Final

- There are 7 problems each worth 6 points and 1 extra credit problem worth 3 points.
- As an important protocol for today's test, please turn your cameras on.
- While situations differ, every student is responsible for ensuring the integrity of the test, and must take all reasonable steps in support of ensuring the integrity.
- No notes, no collaboration. Please help the evaluation of partial credit by showing your work towards the solution. Do not be overly concerned with the challenge problems. Do your own work.
- Please sign the cover page so show agreement with these directions.

Name:

Problem	Credit
1	
2	
3	
4	
5	
$5-\mathrm{ec}$	
6	
7	
Total	

CSC 427: Theory of Computation

1. Reduce the following SAT instance to a 3SAT instance.

$$
\neg((a \wedge b \wedge c \wedge d) \vee \neg(a \vee(b \wedge c)))
$$

2. Give a Turing Machine that accepts the language of strings over $\{\$, 0,1\}$ of strings that begin with a $\$$ and are followed by an equal number 0 's and 1's.

You may assume that the only characters in the string before the first blank is the leading $\$$ then only 0 's and 1 's.

CSC 427: Theory of Computation
3. Put a (\checkmark) the box that most precisely describes the language.

	Rec.	R.E.	non-RE
$A_{D F A}$			
$A_{R E X}$			
$\operatorname{coA_{CFG}}$			
$E Q_{D F A}$			
$A_{T M}$			
$E Q_{T M}$			
$\operatorname{coE} Q_{T M}$			
$\operatorname{coH} A L T_{T M}$			
$\operatorname{coA_{TM}}$			
$R E G U L A R_{T M}$			

The languages are,

$$
\begin{aligned}
A_{C F G} & =\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\} \\
A_{D F A} & =\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\} \\
A_{R E X} & =\{\langle R, w\rangle \mid R \text { is a regular expression that generates string } w\} \\
A_{T M} & =\{\langle M, w\rangle \mid M \text { is a TM and } M \text { accepts } w\} \\
E Q_{D F A} & =\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\} \\
E Q_{T M} & =\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2} \text { are TMs and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} \\
H A L T_{T M} & =\{\langle M, w\rangle \mid M \text { is a TM and } M \text { halts on input } w\} \\
R E G U L A R_{T M} & =\{\langle M\rangle \mid M \text { is a TM and } L(M) \text { is a regular language }\}
\end{aligned}
$$

For a language X the language $c o X$ is the language of the complement set of X.
4. The k-clique problem is given a graph with vertex set V of size n and edge set E of size m, is there a subset K of the vertex set V, such that K is of size k and K is a clique, that is, every pair of vertices in K are connected by an edge.
(a) Give an algorithm to solve the problem. Analyze the the algorithm runtime.
(b) It is likely your algorithm is not polynomial time. Is there a polynomial time algorithm for this problem?
5. (a) Show that P is closed under union, concatenation and complement.
(b) Extra Credit Problem: Show that P is closed by star.
6. Consider an polynomial in one variable with integer coefficients,

$$
p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0}
$$

The notation for any such polynomial is $p \in Z[x]$. The language R is the set of such polynomials that have an integer root,

$$
R=\{p \in Z[x] \mid \text { there is a } r \in Z \text { such that } p(r)=0\}
$$

(a) Give a P-time verifier for the set R.
(b) Give a decider for the set R. (Do not be concerned with runtime, except it must always decide in finite time.)
7. Show that,
$C F L_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is a context free language $\}$ is undecidable.

