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A representation of Zn. In Zn what is meant by 0 is any integer which is a multiple of n; what
is meant by 1 is any integer which is one more than a multiple of n; and so forth,

a 7→ { a + κn |κ ∈ Z }

To perform addition we take any element from each set, sum them, and form the set of multiples,

{ a + κn }+ { b + κn } = { (a + b) + κn }

Multiplication is defined similarly.

Notation: We have abbreviated the notation, consider the κ as ranging over all integers. But this
isn’t a big deal. What is a big deal is that { a + κn } is a set, and the a appearing in the set’s
definition is generic. Let A = { a + κn }. The notation means that ∀a ∈ A, A = { a + κn }. Any
definition or proof, such as the one above, to be well defined must make use of this more precise
definition of A. More properly, the definition of addition is,

Given A,B ∈ Zn, a ∈ A, b ∈ B, define A + B = { a + b + κn }

and we show that the resulting set is the same regardless of the a and b chosen. Briefly, another
a′ ∈ A differs from a as a multiple of n, which can be absorbed into the κ.

Lemma 1 Let n and m be integers greater than one, and m divides n. The map φ : Zn → Zm is
a ring homomorphism.

Proof: The map is well-defined. Actually, we haven’t even defined the map. Here it is,

φ{ a + κn } = { a + κm },

meaning that for any a ∈ A,φ(A) = { a + κm } and that the resulting set is the same regardless of
the a chosen. To verify this, let a, a′ ∈ A. Since n|(a − a′) so m|(a − a′). Therefore { a + κm } =
{ a′ + κm }.
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We need to show φ(A + B) = φ(A) + φ(B) and φ(A B) = φ(A) φ(B). We just show addition.

φ({ a + κn }+ { b + κn }) = φ({ a + b + κn }) = { a + b + κm }
= { a + κm }+ { b + κm } = φ({ a + κn }) + φ({ b + κn })

Since it doesn’t matter which a ∈ A we take, we take the one which is most convenient for the
proof.

Definition 1 (Direct Products) The direct product Zn×Zm of Zn and Zm is the set of all pairs
(a, b), with a ∈ Zn and b ∈ Zm; addition and multiplication is component-wise: (a, b)+(c, d) = (e, f)
where e = a + c mod m and f = b + d mod n; (a, b)(c, d) = (e, f) where e = ac mod m and
f = bd mod n.

Theorem 1 Let n and m be two relatively prime integers, both greater than one. The map φ :
Znm → Zn × Zm is a ring isomorphism.

We have yet to define φ: it is the map φ(a) = (φ(a), φ(a)). Caution: It is a different φ for each
component — take a mod n for the first component and a mod m for the second component.

Lemma 2 Hypothesis as above, the map φ is bijective.

Proof: Let A,B ∈ Zmn. If φ(A) = φ(B) then for any a ∈ A and b ∈ B, { a + κn } = { b + κn }
and{ a + κm } = { b + κm }. So n|(a − b) and m|(a − b). Because n and m are relatively prime
nm|(a − b) so A = B. So the map is injective. Both groups have nm elements. So the map is
bijective.

Remark: The inverse of this map is the Chinese Remainder Theorem. There exists integers s
and t such that sn + tm = 1, because n and m are relatively prime. Select b ∈ B and a ∈ A. So
bsn is an integer which is 0 mod n and b mod m (that is, { bsn + κm } = { b + κm }). Likewise
atm is 0 mod m and a mod n (that is, { atm + κn } = { a + κn }). The inverse map is then
φ−1(a, b) = { atm + bsn + κmn }.

Lemma 3 Hypothesis as above, φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).

Proof: A previous result shows φ(a + b) = φ(a) + φ(b) for each component individually. Then,

φ(a + b) = (φ(a + b), φ(a + b)) = (φ(a) + φ(b), φ(a) + φ(b))
= (φ(a), φ(a)) + (φ(b), φ(b)) = φ(a) + φ(b)

The last step requires that φ be a bijection. Multiplication is shown similarly.

Proof (of theorem): By the above lemmas, φ is a bijection preserving ring operations, hence a
ring isomorphism.
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Corollary 2 For n > 1 an integer, write n =
∏k

i=1 pei
i , where the pi are distinct primes. Then

there is a ring isomorphism Zn
∼= Zp

e1
1
× Zp

e2
2
× . . .× Zp

ek
k

.

Proof: Show that ring isomorphisms F ∼= G × H and H ∼= J × K imply a ring isomorphism
F ∼= G× J ×K. Then use induction.

Application to square roots: Let a ∈ Zn such that a2 = 1. Then,

φ(a)2 = φ(a2) = φ(1) = 1

for each φ in the isomorphism of Zn
∼=

∏
i Zp

ei
i

. Conversely, if ai ∈ Zp
ei
i

such that a2
i = 1, then,

φ−1((ai))2 = φ−1((ai)2) = φ−1((a2
i )) = φ−1((1, 1, . . . , 1)) = 1.

If p is an odd prime, and e a positive integer greater than 1, then 1 has exactly two square roots
in Zpe . Hence:

Theorem 3 Let n be a positive, odd integer greater than 1 with k distinct prime factors. There
are 2k numbers a ∈ Zn such that a2 = 1 mod n.

An example: Let n = 3 · 5 · 7 = 105. The theorem says there are eight roots of unity in Z105. We
use the chinese remainder theorem to find them.

In Z3 × Z5 × Z7 the roots of unity are simply (a, b, c) where a, b, c ∈ {1,−1}, each 1 and −1
interpreted in the proper ring: Z3, Z5 and Z7.

Invoking chinese remainder once,

2 · 3 + (−1) · 5 = 1 ⇒ b · 6− a · 5 = e.

Substituting a, b ∈ {1,−1} gives e ∈ {1,−1, 11,−11}. These are the four roots of unity in Z15.
Invoking chinese remainder again,

1 · 15 + (−2) · 7 = 1 ⇒ c · 15− e · 14 = f.

Substituting values for e and c ∈ {1,−1} and reducing mod 105,

f ∈ { 1, 29, 71, 64, 76, 104, 41, 34 } (mod 105).

These are the eight roots of unity in Z105.
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