Midterm

Wednesday, 4 March 2020
9:10–10:00 AM

There are 5 problems each worth 6 points for a total of 30 points. Show all your work, partial credit will be awarded. Space is provided on the test for your work; if you use a blue book for additional workspace, sign it and return it with the test. No notes, no collaboration.

Name:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. Give an NFA that accepts exactly the strings over the alphabet \{0, 1\} such that the number of 01 substrings equals the number of 10 substrings. (Exactly means, those string and only those strings. The empty string happens to be such a string, by the way.)

Next, give a machine with the fewest number of states. Do not worry if you believe your first answer had the minimum number of states. This is just a problem to come back to later, to see if you can improve your otherwise correct solution.
2. Write a Regular Expression that expresses the same language as the following FSA.
3. Show that the language

\[\{ a^i b^j c^k d^n \mid \text{where } i, j, k \geq 0 \text{ and } i + j + k = n \} \]

is not regular.
4. Give a Context Free Grammar for the language,

\[\{ a^i b^j c^k \mid i = j \text{ or } i = k \} \]

Then show that the CFG is ambiguous by giving two parse trees in your grammar of the string \textit{aaabbbccc}.
5. Give a Context Free Grammar for the Regular Expression:

\[ab^*(a|b)(c(a|b))^* \]

Give a Regular Expression for the following Context Free Grammar, or give a proof or a concise logical argument why an equivalent Regular Expression does not exist,

\[
S \rightarrow AX \\
A \rightarrow aA | a \\
X \rightarrow \epsilon | abXc
\]