
COMPUTATION: DAY 5

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Review of the fourth day 1
2. The question of ETM . 2
2.1. Machines that quit 2
2.2. How to search a double infinity 2
2.3. Finding the accepting string, when there is one. 3
3. Non-Recursive sets 3
3.1. It is undecidable if a Turing machine halts 4
3.2. It is undecidable if a language is non-empty 4
3.3. Rice’s Theorem 5
3.4. It is undecidable if a language is Regular 5
4. Non-recursively enumerable sets 5
4.1. Emptiness of a language is co-RE 6
4.2. Equality of languages is neither RE nor co-RE 6
5. Merlin and Undecidability 7
5.1. Oracle Machines 7
5.2. Given an oracle for halting, we can enumerate non-equality 7
5.3. The question is L(M) regular 8

1. Review of the fourth day

Turing machines can be enumerated. While the enumeration function is dependent
on many things: representations, some conventions; What we eventually have is the
symbol Mi(j), for the computation of the i-th Turing machine on the j-th input.
This is universal as in all Turing machines are in the enumeration.

Given this we could show the set

ATM = { (i, j) ∈ N× N |Mi(j) = T }
is undecidable by construction a machine not among the enumerated machines, on
the assumption that the set is decidable. However the set is Recursively Enumerable

1



2 BURTON ROSENBERG UNIVERSITY OF MIAMI

because for those things in the set, the halting computation of Mi(j) is sufficient to
establish this fact.

If a set and its complement are Recursively Enumerable, the set is Recursive; as
there are proceeders that recognize both elements in the set and not in the set. Hence
the set ¬ATM is not Recursively Enumeratble.

2. The question of ETM .

Monday, 27 March 2023

Consider the subset of the integers that is the set of indices for Turing machines
for non-empty languages,

¬ETM = { i ∈ N | L(Mi) 6= ∅ }

We shall this set to not be recursive, but to be recursively enumerable. In this section
we will show it to be recursively enumerable.

To do so, we will first move some of the abstraction concerning non-halting into
a quantification. Consider step-bounding our Turing machines. If after t steps the
machine has not decided, it explicitly returns the non-halting symbol ⊥. To accept
or reject means that there exists a time bound t, and any time bound larger, in which
the machine accepts or rejects. To not-halt is means that for all time bounds t the
machine returns ⊥.

2.1. Machines that quit. Let Mi(j; t) denote the result of the i-th Turing machine
computing the j-th input for up to t logical steps.
The value of Mi(j; t) is defined in the natural way so as to agree with Mi(j) in the
following manner.

Mi(j) =


T ∃t, Mi(j; t) = T

F ∃t, Mi(j; t) = F

⊥ ∀t, Mi(j; t) = ⊥

2.2. How to search a double infinity. Consider any surjective function

δ : N → N× N
i 7→ (i1, i2)

such as the diagonal function d that proceeds with its first values d(0), d(1), d(2), . . .
being,

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), . . .



COMPUTATION: DAY 5 3

2.3. Finding the accepting string, when there is one. Then

i ∈ ¬ETM ⇐⇒ ∃ k such that d(k) = (j, k) and Mi(j; t) = T.

The formula on the right, with a single existential quantifier over the natural num-
bers, is a recognizer for co-emptiness. Essentially, we make attempts at accepting
each input, never ignoring any input, but repeating each input with more steps, until
some input on some number of steps accepts.

3. Non-Recursive sets

We show that non-emptiness is not recursive but showing that a Turing machine
deciding non-emptiness implies a Turing machine that decides acceptance. This
is done by creating an “easily computable” mapping that maps true instances of
acceptance to machines with non-empty language, and other instance of acceptance
to machines with empty languages.

Definition 3.1. A recursive function is and function f : Σ∗ → Σ∗ such that there
exists an always-halting Turing machine M that computes the function in the fol-
lowing sense: When M is started with string s on its tape then it runs and halts
with string f(s) in its tape.

Definition 3.2. Given A,B ⊆ Σ∗, a reduction of A to B is a recursive function
f : Σ∗ → Σ∗ that preserves the set inclusion,

(1) ∀a ∈ =⇒ f(a) ∈ B,
(2) ∀a 6∈ A =⇒ f(a) 6∈ B.

A reduction from A to B is denoted A ≤m B.

Wednesday, 29 March 2023

Theorem 3.1. If A ≤m B and B is a recursive set, then A is a recursive set.

Proof: Let f be the reduction map. If B is recursive, then there as a recursive
function g : Σ∗ → {T, F}. The function g ◦ f is recursive. Consider the Turing
machine that computes this function and accepts if T is left on the tape and rejects
of F is left on the tape. This Turing machine decides the set A.

Theorem 3.2. If A ≤m B and B is a recursively enumerable set, then A is a
recursively enumerable set.

Proof: Similar to the above proof.



4 BURTON ROSENBERG UNIVERSITY OF MIAMI

3.1. It is undecidable if a Turing machine halts. Define the halting problem
for turing machines, HTM ,

HTM = { (i, j) ∈ N× N |Mi(j) 6= ⊥}

Consider the map (i, j) 7→ (f(i), j) which will act as,

Mf(i)(j) ≡ if Mi(j) then T else ⊥

The function f is a recursive function which which retrieves the machine definition
of machine i then operates on the definition to replace any transitions to a reject
state to a transition to an infinite loop. It then gets the index f(i) for this machine
and outputs it on its tape, along with a copy of the original j.
It is a reduction,

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ Mf(i)(j) = T

=⇒ (f(i), j) ∈ HTM .

(i, j) 6∈ ATM =⇒ Mi(j) 6= T

=⇒ Mf(i)(j) = ⊥
=⇒ (f(i), j) 6∈ HTM .

Note a little bit the game here. We are not attempting to distinguish rejecting from
non-halting. Hence the gate to the non-halting behavior can it self not-halt, but only
in the case where it would have invoked non-halting behavior anyway. When setting
up a reduction, care is taken that this sort of submerging non-halting into the proper
overall behavior for the machine.
This is the reduction

ATM ≤ HTM

and since ATM is not recursive then HTM is not recursive.

3.2. It is undecidable if a language is non-empty. Consider the map (i, j) 7→
(f(i), j) which will act as,

Mf(i,j)(k) ≡ if Mi(j) then T else ⊥

The function f is a recursive function which which retrieves the machine definition
of machine i then operates on the definition to replace any transitions to a reject
state to a transition to an infinite loop. It then adds states to write the given j onto
the tape followed by a state transition to the start of the modified version of Mi.
The function then index f(i, j) for this machine and writes it to the tape.



COMPUTATION: DAY 5 5

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ ∀k Mf(i,j)(k) = T

=⇒ L(Mf(i,j)) = Σ∗

=⇒ f(i, j) ∈ ¬ETM .

(i, j) 6∈ ATM =⇒ Mi(j) 6= T

=⇒ ∀k Mf(i,j)(k) = ⊥
=⇒ L(Mf(i,j)) = ∅
=⇒ f(i, j) 6∈ ¬ETM

This is the reduction
ATM ≤m ¬ETM

and since ATM is not recursive then HTM is not recursive.

Friday, 31 March 2023

3.3. Rice’s Theorem. The reductions described are pretty general, so that any
property of a language can be the right hand side of a reduction. Suppose N(j) is
the Turing machine with the property, and suppose the empty language does not
have the property, then the construction

Mf(i,j)(k) ≡ if Mi(j) then N(k) else ⊥
is a reduction ATM ≤m P . This gives Rice’s theorem: any non-trivial property of a
language is undecidable.

3.4. It is undecidable if a language is Regular. For instance, if L(N) is give by
the regular expression 0i 1i, then this reduction shows that deciding where a language
is not regular is undecidable. This reduction maps accepting instances (i, j) ∈ ATM

to a non-regular context free language and non-accepting instances (i, j) 6∈ ATM to
the the empty set, a regular language.

4. Non-recursively enumerable sets

The term undecidable refers to any non-recursive set. So far we have found two
such sets, those that are recursively enumerable and those that are co-recursively enu-
merable, complements of recursively enumerable sets. We have employed reductions
from a recursively enumerable set to a unknown set to show it is undecidable, and
then given a recognizer for said unknown set to show it is recursively enumerable.



6 BURTON ROSENBERG UNIVERSITY OF MIAMI

4.1. Emptiness of a language is co-RE. The set ¬ETM was shown to be unde-
cidable. It was also shown to be recursively enumerable. There for its complement
ETM is co-recursively enumerable. It cannot be decided, recognized, or enumerated.

4.2. Equality of languages is neither RE nor co-RE. The question of whether
two Turing machines differ require a more complicated statement that alternates
quantifiers,

¬EQTM = { (i, j) ∈ N×M | ∃(k, tk) ∀t ≥ tk,Mi(k; t) 6= Mj(k; t) }

The case here is when the difference between the two functions is a single point
where Mi halts and Mj does not. On one level, we have definite evidence, that the
disagreement was on input k, but also indefinite evidence, that for one machine a
particular step count t suffices, but for the other machine we have to consider all
step counts.

Note that a k specific lower bound for t is needed on the universal quantifier,
t > tk, since for small t both machines could still be computing and hence equal at
that (k, t) point.

Consider the map h1(i, j) 7→ (f(i, j),M∅) where,

Mf(i,j)(k) ≡ if Mi(j) then T else ⊥

and M∅ is any Turing machine that accepts nothing. Previously it was described
how f is a recursive function. It preserves truth from acceptance to non-equality.

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ L(Mf(i,j)) = Σ∗

=⇒ Mf(i,j) 6= M∅

=⇒ (f(i, j),M∅) ∈ ¬EQTM .

(i, j) 6∈ ATM =⇒ Mi(j) 6= T

=⇒ L(Mf(i,j) = ∅
=⇒ Mf(i,j) = M∅

=⇒ (f(i, j),M∅) 6∈ ¬EQTM

Consider the very similar map h2(i, j) 7→ (f(i, j),MΣ∗) where MΣ∗ is the machine
that accepts everything. It preserves truth from acceptance to equality,

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ (f(i, j),MΣ∗) ∈ EQTM .

(i, j) 6∈ ATM =⇒ Mi(j) 6= T

=⇒ (f(i, j),MΣ∗) 6∈ EQTM



COMPUTATION: DAY 5 7

So we have two reductions,

ATM ≤m ¬EQTM , ATM ≤m EQTM

so neither can be recursive. As reductions are stable by complementing both sides,
we also have,

¬ATM ≤m EQTM , ¬ATM ≤m ¬EQTM

So neither can be recursively enumerable either.
These are sets that cannot be decided, and further neither the set nor its comple-

ment can be recognized.

5. Merlin and Undecidability

In the theory of languages, we previously introduced Merlin, the oracle that would
honest and accurately answer questions. In the case of a Turing machine, if it were
non-deterministic Merlin would provide guidance towards an accepting computation.
One thing Merlin will not do, is provide an infinite stream of advice.

Therefore, if Merlin wants to be efficient, he either begins to give advice, in which
case we immediately know the Turing machine will accept, or immediately refuses to
give any advice, in which case we know the Turing machine will reject or not halt.

Therefore Merlin is truly magical because he solves the halting problem.

5.1. Oracle Machines. An oracle machine is a Turing machine with the ability to
ask for Merlin’s advice. It can be in the form of a an additional oracle tape, but
more often it is modeled with a message tape in which the Turing machine writes a
question, enters a query Merlin state, during which Merlin replaces the contents of
the message tape with the response, and the Turing machine exist the query state
to some next state.

Merlin is an oracle for HTM .

A Turing machine with an oracle for HTM is recursive for the halting set, but
also for the acceptance set and the non-emptiness set. All of these problems become
decidable if we can ask Merlin whether or not machine i halts on input j.

5.2. Given an oracle for halting, we can enumerate non-equality. The prob-
lem of non-equality becomes recursively enumerable when the Turing machine can
query an oracle for HTM .

Suppose the two machines are Mi and Mj. For each k,

(1) Query the oracle to determine if either or both machines halt.
(2) If they both do not halt, continue on.
(3) If only one halts, accept. They machines are not equal.



8 BURTON ROSENBERG UNIVERSITY OF MIAMI

(4) If they both halt, compute to determine if they halt with the same outcome;
continue on if they do, and accept if they do not.

If the machines are unequal, eventually the k at which they are unequal will be
tested. If they are equal, the algorithm will not halt. Hence we have a recognizer for
non-equality.

5.3. The question is L(M) regular. However, even Merlin cannot recognize reg-
ular languages. That problem, which can be shown undecidable by the reduction
ATM ≤m REG given by the recursive function f acting as,

Mf(i,j)(k) ≡ N(k) or
(

if Mi(j) then T else ⊥
)

where L(N) given by the regular express 0i1i and the “or” is short-circuited as in C
language. Previously in these notes the complement was shown undecidable as an
application of Rice’s theorem.

Since ATM reduces to both REG and ¬REG, REG is neither RE or co-RE, such as
EQTM . However, even relative to ATM these languages are not RE. The full writing
of requires additional alternation of quantifiers than was required when writing the
set of language equality,

REG = { i | ∃j ∀k ∃t Fj(k) = Mi(k; t) }
Where N → {Fi } is an enumeration of all finite state automata’s, and since such
machines always halt, the quantification over steps is existential (it’s only a matter
of when, not if, when equality is assumed).


