The structure of the integers mod n, with application to square roots.

Burton Rosenberg

November 14, 2003

A representation of \mathbb{Z}_{n}. In \mathbb{Z}_{n} what is meant by 0 is any integer which is a multiple of n; what is meant by 1 is any integer which is one more than a multiple of n; and so forth,

$$
a \mapsto\{a+\kappa n \mid \kappa \in \mathbb{Z}\}
$$

To perform addition we take any element from each set, sum them, and form the set of multiples,

$$
\{a+\kappa n\}+\{b+\kappa n\}=\{(a+b)+\kappa n\}
$$

Multiplication is defined similarly.
Notation: We have abbreviated the notation, consider the κ as ranging over all integers. But this isn't a big deal. What is a big deal is that $\{a+\kappa n\}$ is a set, and the a appearing in the set's definition is generic. Let $A=\{a+\kappa n\}$. The notation means that $\forall a \in A, A=\{a+\kappa n\}$. Any definition or proof, such as the one above, to be well defined must make use of this more precise definition of A. More properly, the definition of addition is,

$$
\text { Given } A, B \in \mathbb{Z}_{n}, a \in A, b \in B \text {, define } A+B=\{a+b+\kappa n\}
$$

and we show that the resulting set is the same regardless of the a and b chosen. Briefly, another $a^{\prime} \in A$ differs from a as a multiple of n, which can be absorbed into the κ.

Lemma 1 Let n and m be integers greater than one, and m divides n. The map $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ is a ring homomorphism.

Proof: The map is well-defined. Actually, we haven't even defined the map. Here it is,

$$
\phi\{a+\kappa n\}=\{a+\kappa m\},
$$

meaning that for any $a \in A, \phi(A)=\{a+\kappa m\}$ and that the resulting set is the same regardless of the a chosen. To verify this, let $a, a^{\prime} \in A$. Since $n \mid\left(a-a^{\prime}\right)$ so $m \mid\left(a-a^{\prime}\right)$. Therefore $\{a+\kappa m\}=$ $\left\{a^{\prime}+\kappa m\right\}$.

We need to show $\phi(A+B)=\phi(A)+\phi(B)$ and $\phi(A B)=\phi(A) \phi(B)$. We just show addition.

$$
\begin{aligned}
\phi(\{a+\kappa n\}+\{b+\kappa n\}) & =\phi(\{a+b+\kappa n\})=\{a+b+\kappa m\} \\
& =\{a+\kappa m\}+\{b+\kappa m\}=\phi(\{a+\kappa n\})+\phi(\{b+\kappa n\})
\end{aligned}
$$

Since it doesn't matter which $a \in A$ we take, we take the one which is most convenient for the proof.

Definition 1 (Direct Products) The direct product $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ of \mathbb{Z}_{n} and \mathbb{Z}_{m} is the set of all pairs (a, b), with $a \in \mathbb{Z}_{n}$ and $b \in \mathbb{Z}_{m}$; addition and multiplication is component-wise: $(a, b)+(c, d)=(e, f)$ where $e=a+c \bmod m$ and $f=b+d \bmod n ;(a, b)(c, d)=(e, f)$ where $e=a c \bmod m$ and $f=b d \bmod n$.

Theorem 1 Let n and m be two relatively prime integers, both greater than one. The map ϕ : $\mathbb{Z}_{n m} \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is a ring isomorphism.

We have yet to define ϕ : it is the map $\phi(a)=(\phi(a), \phi(a))$. Caution: It is a different ϕ for each component - take $a \bmod n$ for the first component and $a \bmod m$ for the second component.

Lemma 2 Hypothesis as above, the map ϕ is bijective.

Proof: Let $A, B \in \mathbb{Z}_{m n}$. If $\phi(A)=\phi(B)$ then for any $a \in A$ and $b \in B,\{a+\kappa n\}=\{b+\kappa n\}$ and $\{a+\kappa m\}=\{b+\kappa m\}$. So $n \mid(a-b)$ and $m \mid(a-b)$. Because n and m are relatively prime $n m \mid(a-b)$ so $A=B$. So the map is injective. Both groups have $n m$ elements. So the map is bijective.

Remark: The inverse of this map is the Chinese Remainder Theorem. There exists integers s and t such that $s n+t m=1$, because n and m are relatively prime. Select $b \in B$ and $a \in A$. So $b s n$ is an integer which is $0 \bmod n$ and $b \bmod m$ (that is, $\{b s n+\kappa m\}=\{b+\kappa m\}$). Likewise $a t m$ is $0 \bmod m$ and $a \bmod n$ (that is, $\{a t m+\kappa n\}=\{a+\kappa n\}$). The inverse map is then $\phi^{-1}(a, b)=\{a t m+b s n+\kappa m n\}$.

Lemma 3 Hypothesis as above, $\phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a b)=\phi(a) \phi(b)$.

Proof: A previous result shows $\phi(a+b)=\phi(a)+\phi(b)$ for each component individually. Then,

$$
\begin{aligned}
\phi(a+b) & =(\phi(a+b), \phi(a+b))=(\phi(a)+\phi(b), \phi(a)+\phi(b)) \\
& =(\phi(a), \phi(a))+(\phi(b), \phi(b))=\phi(a)+\phi(b)
\end{aligned}
$$

The last step requires that ϕ be a bijection. Multiplication is shown similarly.

Proof (of theorem): By the above lemmas, ϕ is a bijection preserving ring operations, hence a ring isomorphism.

Corollary 2 For $n>1$ an integer, write $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$, where the p_{i} are distinct primes. Then there is a ring isomorphism $\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}^{e_{1}}} \times \mathbb{Z}_{p_{2}^{e_{2}}} \times \ldots \times \mathbb{Z}_{p_{k}^{e_{k}}}$.

Proof: Show that ring isomorphisms $F \cong G \times H$ and $H \cong J \times K$ imply a ring isomorphism $F \cong G \times J \times K$. Then use induction.

Application to square roots: Let $a \in \mathbb{Z}_{n}$ such that $a^{2}=1$. Then,

$$
\phi(a)^{2}=\phi\left(a^{2}\right)=\phi(1)=1
$$

for each ϕ in the isomorphism of $\mathbb{Z}_{n} \cong \prod_{i} \mathbb{Z}_{p_{i} e_{i}}$. Conversely, if $a_{i} \in \mathbb{Z}_{p_{i} e_{i}}$ such that $a_{i}^{2}=1$, then,

$$
\phi^{-1}\left(\left(a_{i}\right)\right)^{2}=\phi^{-1}\left(\left(a_{i}\right)^{2}\right)=\phi^{-1}\left(\left(a_{i}^{2}\right)\right)=\phi^{-1}((1,1, \ldots, 1))=1 .
$$

If p is an odd prime, and e a positive integer greater than 1 , then 1 has exactly two square roots in $\mathbb{Z}_{p^{e}}$. Hence:

Theorem 3 Let n be a positive, odd integer greater than 1 with k distinct prime factors. There are 2^{k} numbers $a \in \mathbb{Z}_{n}$ such that $a^{2}=1 \bmod n$.

An example: Let $n=3 \cdot 5 \cdot 7=105$. The theorem says there are eight roots of unity in \mathbb{Z}_{105}. We use the chinese remainder theorem to find them.

In $\mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$ the roots of unity are simply (a, b, c) where $a, b, c \in\{1,-1\}$, each 1 and -1 interpreted in the proper ring: $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ and \mathbb{Z}_{7}.

Invoking chinese remainder once,

$$
2 \cdot 3+(-1) \cdot 5=1 \Rightarrow b \cdot 6-a \cdot 5=e .
$$

Substituting $a, b \in\{1,-1\}$ gives $e \in\{1,-1,11,-11\}$. These are the four roots of unity in \mathbb{Z}_{15}. Invoking chinese remainder again,

$$
1 \cdot 15+(-2) \cdot 7=1 \Rightarrow c \cdot 15-e \cdot 14=f .
$$

Substituting values for e and $c \in\{1,-1\}$ and reducing $\bmod 105$,

$$
f \in\{1,29,71,64,76,104,41,34\} \quad(\bmod 105) .
$$

These are the eight roots of unity in \mathbb{Z}_{105}.

