted is
the number of steps, this is referred to as “time” as it is considered each step, if the
model were physically run, takes a certain unit of time.

For a problem to fit into our schema, there must be an infinite number of problem
instances, and each must be stated as a string over the language alphabet, whose
string length is important in calculating the run time. The number of steps can
depend on exactly the stated instance. The step bound is the maximum number
of steps for any instance of a given size. This is a maximum over a finite set. If
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the bound is t(n), then the an algorithm A is a Turing machine MA such that the
language is,

L(A) = {x |MA(x; t(|x|)) = T }
Here are two algorithms to calculate the greatest common divisor of two positive

integers,

def gcd_exp(x,y):

for d in range(min(x,y),1,-1):

if x%d==0 and y%d==0: return d

return 1

def gcd_euclid(x,y):

while y!=0: x,y = y,x%y

return x

They are both algorithms, but they have very different run times. We will asso-
ciate with the language of greatest common divisors the run time of the Euclidean
algorithm, the second code block. In fact, this code is the fastest possible known
calculation of the GCD when the run time is stated as a big–oh function class.

4. Asymptotic Algorithmic Complexity

The theory of algorithmic complexity is interested only in the form of the run time
for the infinite family of large enough problem instances. We have stated our time
bounded Turing machine with a precise function t(n) but in the theory of P and NP
we will only care about whether t(n) is of polynomial growth. The notation we will
define express this as t(n) = O(nc) for some integer c.

Definition 4.1. Let f : X → Y be a function. The class of functions that will be
considered non-strictly smaller then f asymptotically is defined as,

O(f) = { g : X → Y | ∃xo, c > 0 ∀x ≥ xo, cf(x) ≥ g(x) ≥ 0 }
Definition 4.2. Let f : X → Y be a function. The class of functions that will be
considered strictly smaller then f asymptotically is defined as,

o(f) = { g : X → Y | ∀c > 0 ∃xc > 0 ∀x ≥ xc, cf(x) > g(x) ≥ 0 }
Definition 4.3. A function f : X → Y is eventually non-negative if there exists an
xo such that for all x ≥ xo, f(x) ≥ 0. The function is eventually positive if there
exists an xo such that for all x ≥ xo, f(x) > 0.

The big-oh notation is reflexive, f = O(f), and every function in O(f) is eventually
non-negative. Therefore strictly speaking, the notation is restricted to eventually
non-negative functions.
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It is never true that f = o(f). In general, the notation is restricted to f eventually
positive, else the class is the empty set. Every element of o(f) is eventually non-
negative.

The little oh is a strict version of the big oh,

g = o(f) =⇒ g = O(f)

but not necessarily the converse.
Transitivity works,

h = O(g) ∧ g = O(f) =⇒ h = O(f)

and so on.
There is a second, equivalent definition for little oh which is often easier to employ.

Theorem 4.1. Let f be eventually positive and g be eventually non-negative. Then
g = o(f) if and only if,

lim
x→∞

g(x)/f(x)→ 0

For instance, nc = o(an) for any a, c > 1. Exponentials always win.

5. Recognizing Context Free Languages.

Wednesday, 5 April 2023

Lecturer Jamie Deng spoke on the polynomial time recognition of Context Free
Languages. A standard way to show this is to first reduce the grammar of the
language to Chomsky Normal Form. Then the Cocke–Younger–Kasami algorithm
(about 1961) is a dynamic programming algorithm to determine if a given string is
in the language in time O(n3), where n is the total symbol length of the rules.

6. Turing machines that Halt

Friday, 7 April 2023

The machines we are to consider have time bounds and are guaranteed to halt. In our
general discussion the notation for a time bounded machine, M(x; t) was the abstract
idea of what state the machine provided us by time step t. The undetermined symbol
⊥ was needed for the case when the machine had neither accepted nor rejected by
that time step.

The machines we are considering are bound to halt in some time bound depending
on the input x. In particular, a function t(n) such that

M(x; t(|x|)) 6= ⊥
for any x, where |x| is the length of x.
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In the light of the undecidability of the halting problem, one might wonder how
this bound can be assured. We can modify any multi-tape Turing machine with a
timing tape on which is initially the string 1t(|x|) and have an explicit right step on
this machine for every step the machine makes, and an explicit reject if the head of
the timing tape sees a blank.

Monday, 10 April 2023

6.1. Nondeterministic Turing machines. The nondeterministic machine is an
abstraction where the computation is defined in retrospect but no real step by step
computational mechanism. In the case of a time bounded machine, the random steps
can be made deterministic by having an additional tape with lists out the result of
a sequence of random coin tosses. Without loss of generality, exactly one coin toss,
that is, one tape cell, is consumed with each machine step.

In this way we have an actually computing machine, halting in time t(|x|) on input
x, exploring a random path path determined by the t(|x|) random bits written onto
the random tape. If we write this random tape as a second input, the language A of
a non-deterministic machine with time bound t(n) is

A = {x | ∃y, |y| = t(|x|), M(x, y) = T }

7. The Classes P and NP

Definition 7.1. A language A ⊆ Σ∗ is in the class P of polynomially recognizable
languages if there is a Turing machine MA, in any reasonable time bounded model,
and some time bound t(n) = O(nc) for some c, and

A = {x |MA(x; t(|x|)) = T }

where |x| is the string length of x.

Definition 7.2. A language A ⊆ Σ∗ is in the class NP of nondeterministic poly-
nomially recognizable languages if there is a Turing machine MA, in any reasonable
time bounded model, and some time bound t(n) = O(nc) for some c, and

A = {x | ∃y, MA(x, y; t(|x|)) = T }

where |x| is the string length of x.

Given the time bound, it is useless to think of a y of length greater than t(|x|). We
can add extra letters to y to make it of length exactly t(|x|). If we do this we arrive
at the alternative definition of NP as the class of languages accepted in polynomial
time by a nondeterministic Turing machine.
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8. Polynomial time Verification

In this definition, of the machine MA is called the verifier, and y is called the
witness or certificate. In this interpretation, y is the solution to a problem, and
rather than calculate the solution in polynomial time, we just verify that a given
string is a solution.

When y is otherwise looked at as the sequence of random bits which control the
computation path in a nondeterministic machine, y is omniscient guidance to the
solution. These viewpoints are mathematically equivalent.


