
CSC 427: Theory of Computation 1

Midterm Wednesday, 4 March 2020
9:10–10:00 AM

There are 5 problems each worth 6 points for a total of 30 points. Show all
your work, partial credit will be awarded. Space is provided on the test for
your work; if you use a blue book for additional workspace, sign it and return
it with the test. No notes, no collaboration.

Name:

Problem Credit

1

2

3

4

5

Total

CSC 427: Theory of Computation 2

1. Give an NFA that accepts exactly the strings over the alphabet { 0, 1 }
such that the number of 01 substrings equals the number of 10 sub-
strings. (Exactly means, those string and only those strings. The
empty string happens to be such a string, by the way.)

Next, give a machine with the fewest number of states. Do not worry if
you believe your first answer had the minimum number of states. This
is just a problem to come back to later, to see if you can improve your
otherwise correct solution.

Scoring

One point and stop: if in essence the solution accepts {0, 1}∗, ∅, or just
a small finite set of strings.

(a) Accepts ε,

(b) Accepts 0+ and 1+,

(c) Accepts any string that begins and ends on x with at least one
1− x between, ∀x.

(d) Rejects all strings that begin and end on different values.

(e) Correctly accepts or rejects a custom challenge string.

If passes above, 4/x points if solution has x states:

start: S

final: S

R

state: S

0 A

1 B

0 R

1 R

state: A

0 A

1 A

0 R

state: B

0 B

1 B

1 R

CSC 427: Theory of Computation 3

2. Write a Regular Expression that expresses the same language as the
following FSA.

Scoring

• Top path and bottom path scored individually, with 3 points each.

• Generally speaking, a point if some correct string is in the set
generated by the R.E.

• Correct is 3 points, with the following list of correct answers.

– top path:

∗ a∗b(a+b)∗c,
∗ or a∗(ba+)∗bc,
∗ or (a | ba)∗bc,
∗ or a∗(ba+)∗bc.

CSC 427: Theory of Computation 4

– bottom path:

∗ a(aa)∗b(b(aa)∗b)∗,
∗ or a(aa | bb)∗b.

• Rarely 2 points, for an almost correct solution.

Note that many bottom paths are subsets of a∗b∗. While this accepts
many correct strings, it does not accept any string such as abbaab.

CSC 427: Theory of Computation 5

3. Show that the language

{ ai# bj# ck# dn | where i, j, k ≥ 0 and i+ j + k = n }

is not regular.

Discussion

The use of the PL to show A not Regular being: there exists a collection
of increasing length strings { si | si ∈ A, |si| = pi} such that for all
dissections si = xyz of si satisfying ”certain” restrictions, there exists
and i which pumps the string out of A, xyiz 6∈ A.

(a) Make sure the Prosecutor is an ”exists” player. That is, s is
sufficiently specfified.

(b) Make sure the Advocate is a ”for all player”. That is, no lazy
Advocates. All possible y must be considered hoping to get an
acquittal.

(c) Contempt of court: y must be properly from s, and the conclusion
given the choice if i must be properly stated.

The best answer has s = ap#b#c#d p+2 or similar, because the Prose-
cutor wants to tie the Advocates hands. A good lawyer does not ask a
witness a question unless she already knows the answer. In this case,
she knows it will be y = ak, and her counter argument, i = 0 (for
instance) is ready.

In considering what it means for the Advocate to be the “for all player”,
consider these languages,

{ aibjck | where i, j, k ≥ 0 and i+ j ≥ k }

or
{ aibjck | where i, j, k ≥ 0 and k ≥ max(i, j) }

The danger is that the Prosecutor selects si = abpicpi , and the Advocate
responds y = a.

For the first example, the Prosecutor must select something like, si =
a pibc pi+1, and for the second example, the Prosecutor must selection
something like si = a pibc pi . Then the Advocate has no choice but
y = a+, and the Prosecutor wins by pumping down.

CSC 427: Theory of Computation 6

Scoring

Generally,

(a) Full credit for a correct answer.

(b) For a lazy Advocate, 4 points.

(c) Similar to 4 points, but an error in the Prosecutor’s string.

(d) For a problem with the math, such that what is stated does not
make sense, 2 points.

(e) No credible work, 0 points.

CSC 427: Theory of Computation 7

4. Give a Context Free Grammar for the language,

{ aibjck | i = j or i = k }

Then show that the CFG is ambiguous by giving two parse trees in you
grammar of the string aaabbbccc.

Scoring

S −→ J C |K
C −→ ε | cC
J −→ ε | a J b
K −→ B | aK c

B −→ ε | bB

• One point for some CFG like syntax, but either results in a finite
language or uses variables such as an expression aibi, for an integer
i.

• For three points, the CFG must express L ⊂ a∗b∗c∗ yet not be
a∗b∗c∗ or similar.

• Above that solutions were fully correct for 6 points, or had a
deficiency for 5 points.

CSC 427: Theory of Computation 8

5. Give a Context Free Grammar for the Regular Expression:

ab∗(a|b)(c(a|b))∗

Give a Regular Expression for the following Context Free Grammar, or
give a proof or a concise logical argument why an equivalent Regular
Expression does not exist,

S −→ AX

A −→ aA | a
X −→ ε | abXc

Solution

S −→ aBXY

B −→ ε | bB
X −→ a | b
Y −→ ε | cXY

or

S −→ aX

X −→ bX |Y Z
Y −→ a | b
Z −→ ε | c Y Z

The CFG cannot have an equivalent RE, as the CFG is not regular.

It the CFG, call it A, were regular, so would be A ∩
(
(a | b)∗c∗

)
. How-

ever each string in the family a(ab) pc p of strings in that intersection
language can be pumped out.

CSC 427: Theory of Computation 9

Because y in the decomposition cannot contain any c’s, by size restric-
tion on xy, and pumping y will imbalance either the number of a’s or
the number of b’s (or both) compared to the number of c’s.

Scoring

(a) The first problem was fully right, 6 points.

(b) 5 points that were close to fully right.

(c) From there there was a gap where solutions were wrong but on
the right track. These were 3 points.

(d) Then 2 or 1 points for grammars that had substantial and obvious
errors, but were some sort of CFG. Many suggested grammars here
were actually finite.

The second problem did not contribute any points, as it did not suggest
additional degrees of correctness to the overall question.

One answer attempted a proof using the false theorem that for L1 reg-
ular and L2 non-regular but CFL, then L1 ◦L2 is not regular. However,
L1 = { a ib j | i ≥ j } and L2 = b∗ gives a counter-example.

Another counter-example is L1 = { ai | i a square } and L2 = a∗.

