Midterm

There are 5 problems each worth 6 points for a total of 30 points. Show all your work, partial credit will be awarded. Space is provided on the test for your work; if you use a blue book for additional workspace, sign it and return it with the test. No notes, no collaboration.

Name:

Problem	Credit
1	
2	
3	
4	
5	
Total	

1. Give an NFA that accepts exactly the strings over the alphabet $\{0,1\}$ such that the number of 01 substrings equals the number of 10 substrings. (Exactly means, those string and only those strings. The empty string happens to be such a string, by the way.)
Next, give a machine with the fewest number of states. Do not worry if you believe your first answer had the minimum number of states. This is just a problem to come back to later, to see if you can improve your otherwise correct solution.
2. Write a Regular Expression that expresses the same language as the following FSA.

3. Show that the language

$$
\left\{a^{i} \# b^{j} \# c^{k} \# d^{n} \mid \text { where } i, j, k \geq 0 \text { and } i+j+k=n\right\}
$$

is not regular.
4. Give a Context Free Grammar for the language,

$$
\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } i=k\right\}
$$

Then show that the CFG is ambiguous by giving two parse trees in you grammar of the string aaabbbccc.
5. Give a Context Free Grammar for the Regular Expression:

$$
a b^{*}(a \mid b)(c(a \mid b))^{*}
$$

Give a Regular Expression for the following Context Free Grammar, or give a proof or a concise logical argument why an equivalent Regular Expression does not exist,

$$
\begin{aligned}
& S \longrightarrow A X \\
& A \longrightarrow a A \mid a \\
& X \longrightarrow \epsilon \mid a b X c
\end{aligned}
$$

