
Fourier transforms

Burton Rosenberg

5 December 2003
Revised: 5 December 2008

Overview

This is an introduction to fast fourier transform for Algorithms CS 517. It is intended to be simple,
but not too simple. It takes a mathematically sophisticated approach.

Definition of the Fourier transform

Let { aj | j = 0, . . . , n− 1 } be n samples of a function. Although these are generally real numbers,
they could be complex numbers. The Fourier Transform associates to the set of samples a set of
complex numbers, { âk | k = 0, . . . , n− 1 }, called the Fourier coefficients.

A function can be represented either by its samples or by its fourier coefficients. As samples, it is
represented as a weighted sum of functions { ej | j = 0, . . . , n− 1 } called the sample basis,

ej(k) =
{

1 if j = k,
0 else

The function is also represented as a weighted sum of functions {χk | k = 0, . . . , n − 1 } called the
fourier basis,

χk(j) = e2πijk/n = cos(2πjk/n) + i sin(2πjk/n)

The two representations give the same function. Therefore the fourier transform is summarized by
the equality,

(1/n)
n−1∑
k=0

âkχk =
n−1∑
j=0

ajej

The scale factor 1/n is needed because the functions χk of the fourier basis are “bigger” then the
ej in the sample basis. The factor compensates for this.

Each side of the equality is a function. We are representing a function without explicitly showing
the free variable; we are writing f instead of f(x). To evaluate the right-hand-side at a particular

1



value k, k = 0, . . . , n− 1, we apply the evaluation to each component function and sum,

n−1∑
j=0

ajej

∣∣∣∣∣∣
k

=
n−1∑
j=0

ajej(k) = ak

Hence the name “sample basis”, the ej glue together samples into a function where the weight aj

of ej is the value of the function sampled at j.

The left-hand-side evaluation gives,

(1/n)
n−1∑
k=0

âkχk

∣∣∣∣∣
j

= (1/n)
n−1∑
k=0

âke
2πijk/n = (1/n)

n−1∑
k=0

âk (cos(2πjk/n) + i sin(2πjk/n))

This could be read as the superposition of overtones of the fundamental (complex) sine wave

cos kωj + i sin kωj,

with ω = 2π/n, the overtones generated by k = 0, . . . , n− 1, and j being the point of sampling, âk

is the (complex) weight of the k-th overtone in the superposition.

Calculation of the Fourier transform

A function can be represented as a sum of samples in the sample basis, or a superposition of
overtones in the fourier basis. Each representation has its strengths. Represented in the sampling
basis is natural when a signal is sampled or reconstructed. Represented in the fourier basis is more
useful when the function is modified: for instance when a sound signal is equalized or echo-cancelled.
To use both representations it is necessary to preform the transformation and its inverse. That is,
from the samples aj to calculate the coefficients âk, and from the coefficients âk to calculate the
samples aj .

Given the fourier coefficients, the samples are easy to recover: evaluate both sides of the equation
at j,

aj = (1/n)
n−1∑
k=0

âke
2πikj/n

This can be written as a polynomial,

f(y) = (1/n)
n−1∑
k=0

âky
k

and aj = f(ωj) where ω is the principal n-th root of unity ω = e2πi/n.

Think of f as a surface in complex space described by a n − 1 degree polynomial. It is entirely
determined by its values on the n-th roots of unity. It is also entirely determined by its n coefficients.
The Fourier transform is the passage between these two descriptions. We can think of constructing

2



the surface from the coefficients and then recovering the aj , or we can think of constraining that
the surface pass through the aj at ωj and then see what are the resulting values of the coefficients.

It is not as easy, however, to derive the polynomial’s coefficients from its values on the roots of
unity than it is to simply evaluate a given polynomial at the roots of unity. However, the special
structure of the roots of unity gives a strange duality — we can nearly interchange the role of the
coefficients and the values of the polynomial at the roots of unity. The polynomial,

g(y) =
n−1∑
j=0

ajy
j

gives the values of âk when evaluated at ω−k,

âk = g(ω−k)

(note carefully the negative sign in the exponent).

We prove this. Since aj = f(ωj), then

g(ω−k) =
n−1∑
j=0

f(ωj)ω−kj

= (1/n)
n−1∑
j=0

ω−kj
n−1∑
l=0

âlω
jl

= (1/n)
n−1∑
l=0

âl

n−1∑
j=0

ωj(l−k)

= âk

because the sum of powers of a root of unity is zero, unless the root of unity in question is one,

Lemma 1 Let ω = e2πi/n be the principal n-th root of unity. Then,
n−1∑
j=0

ωkj =
{

n if ωk = 1
0 else

Proof: Denote the sum by S. S = ωkS, because we are only causing a renaming of the index,
j′ = j + 1. If ωk 6= 1, this implies S = 0.

Fast implementations, the FFT

We have established that the fourier transform of a sequence of n complex numbers is the evaluation
of a polynomial at the n powers of the principal n-th root of unity This can be accomplished simply
in time Θ(n2), by n evaluations, where each evaluation is done in time Θ(n) using Horner’s rule:

f(y) =
n−1∑
j=0

ajy
j = a0 + y(a1 + y(a2 + y( . . . + y(an−2 + yan−1) . . .))

3



the Fast Fourier transform performs all these evaluations in time Θ(n log n).

Write f as the sum of even and odd powers, and factor a y from the odd-power sum,

f(y) = (a0 + a2y
2 + . . .) + y(a1 + a3y

2 + . . .) = fe(y′) + yfo(y′)

where y′ = y2. Assuming n even, fo and fe are both degree n/2 − 1 degree polynomials, to be
evaluated at the n/2 powers of the principal n/2-th root of unity. Since ω2((n/2)+j) = ωnω2j = ω2j ,
and ωn/2+j = −ωj , we can write the above as,

f(ωj) = fe(ω̄j) + ωjfo(ω̄j)
f(ωn/2+j) = fe(ω̄j)− ωjfo(ω̄j)

where ω̄ = ω2 and for j = 0, . . . , n/2− 1.

The recursive algorithm is now evident for the case n = 2m, a pure power of two. Given a0, . . . , an−1,
take the FFT of a0, a2, . . . , an−2 and a1, a3, . . . , an−1 by (recursively) evaluating these n/2−1 degree
polynomials,

fe(y) =
n/2−1∑
j=0

a2jy
j , fo(y) =

n/2−1∑
j=0

a2j+1y
j

at the powers of the n/2-th root of unity ω̄ = eπi/n,

bj = fe(ω̄j), cj = fo(ω̄j)

then combine,
âj = bj + ωjcj , âj+n/2 = bj − ωjcj

where ω = e2πi/n and j = 0, . . . , n/2 − 1. The combining step takes linear time, so the recursion
for run time is T (n) = 2T (n/2) + O(n), so T (n) = O(n log n).

Although this recursive description is complete, implementable, and simple, application to hardware
will require a non-recursive description. This is an instance of a simple recursive algorithm whose
non-recursive equivalent is complicated, due to the tricky re-indexing of variables. It is organized
around the butterfly circuit, which is a three-input, two-output circuit, C(x0, x1, w) = (y0, y1),

y0 = x0 + wx1, y1 = x0 − wx1

There are logn layers of such butterfly circuits, one for each level of recursion, and n/2 circuits in
each layer, to preform the combining. The tricky part is getting the right inputs to each circuit.

Example calculation

The n-th root of of unity is denoted ωn = e2πi/n. The notation of this section gives the powers
of roots o unity as the zeroth, the first, etc, {ω0, ω1, . . . , ωn−1 }, so the second roots of unity
ω2 are ordered as { 1,−1 }, and the fourth roots ω4 as { 1, i,−1,−i }. The conjugate roots are
ω̄2 = {−1, 1 } and ω̄4 = { 1,−i,−1, i }.

4



To walk through the fourier transform of the corresponding sample sets, two and four, we have,

a0 + a1y =
{

â0 = a0 + a1 y = 1
â1 = a0 − a1 y = −1

a0 + a1y + a2y
2 + a3y

3 =


â0 = a0 + a2 + a1 + a3 y = 1
â1 = a0 − a2 + a1i− a3i y = i
â2 = a0 + a2 − a1 − a3 y = −1
â3 = a0 − a2 − a1i + a3i y = −i

and the return trip,

â0 + â1y =
{

â0 + â1 = a0 + a1 + a0 − a1 = 2a0 y = 1
â0 − â1 = a0 + a1 − a0 + a1 = 2a1 y = −1

â0 + â1y + â2y
2 + â3y

3 =


â0 + â1 + â2 + â3 = 4a0 y = 1
(â0 − â2) + i(â1 − â3) = 4a1 y = −i
â0 − â1 + â2 − â3 = 4a2 y = −1
(â0 − â2)− i(â1 − â3) = 4a3 y = i

Graphs of overtones

The powers of the roots of unity were described as overtones of a fundamental sinewave of frequency
ω = 2π/n,

e2πijk/n = cos kωj + i sin kωj.

We illustrate this with graphs for the case n = 6. A connection with the Nyquist sampling limit is
also noted.

Draw the six roots of unity in the complex plane. The principal sixth root is ω = (1 +
√

3i)/2. We
can make a table giving the real part (x coordinate) of ωjk, that is, the k-th sample of the j-th
overtone.

j\k 0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 1/2 -1/2 -1 -1/2 1/2
2 1 -1/2 -1/2 1 -1/2 -1/2
3 1 -1 1 -1 1 -1
4 1 -1/2 -1/2 1 -1/2 -1/2
5 1 1/2 -1/2 -1 -1/2 1/2

5



Fit a cosine wave through these points. For the zero-th overtone, we have a flat line. For the first
overtone we have one period of a cosine. For the second overtone, it’s perhaps not so clear, but we
have samples of two periods of a cosine: three samples per period. For the third, we have samples
of three periods of a cosine. This is easy, we have exactly two samples per period, at its to (1) and
its bottom (−1).

After this, the samples seem to repeat. The fourth looks like the second, the fifth like the first.
However, if we were to also look at the imaginary part, we would see that they are distinguishable.
For instance, the first overtone the first sample is positive but for the fifth it is negative. However,
it is not possible to represent a wave with frequency faster than two samples per period. After this,
the waves fold back, matching waves with progressively slower frequencies. This is aliasing which
begins at two samples per period, which is the Nyquist limit.

6


