The structure of the integers mod n, with application to square roots.

Burton Rosenberg

November 14, 2003

A representation of \mathbb{Z}_n . In \mathbb{Z}_n what is meant by 0 is any integer which is a multiple of n; what is meant by 1 is any integer which is one more than a multiple of n; and so forth,

$$a \mapsto \{ a + \kappa n \, | \, \kappa \in \mathbb{Z} \}$$

To perform addition we take any element from each set, sum them, and form the set of multiples,

$$\{a + \kappa n\} + \{b + \kappa n\} = \{(a + b) + \kappa n\}$$

Multiplication is defined similarly.

Notation: We have abbreviated the notation, consider the κ as ranging over all integers. But this isn't a big deal. What is a big deal is that $\{a + \kappa n\}$ is a set, and the *a* appearing in the set's definition is generic. Let $A = \{a + \kappa n\}$. The notation means that $\forall a \in A, A = \{a + \kappa n\}$. Any definition or proof, such as the one above, to be well defined must make use of this more precise definition of *A*. More properly, the definition of addition is,

Given $A, B \in \mathbb{Z}_n, a \in A, b \in B$, define $A + B = \{a + b + \kappa n\}$

and we show that the resulting set is the same regardless of the a and b chosen. Briefly, another $a' \in A$ differs from a as a multiple of n, which can be absorbed into the κ .

Lemma 1 Let n and m be integers greater than one, and m divides n. The map $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$ is a ring homomorphism.

Proof: The map is well-defined. Actually, we haven't even defined the map. Here it is,

$$\phi\{a+\kappa n\} = \{a+\kappa m\},\$$

meaning that for any $a \in A$, $\phi(A) = \{a + \kappa m\}$ and that the resulting set is the same regardless of the *a* chosen. To verify this, let $a, a' \in A$. Since n|(a - a') so m|(a - a'). Therefore $\{a + \kappa m\} = \{a' + \kappa m\}$.

We need to show $\phi(A+B) = \phi(A) + \phi(B)$ and $\phi(AB) = \phi(A)\phi(B)$. We just show addition.

$$\begin{array}{ll} \phi(\{a+\kappa n\,\}+\{b+\kappa n\,\}) &=& \phi(\{a+b+\kappa n\,\})=\{a+b+\kappa m\,\}\\ &=& \{a+\kappa m\,\}+\{b+\kappa m\,\}=\phi(\{a+\kappa n\,\})+\phi(\{b+\kappa n\,\}) \end{array}$$

Since it doesn't matter which $a \in A$ we take, we take the one which is most convenient for the proof.

Definition 1 (Direct Products) The direct product $\mathbb{Z}_n \times \mathbb{Z}_m$ of \mathbb{Z}_n and \mathbb{Z}_m is the set of all pairs (a, b), with $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}_m$; addition and multiplication is component-wise: (a, b)+(c, d) = (e, f) where $e = a + c \mod m$ and $f = b + d \mod n$; (a, b)(c, d) = (e, f) where $e = ac \mod m$ and $f = bd \mod n$.

Theorem 1 Let *n* and *m* be two relatively prime integers, both greater than one. The map ϕ : $\mathbb{Z}_{nm} \to \mathbb{Z}_n \times \mathbb{Z}_m$ is a ring isomorphism.

We have yet to define ϕ : it is the map $\phi(a) = (\phi(a), \phi(a))$. Caution: It is a different ϕ for each component — take $a \mod n$ for the first component and $a \mod m$ for the second component.

Lemma 2 Hypothesis as above, the map ϕ is bijective.

Proof: Let $A, B \in \mathbb{Z}_{mn}$. If $\phi(A) = \phi(B)$ then for any $a \in A$ and $b \in B$, $\{a + \kappa n\} = \{b + \kappa n\}$ and $\{a + \kappa m\} = \{b + \kappa m\}$. So n|(a - b) and m|(a - b). Because n and m are relatively prime nm|(a - b) so A = B. So the map is injective. Both groups have nm elements. So the map is bijective.

Remark: The inverse of this map is the Chinese Remainder Theorem. There exists integers s and t such that sn + tm = 1, because n and m are relatively prime. Select $b \in B$ and $a \in A$. So bsn is an integer which is $0 \mod n$ and $b \mod m$ (that is, $\{bsn + \kappa m\} = \{b + \kappa m\}$). Likewise atm is $0 \mod m$ and $a \mod n$ (that is, $\{atm + \kappa n\} = \{a + \kappa n\}$). The inverse map is then $\phi^{-1}(a, b) = \{atm + bsn + \kappa mn\}$.

Lemma 3 Hypothesis as above, $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$.

Proof: A previous result shows $\phi(a+b) = \phi(a) + \phi(b)$ for each component individually. Then,

$$\phi(a+b) = (\phi(a+b), \phi(a+b)) = (\phi(a) + \phi(b), \phi(a) + \phi(b))$$

= $(\phi(a), \phi(a)) + (\phi(b), \phi(b)) = \phi(a) + \phi(b)$

The last step requires that ϕ be a bijection. Multiplication is shown similarly.

Proof (of theorem): By the above lemmas, ϕ is a bijection preserving ring operations, hence a ring isomorphism.

Corollary 2 For n > 1 an integer, write $n = \prod_{i=1}^{k} p_i^{e_i}$, where the p_i are distinct primes. Then there is a ring isomorphism $\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{e_1}} \times \mathbb{Z}_{p_2^{e_2}} \times \ldots \times \mathbb{Z}_{p_k^{e_k}}$.

Proof: Show that ring isomorphisms $F \cong G \times H$ and $H \cong J \times K$ imply a ring isomorphism $F \cong G \times J \times K$. Then use induction.

Application to square roots: Let $a \in \mathbb{Z}_n$ such that $a^2 = 1$. Then,

$$\phi(a)^2 = \phi(a^2) = \phi(1) = 1$$

for each ϕ in the isomorphism of $\mathbb{Z}_n \cong \prod_i \mathbb{Z}_{p_i^{e_i}}$. Conversely, if $a_i \in \mathbb{Z}_{p_i^{e_i}}$ such that $a_i^2 = 1$, then,

$$\phi^{-1}((a_i))^2 = \phi^{-1}((a_i)^2) = \phi^{-1}((a_i^2)) = \phi^{-1}((1, 1, \dots, 1)) = 1.$$

If p is an odd prime, and e a positive integer greater than 1, then 1 has exactly two square roots in \mathbb{Z}_{p^e} . Hence:

Theorem 3 Let n be a positive, odd integer greater than 1 with k distinct prime factors. There are 2^k numbers $a \in \mathbb{Z}_n$ such that $a^2 = 1 \mod n$.

An example: Let $n = 3 \cdot 5 \cdot 7 = 105$. The theorem says there are eight roots of unity in \mathbb{Z}_{105} . We use the chinese remainder theorem to find them.

In $\mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7$ the roots of unity are simply (a, b, c) where $a, b, c \in \{1, -1\}$, each 1 and -1 interpreted in the proper ring: \mathbb{Z}_3 , \mathbb{Z}_5 and \mathbb{Z}_7 .

Invoking chinese remainder once,

$$2 \cdot 3 + (-1) \cdot 5 = 1 \implies b \cdot 6 - a \cdot 5 = e.$$

Substituting $a, b \in \{1, -1\}$ gives $e \in \{1, -1, 11, -11\}$. These are the four roots of unity in \mathbb{Z}_{15} . Invoking chinese remainder again,

 $1 \cdot 15 + (-2) \cdot 7 = 1 \implies c \cdot 15 - e \cdot 14 = f.$

Substituting values for e and $c \in \{1, -1\}$ and reducing mod 105,

 $f \in \{1, 29, 71, 64, 76, 104, 41, 34\} \pmod{105}$.

These are the eight roots of unity in \mathbb{Z}_{105} .