Final

Friday, 7 May 2021 11:00 AM -1:30 PM

- There are 7 problems each worth 6 points and 1 extra credit problem worth 3 points.
- As an important protocol for today's test, please turn your cameras on.
- While situations differ, every student is responsible for ensuring the integrity of the test, and must take all reasonable steps in support of ensuring the integrity.
- No notes, no collaboration. Please help the evaluation of partial credit by showing your work towards the solution. Do not be overly concerned with the challenge problems. Do your own work.
- Please sign the cover page so show agreement with these directions.

Name: _____

Problem	Credit
1	
2	
3	
4	
5	
5-ec	
6	
7	
Total	

1. Reduce the following SAT instance to a 3SAT instance.

 $\neg \big((a \wedge b \wedge c \wedge d) \lor \neg (a \lor (b \wedge c)) \big)$

2. Give a Turing Machine that accepts the language of strings over $\{\$, 0, 1\}$ of strings that begin with a \$ and are followed by an equal number 0's and 1's.

You may assume that the only characters in the string before the first blank is the leading \$ then only 0's and 1's.

	Rec.	R.E.	non–RE
A_{DFA}			
A_{REX}			
coA_{CFG}			
EQ_{DFA}			
A_{TM}			
EQ_{TM}			
$coEQ_{TM}$			
$coHALT_{TM}$			
coA_{TM}			
$REGULAR_{TM}$			

3. Put a (\checkmark) the box that most precisely describes the language.

The languages are,

A_{CFG}	=	$\{ \langle G, w \rangle G \text{ is a CFG that generates string } w \}$
A_{DFA}	=	$\{ \langle B, w \rangle B \text{ is a DFA that accepts input string } w \}$
A_{REX}	=	$\{ \langle R, w \rangle R \text{ is a regular expression that generates string } w \}$
A_{TM}	=	$\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
EQ_{DFA}	=	$\{ \langle A, B \rangle A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
EQ_{TM}	=	$\{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
$HALT_{TM}$	=	$\{ \langle M, w \rangle M \text{ is a TM and } M \text{ halts on input } w \}$
$REGULAR_{TM}$	=	$\{ \langle M \rangle M \text{ is a TM and } L(M) \text{ is a regular language } \}$

For a language X the language coX is the language of the complement set of X.

- 4. The k-clique problem is given a graph with vertex set V of size n and edge set E of size m, is there a subset K of the vertex set V, such that K is of size k and K is a clique, that is, every pair of vertices in K are connected by an edge.
 - (a) Give an algorithm to solve the problem. Analyze the the algorithm runtime.
 - (b) It is likely your algorithm is not polynomial time. Is there a polynomial time algorithm for this problem?

- 5. (a) Show that P is closed under union, concatenation and complement.
 - (b) Extra Credit Problem: Show that P is closed by star.

6. Consider an polynomial in one variable with integer coefficients,

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0$$

The notation for any such polynomial is $p \in Z[x]$. The language R is the set of such polynomials that have an integer root,

$$R = \{ p \in Z[x] \mid \text{ there is a } r \in Z \text{ such that } p(r) = 0 \}$$

- (a) Give a P-time verifier for the set R.
- (b) Give a decider for the set R. (Do not be concerned with runtime, except it must always decide in finite time.)

7. Show that,

 $CFL_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is a context free language } \}$ is undecidable.