| Problem | Description | Computability | Notes
|
|---|
| AFA | (i,j) ⊆ N × N s.t. FAi accepts j | decidable | run DFA |
| EFA | i ⊆ N s.t. L(FAi) = ∅ | decidable | non-det guess element in complement |
| EQFA | (i,j) ⊆ N × N s.t. L(FAi) =L(FAj) | decidable | emptiness of symmetric difference |
| ACFG | (i,j) ⊆ N × N s.t. PDAi accepts j | decidable | Chomsky Normal Form |
| ECFG | i ⊆ N s.t. L(CFGi) = ∅ | decidable | marking algorithm |
| X | x ∉ X, where X is decidable | decidable |
| co-EQCFG | (i,j) ∉ EQCFG | RE | ∃ x s.t. (x,i) ∈ ACFG etc |
| EQCFG | (i,j) ⊆ N × N s.t. L(PDAi) = L(PDAj) | co-RE |
| ATM | (i,j) ⊆ N × N s.t. Mi(j) halts accepts | RE | run j on Mi |
| co-ATM | (i,j) ∉ HALT | co-RE |
| HALT | (i,j) ⊆ N × N s.t. Mi(j) halts | RE | run j on Mi |
| co-HALT | (i,j) ∉ HALT | co-RE |
| ETM | i ⊆ N s.t. L(Mi) = ∅ | co-RE | Rice's theorm |
| co-ETM | i ∉ETM | RE | ∃ x s.t. (x,i) ∈ ATM |
| EQTM | (i,j) ⊆ N × N s.t. L(Mi)=L(Mj) | non-RE | ¬(RE ∪ co-RE) |
| co-EQTM | (i,j) ∉ EQTM | non-RE | |