MTH112 - TEST 4

Name:

HONOR CODE: On my honor, I have neither given nor received any aid on this examination.
Signature:
Note: Show all work on exam in order to receive full credit.

1. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $\frac{4 n-3}{3 n+4}$
(b) $\ln (n+1)-\ln n$
(c) $\frac{(-3)^{n}}{n!}$
2. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{1}{e^{2 n}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{2}}{3(n+1)(n+2)}$
(c) $\sum_{n=2}^{\infty} \ln \frac{n^{2}-1}{n^{2}}$
3. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
(a) $\int_{0}^{\infty} \frac{x}{(x+2)(x+3)} d x$
(b) $\int_{-\infty}^{\infty} e^{-|x|} d x$
(c) $\int_{0}^{2} \frac{1}{4 x-5} d x$
4. Use comparison tests to determine whether the series is convergent or divergent. Do not evaluate the convergent sums.
(a) $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n \sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n}{(n+1) 2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{3 n^{3}-2 n^{2}}{n^{4}+n^{2}+1}$
