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Fundamental notions

First, review and maybe introduce some notation. It’s all about functions from G to C. A vector
is consider a function by the transform,

(cj) 7→
∑

j

cjej

where the ej , rather than standard unit vectors, are considered as functions,

ej(k) =
{

1 j = k
0 else

The Fourier coefficients ĉj are then the complex numbers for which,∑
j

cjej =
∑

j

ĉjχj/
√

n

where χj are the characters of G and n is the number of elements in G (this is also the number of
distinct characters). The scale factor 1/

√
n is needed make the characters unit length and thereby

insure that the Fourier transform is unitary.

A small amount of thought and it is clear that for G = Zn the image of a character must be an
n-th root of unity, and the map is determined by which n-th root of unity is the image of 1. We
also have the short proof, ∑

g

χi(g) =
∑

g

χi(g + a) = χi(a)
∑

g

χi(g).

So if χi is not identically 1, the sum is 0. This can be used to show the orthogonality of characters,
since 〈χi |χj〉 = χ∗

i · χj =
∑

g χk(g), and χk is trivial if and only if i = j.

Taking inner products against χk/
√

n in the two representations of the vector,

(χk/
√

n) ·
∑

j

ĉjχj/
√

n =
∑

j

ĉj(χk · χj)/n

= ĉk

1



which equals

(χk/
√

n) ·
∑

j

cjej =
∑

j

cj(χk · ej)/
√

n

= (1/
√

n)
∑

j

cjχk(j)∗

Using matrix notation,
(ĉk) = (1/

√
n)[χk(j)∗](cj)

that is, row k gives value of χk(j)∗ in column j. We derive the inverse transform by taking inner
products against ek,

ek ·
∑

j

cjej =
∑

j

cj(ek · ej)

= ck

and

ek ·
∑

j

ĉjχj/
√

n =
∑

j

ĉj(ek · χj)/
√

n

= (1/
√

n)
∑

j

ĉjχj(k)

written as a matrix,
(ck) = (1/

√
n)[χj(k)](ĉj)

Noting the reversal of the indices j and k, we have also shown that the inverse transform is the
Hermetian transpose of the forward transform. So the transformation matrix is unitary.

This fast and loose claim of invertibility might need a bit more justification. Consider (cj) trans-
formed to (ĉj) and then back to (c′j), for which we claim cj = c′j . Recall, that (cj) and (ĉj)
describe exactly the same vector, so that we can immediately claim (cj) and (c′j) at least describe
the same vector. That cj = c′j really depends upon the linear independence of the ej . The reader
is encouraged to review the linear algebra confirming this.

An example

As an example of the Fourier transform, the characters of Z4 are χk(j) = e2πijk/4. Allowing that
our matrix be written out starting the indexing at zero, the transformation matrix is,

[χk(j)∗] =
1
2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


and the reverse transformation (ĉj) 7→ (cj) is the Hermetian transpose of this matrix. For instance,
the function (1, 1,−1,−1) has Fourier transform (0, 1 − i, 0, 1 + i). The reader should check that
the function (1/2)((1− i)χ1 + (1 + i)χ3) has the proper values.
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Periodicity and the Fourier transform

A function f : Zn → C is periodic if there exists a period r such that f(k + r) = f(k). Note that r
must divide n. Periodic functions have limited amounts of information and the Fourier transform
reflects this by having many zero coefficients. Precisely, ĉj is non-zero only if j is a multiple of n/r.
Here’s the proof.

√
nf̂(j) =

n−1∑
k=0

e−2πijk/nf(k)

=
r−1∑
k′=0

n/r−1∑
k′′=0

e−2πij(k′+rk′′)/nf(k′ + rk′′)

=
r−1∑
k′=0

f(k′)e−2πijk′/n

n/r−1∑
k′′=0

e−2πijrk′′/n

Consider the second sum. By the assumption of divisibility, let d = n/r. The sum is therefore over
all powers of the j-th power of the d-th roots of unity. If j/d is not an integer, this sum is zero.
Else each term is 1 and the sum is n/r. Therefore,

f̂(j) =
{

(
√

n/r)
∑r−1

k=0 f(k)e−2πijk/n j = 0, n/r, 2n/r, . . .
0 else

An example

For an easy example of periodicity, take a function f periodic with period 2, f(k + 2) = f(k).
There are essentially only two values for this function f(k) when k is even, and when k is odd.
The non-zero fourier coefficients are at j = 0 and j = n/2. The only two characters involved are
the trivial character and the character which alternates between 1 and −1. It is easy to see how to
adjust their weights so as to combine these characters to equal the function f .

In general, when the periodicity of f implies that there are only d independent values for f then
only d Fourier coefficients will be possibly non-zero. Another way to look at this, the periodicity
of the characters with non-zero coefficients must be compatible to the periodicity of the function.
It seems that this might give a better proof: take the fourier transform in Zr of the r-periodic
function and then transfer the coefficients using the embedding of the r-th roots of unity into the
n-th roots of unity, when r divides n.

Quantum Fourier transform

Given the Fourier transform, we derive a quantum circuit. This essentially mean we give a bunch
of two qubit unitary transformations laid out so as to perform the Fourier transformation. It turns
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out that superposition lets us evaluate the Fourier transform using exponentially less circuitry than
if done classically.

Since the Fourier transform is linear, we need only discuss the circuit for inputs of the form |x〉.
General inputs of the form

∑
ci|x〉 are obtained by the superposition of basis states.

F |x〉 =
1√
n

n−1∑
y=0

e−2πixy/n|y〉

We write this in a product form. Assume n = 2m and that we represent x and y as the tensor
of qubits. Any |y〉 is of the form |y′0〉 or |y′1〉. We write the sums separately and factor over the
tensor,

F |x〉 =
1√
n

2m−1−1∑
y′=0

e−πix(2y′)/2m−1 |y′0〉+
1√
n

2m−1−1∑
y′=0

e−πix(2y′+1)/2m−1 |y′1〉

=
1√
n

2m−1−1∑
y′=0

e−πixy′/2m−2 ⊗ (|0〉+ e−πix/2m−1 |1〉)

Continuing in this manner,

F |x〉 =
1√
n

2m−2−1∑
y′=0

e−πixy′/2m−3 ⊗ (|0〉+ e−πix/2m−2 |1〉)⊗ (|0〉+ e−πix/2m−1 |1〉)

...

=
1√
n

(|0〉+ e−πix|1〉)⊗ (|0〉+ e−πix/2|1〉)⊗ . . .⊗ (|0〉+ e−πix/2m−1 |1〉)

To express this as the tensor of qubits ym−1 ⊗ ym−2 ⊗ . . .⊗ y0 we set,

yl =
1√
2
(|0〉+ e−πix/2m−l−1 |1〉)

The coefficient of the |1〉 in yl factors by expanding x =
∑

xk2k,

e−πi
P

xk2k/2m−l−1
=

m−1∏
k=0

e−πixk/2m−l−k−1
= (−1)xm−l−1

m−l−1∏
κ=1

e−πixm−l−1−κ/2κ

The quantum fourier recipe

1. Let l′ = m− l − 1. Apply the Hadamard transform to xl′ , giving (1/
√

2)(|0〉+ (−1)xl′ |1〉).

2. For κ = 1, 2, . . . , l′, if xl′−κ is 1, apply the phase shift e−πi/2κ
to the |1〉 component of the

qubit.

3. Assign the result to qubit yl.

Note that after collecting all m factors of 1/
√

2 we will have the required scale factor 1/
√

2m.
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An example

For the 2 qubit transform the circuit is,

x1 ---- H ----- S ---------- y0
|

x0 -------------*---- H ---- y1

Where H is the Hadamard transform, and S is a controlled phase shift by −i. That is, if its
two inputs are 1, it outputs −i, else it outputs the first input. Also, by careful experiment, the
controlled gate S should be,

S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

 =
[

I 0
0 S′

]

Note the reversal of the order of the bits of y. We can put the bits in the usual order by applying
the matrix,

R =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


So we need multiply,

R(I ⊗H)S(H ⊗ I) = (1/
√

2)R
[

H 0
0 H

] [
I 0
0 S′

] [
I I
I −I

]
= (1/

√
2)R

[
H H

HS′ −HS′

]

=
1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 1 1 1
1 −1 1 −1
1 −i −1 i
1 i −1 −i



=
1
2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


Which is indeed the Fourier transform on Z4.
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