
COMPUTATION: DAY 3

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Review of the second day 1
2. Regular Expressions 1
3. All Regular Expressions are Regular Languages 2
4. The Generalized NFA 3
5. All Regular Languages are Regular Expressions 4
6. Context Free Grammars 4
7. Example Context Free Grammers 5
7.1. Regular Expressions 5
7.2. Balanced Parentheses 5
8. The Pumping Lemma 5
9. Proving a language non-regular 6
10. Properties of Context Free Languages 7
11. The Pumping Lemma for Context Free Languages 8

1. Review of the second day

Nondeterminism was introduced, including Arthur-Merlin Oracles, and parallel-
worlds models. This allowed the completing easily the proof of the closure properties
for Regular Sets: they are closed under complementation, union, intersection, con-
catenation and Kleene star.

2. Regular Expressions

Friday, 10 February 2023

A regular expression is built from elements of an alphabet Σ, the special symbols
ε and ∅, and the operations union, ∪, concatenation ◦ and Kleene star, ∗, along with
parenthesis sufficient to make the order of operations clear.

1

2 BURTON ROSENBERG UNIVERSITY OF MIAMI

The interpretation of a regular expression R is a set L(R) ⊆ Σ∗, and we shall see
that only and all regular sets are given by regular expressions. The interpretation is
a letter is single set of that letter, ε the empty string, ∅ the empty set, and union
to union of sets, concatenation the concatenation of sets and Kleene star the Kleene
star of the set.

L((ab ∪ c)∗) = (L(ab ∪ c))∗

= (L(ab) ∪ L(c))∗

= (L(a) ◦ L(b) ∪ {c})∗

= ({a} ◦ {b} ∪ {c})∗

= {a b ∪ c}∗

The precedence order of operations has an analogy with the precedence of arithmetic
operations,

a b ∪ c = {a b, c},
a (b ∪ c) = {a b, a c}

a b∗ = {a, ab, abb, . . .}

hence ∪ has the precedence of +, ◦ has the precedence of ×, and ∗ has the precedence
of a power.

The empty set is the identity element for union and the annihilator for concate-
nation, ∀R ⊆ Σ∗ (think 0),

R ◦ ∅ = ∅ and R ∪ ∅ = R.

The empty string is the identity element for concatenation, ∀R ⊆ Σ∗ (think 1),

R ◦ ε = R.

The star operation is a power series,

S∗ = ε (1 + S + S2 + . . .) =
ε

1− S
and therefore.

∅∗ =
ε

1− ∅
= ε

3. All Regular Expressions are Regular Languages

Monday, 13 February 2023

COMPUTATION: DAY 3 3

*

u

o c

a b

The parsing of regular expression (((a ◦ b) ∪ c))∗.

A regular expression can be parsed into a tree where the nodes of the tree are
labeled with the operations ∪, ◦ or ∗, or with the basic characters σ ∈ Σ, ε or ∅.
Nodes labeled with ∪ and ◦ will have two children, distinguished as a left child and
a right child; nodes labeled ∗ will have on child, and the other nodes are leaves of
the tree.

A node in this tree can be replaced by a NFA, provided that the labels on the
nodes of all children of the node have already been replaced with NFA’s. The leaf
node NFA’s are acceptors for a single letter language, for the language of the empty
string or the empty language. The other nodes use the constructions we have already
described for star, union and concatenation.

Ultimately the root node is replaced by an NFA. That NFA accepts exactly the
language of the regular expression.

4. The Generalized NFA

Given an NFA, a Regular Expression is constructed that accepts exactly the lan-
guage of the NFA.

To do this, a Generalized NFA (GNFA) is proposed. The edges of a GFNA can be
RE’s. This is a great convenience in general conversation. For example, the 4 state
machine accepting the {abc} can be replaced by a two state machine.

There are some other requirements for a GNFA which are there specifically to
make this proof work out neatly,

4 BURTON ROSENBERG UNIVERSITY OF MIAMI

q0 q1 q2 q3
a b c

q0’ q1’
abc

The helpfulness of a Generalized NFA.

(1) There is only one final state and this state has no outgoing transitions.
Achieve this in general with a dedicated final state qf to which all candi-
date final states transition with a ε-move.

(2) The start state has no incoming transitions. Achieve this in general with a
dedicated start state qs that transitions to by ε-move to a start state that
would have had an incoming transition.

(3) Let qi and qj be any two not necessarily distinct states other than qs and qf .
There are transitions, qs → qi, qi → qf , and qi → qj. Achieve this in general
with transitions labeled with the regular expression ∅.

5. All Regular Languages are Regular Expressions

The plan:

(1) Any NFA can be turned into a GNFA.
(2) Any GNFA with k states, k > 2 can be turned into an GNFA with k − 1

states that accepts exactly the same language.
(3) A GNFA with exactly 2 states has a unique edge qs → qf whose label is a

regular expression for the language.

Wednesday, 15 February 2023

The conversion of a DFA to a GNFA and then to a RE was presented (figure 1.67
in the class text).

6. Context Free Grammars

We did this informally in class, and will do it formally a bit later. Here is the
formal version.

A Context Free Grammar is a mathematical complex 〈V, T,R, S〉 where,

• V is a finite set of variables, also called non-terminals,
• T is a finite set of terminals,
• R is a set of rules, and is a subset of V × (V ∪ T)∗,

COMPUTATION: DAY 3 5

• and S ∈ V is the start symbol.

What you do with a CFG is repeatedly apply a rule to a string s ∈ (V ∪T)∗ according
to,

wXv and (X, u) ∈ R =⇒ wuv

Write this as wXv → wuv and consider the reflective transitive closer of→, by abuse
of notation also denoted →. Then S → w where w ∈ T ∗ is in the language of the
grammar.

Denote by L(G) all possible such w, as the language of the grammar.

L(G) = {w ∈ Σ∗ |S → w by the grammar G }
A Context Free Grammar is a any subset of G ⊆ T ∗ for which there is a grammar

G and G = L(G).

7. Example Context Free Grammers

7.1. Regular Expressions. The language of Regular Expressions over the alphabet
Σ,

V = {S}
T = {◦,∪, ∗, ε, ∅} ∪ Σ

S 7→ (S ◦ S) | (S ∪ S) | (S)∗ | ε | ∅ | σ ∈ Σ

7.2. Balanced Parentheses. The language of balanced parentheses,

V = {S}
T = {(,)}
S 7→ S (S) | ε

8. The Pumping Lemma

Friday, 17 February 2023

Theorem 8.1 (The pumping lemma). If M is a regular language, and M is a
machine recognizing that language, L(M) = M, then every sufficiently long string
in M can be pumped.

There are two things to clarify,

(1) There are many different machines M that all recognize M. A string is
sufficiently long is it is longer than the number of states in M . This is sort
of an odd thing, because you can propose a sequence of machines each with
more states than the last, each accepting the same language.

6 BURTON ROSENBERG UNIVERSITY OF MIAMI

(2) To pump s ∈ M is to find a looping part y somewhere not too far from the
start of s. That is, to write s = xyz so that,

|xy| < p, y 6= ε and ∀i ≥ 0, xyiz ∈M.

Note well, s must be in the language. If the language is finite it is regular. However
the pumping lemma will not apply, because the set of sufficiently long strings can be
made to be empty.

9. Proving a language non-regular

Monday, 20 February 2023

The pumping lemma is used in the contrapositive to show that some languages
are not regular. For instance, this language is not regular,

B = {0k1k | k ≥ 0}
The use of the pumping lemma to prove a language is not regular, requires taking
the negation of the theorem, which poses reversals of for all and for some. This can
be confusing.

(1) Since for a regular language for some machine M , L(M) = M, to show a
language is not regular for all machines M , L(M) 6= M; hence for some p,
becomes for all p when consider whether |s| > p is sufficiently long.

(2) Since for a regular language, for all s, |s| > p , s succeeds when pumped, to
show a language is not regular it is sufficient that for some s, |s| > p , s fails
when pumped.

(3) Since for regular language xyiz succeeds for some splitting s = xyz, to show
a language is not regular xyiz fails for all splittings of s = xyz, |s| > p > |xy|
and y 6= ε.

(4) Given an s = xyz, since for a regular language for all values of i, xyiz ∈M,
to show a language is not regular find for some i, that xyiz 6∈ M.

The alternation for some and for all are like a two person game, between the for
all player For All and the for some player For Some.

For the language B = {0i1i | i = 0, 1, 2, . . .},
(1) The For All, trying to cover all possible cases, chooses a very large p.
(2) The For Some, trying to isolate a particular situation, proposes a specific

string that can show this: w = 0p1p ∈ B.
(3) The For All, who is allowed all possible splittings, chooses a splitting w = xyz

that will show the looping, if possible. In this case, since |wy| < p the
adversary is constrained to picking k1, k2, k3 with k2 > 0 and,

x = 0k1 , y = 0k2 , z = 0k31k1+k2+k3

COMPUTATION: DAY 3 7

(4) The For Some proves that For All cannot avoid the conclusion of not regular,
and the advocate will pump as

xy2z 6∈ B.
This also proves that the language D,

D = {w ∈ { 0, 1 }∗ | the number of 1s equals the number of 0s }
is also regular.

The For Some player should choose 0p1p because they are allowed to, and it works.
They should chose w− = (01)p, because the For All can break this string up with
y = 01. Then pumping will just give (01)p+i, which is still in the language. This
does not show that For All is evil, but that since it is playing for all it is obliged to
find the contraction to For Some’s logic.

For the language E ,
E = { 0i1j | i > j }

(1) For All provides a p.
(2) For Some proposes w = 0p+11p ∈ E . This string is crafty.
(3) The For All finds any (or all) w = xyz. Since |wy| < p we have,

x = 0k1 , y = 0k2 , z = 0k31k1+k2+k3−1

This splitting is completely general.
(4) The For Some choses specification to pump down, that is removes the loop:

xz 6∈ E , hence the language is not regular.

10. Properties of Context Free Languages

The languages proved non-regular are context free. However, all regular languages
are context free. Hence we have the proper containment,

RegL ⊂ CFL

If the Pushdown Automata (PDA) is introduced, and its equivalence to CFG’s shown,
then the containment is obvious. A PDA is a NFA with a stack store. If the stack
store is not used, the PDA is exactly a NFA. The containment can also be shown
by noting that the CFG for a RE gives a construction for realizing the CFG for the
language (not for the RE describing the language).

However we do it directly. Given a Regular Language L, let M be a DFA recog-
nizing L = L(M).

(1) For each each state r ∈ Q, in the state set of M , define a variable R ∈ V in
the CFG.

(2) For each transition δ(r, σ) = r′, define a grammar rule R→ σR′.
(3) For each final state f ∈ F , define a grammar rule F → ε.

8 BURTON ROSENBERG UNIVERSITY OF MIAMI

(4) For the start state ro of M , add the rule S → Ro, with S a fresh variable.

The CFL’s are closed under: union, concatenation and star. If L1 and L2 are
CFL’s, let G1 and G2 be their grammars.

• For union, create a new grammar G3 which is the disjoint union of G1 and G2

(renaming variables if needed), adding a new start variable with two rules,
transitioning to the start states of either grammars.
• For concatenation proceed similarly, except the new start state transitions to

a variable pair, the start variable for G1 followed by that of G2.
• For star, proceed similarly, except the new start state transitions to either ε

or to the start variable for G1 followed by the new start symbol.

However CFL’s are not closed under complementation and intersection. Given a
string s of length n it is possible to try all possible derivations that lead to strings
of length n or shorter, and if none of these give s, then s is not in the language.
However, no single derivation shows that s is not in the language. Compare this to
regular languages. The NFA can be made a DFA, and after n steps, arriving at a
non-final state is proof that s is not in the language. However, the role of a DFA is
crucial, and there is no such device for CGL’s.

11. The Pumping Lemma for Context Free Languages

Theorem 11.1. Given a CFL L, there exists a p such that for all s ∈ L, |s| ≥ p,
then s = uvxyz such that,

(1) |vxy| < p,
(2) vy 6= ε
(3) ∀i, uvixyiz ∈ L.

The proof is by considering the parse tree. Any path of depth exceeding the number
of variable in a grammar for the language will have a repeated variable on the path.
The section between occurrences of this variable can be removed or repeated, giving
the pumped versions of the string.

Therefore, it is possible to show that

A = { aibici | i ≥ 0 }
is not context free. However both

B = { aibicj | i, j ≥ 0 }
and

C = { ajbjcj | i, j ≥ 0 }
are context free. Since A = B ∩ C, this demonstrates that intersections of context
free languages are not necessarily context free.

COMPUTATION: DAY 3 9

The language,
D = {ww |w ∈ {0, 1}∗ }

is not context free. The string to demonstrate this is w = 0p1p0p1p. Any way this is
pumped, the result will not be of the form ww.

However, the language,

E = {wv |w, v ∈ {0, 1}∗ |w| = |v|, w 6= v, }
is context free. It is generated by,

S → AB |BA
A → 0A0 | 1A0 | 0A1 | 1A1 | 0
B → 0B0 | 1B0 | 0B1 | 1B1 | 1

The proof that this is the correct language depends on this trick,

σi0σiσj1σj = σi0σi+j1σj = σi0σj σi1σj

The complement of D is,

E ∪ { s | the length of s is odd }
the union of to CFL’s hence a CFL.

