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1. What is computation

Wednesday, January 18, 2023.
The theory of computation is a very new subject. The Turing Machine, an impor-

tant element of this theory, was defined by Alan Turing in about 1936. Its invention
was a response to several important developments. However, we can look back to
as far as 300 or 400 BC, to the geometric constructions, to see computation systems
not tied to the artifacts of the modern world. At the time, their computer was the
combination of a ruler and a compass.

We consider the the calculation of the square root of an integer n. We need to
consider what an answer would look like. Today, I think probably would consider an
answer to be something like,

√
5 = 2.23606798...

But that is not even an answer, just the suggestion of an approximation, that can
be refined on demand. In the world of our geometric constructions, a value is the
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length of a segment. Therefore a solution might be: given a line segment S of length
|S|, in a finite sequence of application of ruler and compass actions, produce a line

segment with length
√
|S|.

2. Ruler and Compass Constructions

There will be only these ruler and compass actions allowed.

(1) A line can be draw by the edge of the ruler.
(2) An arc of a circle can be drawn by the compass.
(3) The ruler’s edge can be aligned with one or two points.
(4) The compass can be sized to fit two points.

3. Perpendicular bisector

Just as we now write subroutines, which are generalized procedures to be invoked
with parameters, our geometric constructions have subroutines, such as, given two
points, and a line connecting those points, construct a line perpendicular with passes
through the midpoint of the two points..

The input is have the points drawn on the paper, p and q. The program is the
steps to take with ruler and compass, and the result is a new line L drawn on the
paper. Here is the subroutine’s result, with the red circles being constructed for, and
the blue line the result.

p q

L

4. The square root of 5

We give now the procedure for constructing the length
√

5. Create the line L
with one unit to the left of point O, and 5 units to the right of point O. Invoke the
perpendicular bisector subroutine result in a perpendicular P through O. Draw a
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circle with diameter L. The intersection of the circle with P is X. The segment O
to X has length

√
5.

L

P

O

X

5. Angle Bisectors and Trisectors

Given two lines L1 and L2 intersecting at one point X, draw a line through X that
bisects the angle between L1 and L2. However, it is not possible to trisect the angle.
The rule and compass constructions can compute square roots, angle bisectors, but
not angle trisectors. Constructs we sought for almost three millennia until proved
impossible by Pierre Wantzel in 1837.

6. Think-A-Dot

The Think-A-Dot was created by Joseph Weisbecker and patented as US566881A
filed 1966 with title Computer-type game and teaching aid. It illustrated the elements
of a Finite State Automata.

The eight flip-flop elements show either yellow or blue. The drop of a marble into
one of three holes at the top of the toy causes three of the flip-flop elements to change
color. The color of the flip-flop determines the path of the marble.
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7. Exercises

(1) Generalize from
√

5 to
√
n for arbitrary positive integers n.

(2) Prove the construction gives the square root.
(3) Given an angle bisector construction.
(4) The Think-A-Dot has the property that if a marble is repeatedly dropped

into the same hole, the pattern repeats at exactly every 8th marble. Prove
this.
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8. Set Membership

Wednesday, January 18, 2023.
A set is a mathematical object having a membership predicate. A set defined in

any fashion that is sufficiently clear to determine membership. We are investigating
which sets can be defined by a membership predicate calculated by a type of computer
called a finite automata.

Given sets X, Y and U such that X ⊆ U , these new sets are obviously allowed, as
the construction of a membership predicate follows easily,

X ∪ Y = { z | z ∈ X or z ∈ Y }
X ∩ Y = { z | z ∈ X and z ∈ Y }

X̃ = {u ∈ U |u 6∈ X }
X × Y = { (x, y) |x ∈ X and y ∈ Y }

While all of these should be familiar constructions, the Kleene Star is very impor-
tant for us, and maybe be less familiar,

X∗ =
∞⋃
i=0

X i

We do not doubt the existence of such a set, because for an x of length i, we
already have the predicate for x ∈ X i.

9. Finite Automata

A finite automata is the 5-tuple

M = 〈Q,Σ, δ, qo, F 〉

where Q is a finite set of states, Σ is a finite set called the alphabet, δ is the transition
function, δ : Q × Σ −→ Q, a distinguished state at which the computation begins,
qo ∈ Q and a set of states F ⊆ Q such that, if the computation ends at a state in F
the computation is accepting.

There is also a set of visual conventions for drawing a finite automata as a labeled,
directed graph, with the nodes as states, the edges as transitions, labelled with the
alphabet letter, and double circled nodes for final states, and an arrow towards the
start state.
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q1 q2 q3

1 0

0,1

0 1

10. Regular Languages

Given a finite automata M = 〈Q,Σ, δ, qo, F 〉, a computation M(s), with s ∈ Σ∗

is defined by lifting the transition funtion δ from the domain Σ to the domain Σ∗

using the rules,

(1) q
ε−→ q, where ε is the empty string,

(2) q
σ−→ q′, where σ ∈ Σ and δ(q, σ) = q;,

(3) q
s−→ q′, where s ∈ Σ∗, and q

σ−→ q′′
s′−→ q′, with s = σs′ and σ ∈ Σ.

The computation is used as a membership predicate for a set,

L(M) = { s ∈ Σ∗ | qo
s−→ f, f ∈ F }

A language L ⊆ Σ∗ is regular is there is a finite automata M such that L = L(M).

11. Exercises

(1) Given the set X = { 1, 2, 3 } and the set Y = { 2, 4, 6, }, what is X ∪Y,X ∩Y
and X × Y .

(2) For the finite automata in the diagram above, complete this description of its
transition function δ: δ(q1, 0) = q1, δ(q2, 0) = q3, . . ..

12. How to Design an FA

Monday, 23 January 2023
Consider the regular language,

J1 = {w ∈ { 0, 1 } |w contains exactly one 1 }.
Here are remarks on designing this, and other, finite automata.

(1) A great help to the design process is to locate and clarify the set of states
needed. Once the states are identified, the machine builds itself.

(2) It is helpful to figure out how many states are needed.
(3) If the machine accepts something, there must be an accept state. If the

machine also rejects something there has to be a distinct state that is not an
accept state.

(4) Because the state set is finite, but the possible input without bound, some
state has to summarize an infinity of inputs.
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(5) States need not be distinguished if once in that state, it remains either ac-
cepting or non-accepting, not matter what the future transitions. These are
absorbing states, with all arrows leaving returning back — once entered, never
left.

(6) Once the states are identified, the start state is the state which is the outcome
of computing on the empty string.

(7) In this machine, we need to be able to count one 1, hence we need the state
that represents exactly that.

(8) Of the states that represent the situation of not one 1, we have to distinguish
between those with less than one 1, because they have various future pos-
sibilities (some will end up as accepting and some will not) and more than
1 one which have a fixed future possibility (they are non-accepting now and
will forever be so).

(9) Hence the machine has three states; the start state corresponds to the empty
string of zero 1’s, and the accept state the unique state representing one 1;
and the third state of more than one 1 is absorbing.

(10) In this machine, since 0’s do not affect the outcome, the states will not be
conditioned on any statement about zeros.

(11) Hence the machine as shown below. Once the states are are written down,
the machine builds itself.

none one more

1 1

0 0 0,1

Wednesday, 25 January 2023
The machines M1 and M4 from the class textbook were presented, and the Project

2 assignment and the code for the SimpleFiniteAutomata class was presented, see
github class (not public). We ended with some considerations concering regular
languages of the form “the string contains the substring s”.


