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Abstract. In 1982, Bennett and Brassard suggested a new way to pro-
vide privacy in long distance communications with security based on the
correctness of the basic principles of quantum mechanics. The scheme al-
lows two parties, Alice and Bob, sharing no secret information in the first
place, to exchange messages that nobody else can figure out. The only re-
quirement is a quantum channel and a normal phone line connecting the
two parties. The fact that quantum mechanics provides unconditional
secure communications is a remarkable result that cannot be achieved
by classical techniques alone. Apart from secure communication, cryp-
tography is also interested in tasks that aim at protecting one party
against a potentially dishonest peer. This scenario, called secure two-
party computation, is usually modelled by a function f(xA, xB) where
xA and xB are Alice’s and Bob’s secret input respectively. They would
like to execute a protocol that produces z = f(xA, xB) to both parties
without disclosing their secret input to the other party. The only infor-
mation about a secret input that can be leaked toward the other party
is what the output z itself discloses about it. Unlike secure communi-
cation, secure two-party computation does not assume that Alice and
Bob are honest. One honest party’s input should remain secret what-
ever the other party’s behaviour. It is well-known that in order to find
a protocol for secure two-party computation, one must have access to a
secure bit commitment scheme. Unfortunately, in 1996 Mayers showed
that no secure quantum bit commitment scheme exists. Similarly to the
classical case (where trapdoor one-way functions are needed) quantum
cryptography does not provide secure two-party computation for free. In
this paper, we discuss the possibilities and limits of quantum cryptog-
raphy for two-party computation. We describe the essential distinctions
between classical and quantum cryptography in this scenario.

1 Introduction

Quantum cryptography aims at designing cryptographic protocols with security
guaranteed by the fundamental laws of quantum mechanics. In 1982, Bennett
and Brassard [1] proposed two quantum protocols: Quantum key distribution
(QKD), and quantum coin tossing. Quantum key distribution allows two par-
ties, Alice and Bob, who share no information to agree on a common secret key
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k ∈ {0, 1}l for some l > 0. Typically, once Alice and Bob share k, Alice can
encrypt any message m ∈ {0, 1}l as c = m ⊕ k. The ciphertext c is then sent
to Bob over a normal channel that can be eavesdropped at will. It is well-known
that this encryption method (called the one-time pad) does not leak information
about m to an eavesdropper as long as k is unknown. This means that when-
ever a new message m has to be sent secretly, Alice and Bob first use QKD in
order to get a fresh secret key k that is used for encrypting m. The point here
is that no classical method whatsoever can achieve this without relying upon
some assumptions [42]. Classically, the security of secret-key exchange can be
based upon a computing time limitation an attacker can spend in order to find
the key [19]. However, it is very unlikely that one could prove that a secure
classical cryptosystem would guarantee absolute security against eavesdroppers
limited to spend only polynomial time. A proven security statement like this
would imply that P �= NP. On the other hand, if secret-key distribution is im-
plemented quantumly then security can be achieved under the only assumption
that the basic axioms of quantum mechanics are correct. This offers advantages
compared to the classical cryptosystems since the notion of security is indepen-
dent of the model of computation. This is important since it is possible that all
practical public-key cryptosystems are secure against attackers modelled by Tur-
ing machines but not against attackers modelled by quantum Turing machines.
As an example, RSA [39] and Diffie-Hellmann [19] cryptosystems are breakable
by quantum attackers since the quantum computer can factorize and extract
discrete logs in polynomial time [41].

The idea behind the Bennett-Brassard scheme for QKD [1,2] is that, any
eavesdropper trying to get information by intercepting the communication on
the quantum channel will be detected. This is because unknown quantum states
cannot be observed without disturbing the state irreversibly. The disturbance
can be detected by Alice and Bob by exchanging information over the public
channel. The scheme ensures them that if they don’t find too many errors it
is because no threatening eavesdropping occurred during the quantum trans-
mission. The key they are going to agree on should therefore be secret. Several
papers have been written about the security of the Bennett-Brassard scheme. In
[2], the scheme was shown secure against an attacker performing the so called
intercept-resend attack. Intercept-resend attacks are the ones where the attacker
keeps the original particles and resends others according to the outcome of a
complete test (complete tests will be defined in section 3.1). The security of the
scheme was shown against much stronger but still limited attackers in [6]. Very
recently, the proof of security has been extended to cover all possible cases sound
with quantum mechanics axioms [35]. It follows that quantum mechanics allows
to achieve one of the most important cryptographic task without any assump-
tion. Moreover, experimental implementations have demonstrated that quantum
cryptography is also practical [2,37,43,24].

What about the other protocol introduced by Bennett and Brassard in 1982
[1]: Quantum coin tossing? A coin tossing protocol takes place between Alice and
Bob and guarantees that a random bit r ∈ {0, 1} is generated [7]. Even when
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one party is dishonest the outcome of the coin toss is random. This means that
no dishonest party can influence the outcome. Unlike the protocol for QKD,
it was already known by the authors that the proposal could be broken by
a dishonest party able to produce and manipulate entangled quantum states.
Loosely speaking, an entangled quantum state is the state of several particles
such that:

– Observing one part of the system produces a random outcome and
– once the outcome is known, the state or the rest of the system is also known.

In other words, the state of each particle is correlated with the others. These
states are rather difficult to prepare and were out of reach back in 1982. Today
however, the entanglement needed in order to break the scheme can easily be
produced in laboratory. From the beginning, coin tossing already appeared more
difficult to achieve than QKD whereas classically, coin tossing is easier than
secret-key distribution [23].

The coin tossing protocol proposed by Bennett and Brassard was in fact im-
plementing a more powerful primitive called bit commitment. A bit commitment
scheme allows Alice to commit to the value of a bit in a way that prevents Bob
to learn it but also in a way that prevents Alice from changing her mind. A coin
tossing is easily achieved using a bit commitment scheme:

– Alice commits on a random rA ∈ {0, 1},
– Bob announces a random rB ∈ {0, 1},
– Alice unveils rA,
– Alice and Bob set r = rA ⊕ rB.

The advantage of considering bit commitment is that it allows to prove knowl-
edge of a statement without divulging it [10,20]. This kind of cryptographic task
is important for solving natural cryptographic problems like identification, Zero-
Knowledge proofs of Knowledge, etc... However there are tasks that even bit
commitment cannot help to solve.

An oblivious transfer is a protocol that allows Alice to send Bob x ∈ {0, 1}
in such a way that:

– Bob receives x with probability 1
2 and knows it. When x is not received, Bob

gets no information on x.
– Alice has no information on whether or not Bob received x.

Classically, it would be a major breakthrough if one could show that bit commit-
ment and oblivious transfer can be based on the same computational assump-
tions [23]. Oblivious transfer seems strictly more powerful than bit commitment
in the classical world. It allows to build bit commitment quite easily but the op-
posite will turn out to be true only if the existence of one-way functions implies
the existence of trapdoor one-way functions. Coin tossing, bit commitment and
oblivious transfer are all protocols involving two parties who want to cooperate
while respecting their privacy. The most general task one can imagine in this
model is the so called secure two-party computation (S2PC). A protocol for S2PC
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is a generic protocol between Alice and Bob taking as input the description of
a function f : {0, 1}N × {0, 1}N → {0, 1}M and secret strings xA, xB ∈ {0, 1}N
for Alice and Bob respectively. The output is the value f(xA, xB) that is made
available to both parties. The protocol is secure if

1. it computes the correct output and
2. it leaks, to each player, no more information than f(xA, xB) about the input

of the other party.

Although S2PC seems quite general, an oblivious transfer is sufficient in order
for a secure protocol to exists [26,18]. It follows that the most general primitive
for solving any secure two-party computation is oblivious transfer.

From the above, it is natural to ask if oblivious transfer can be implemented
quantumly. A positive answer would allow to base almost all modern cryptogra-
phy upon the correctness of quantum mechanics, that is upon the laws of physics
as we observe them. Oblivious transfer can therefore be seem as the Holy Grail
of quantum cryptography.

1.1 Overview

Basically, quantum mechanics allows to transmit information in a way that is
similar to a transmission through a binary symmetric channel. Quantum mechan-
ics, by virtue of the uncertainty principle, allows to encode information in such a
way that the receiver cannot decode it all the time. Measuring an arbitrary quan-
tum state destroys it and does not extract all the information. Measurements
are therefore not repeatable so the uncertainty about the measured state always
remains. This inherent noisiness is at the basis of all quantum protocols includ-
ing the one for secret-key distribution. Noisy channels, at least some of them, are
powerful cryptographic primitives since they allow to build secure protocols for
oblivious transfer [16]. In 1991, Bennett, Brassard, Crépeau and Skubiszewska
proposed a quantum protocol for oblivious transfer [5]. Their protocol assume
that Alice and Bob have access, as a black-box primitive, to a secure bit commit-
ment scheme. Under this assumption, several results about the security of the
scheme were shown [5,15,36,46]. The result of Yao [46], showed that the scheme
is secure according to the laws of quantum mechanics and given bit commitment
as a black-box. The result showed that bit commitment is sufficient to build a
quantum oblivious transfer whereas classically this seems impossible.

There were reasons to be optimistic in 1995; the Holy Grail was in sight.
Not for long though! In 1995, Mayers [32] broke the most serious candidate for
quantum bit commitment [12] (although at that time it was even not considered
as a candidate but as a genuine bit commitment scheme). Then, things got worse.
In 1996, Mayers [33] and independently Lo and Chau [27] have given a general
attack that can be applied on general quantum protocols for bit commitment.
Mayers’ construction [33,34] turns out to be so general that the existence of
quantum bit commitment, with security relying merely upon the correctness of
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quantum mechanics, was ruled out. Quantum bit commitment as its classical
counterpart, needs extra assumption in order to be implemented. However, the
classical and quantum assumptions can be of very different and independent
nature [40]. It is of interest to have different sets of independent and realistic
assumptions under which bit commitment and, more generally, oblivious transfer
are possible. This allows to choose the model (classical or quantum) that suited
the best the requirements of a particular application.

This paper describe the main steps in the search for secure quantum oblivious
transfer. We shall see how quantum mechanics principles help in implementing
a flavour of noisy channel as a primitive. We describe how to use this primi-
tive to implement oblivious transfer given a black-box for bit commitment. We
then describe Mayers’ attack that breaks any quantum bit commitment. The
description of the attack is a good starting point for getting accustomed to the
weirdness of quantum information. It exhibits highly non classical behaviour
and more importantly, it suggests how to look at quantum protocols in order
not to over classicize their behaviour. It has been demonstrated many times,
that thinking classically about the security of a quantum protocol can lead to
false conclusions.

1.2 Content

In section 2, we introduce the mathematical concepts that are used throughout
the paper. In section 3, we define quantum states and measurements using the
standard physical representation. In section 4 we describe the standard way to
encode obliviously classical information in quantum states. In section 5, we show
how to reduce quantum oblivious transfer to the oblivious quantum encoding
given a bit commitment scheme. In section 6 we describe Mayers’ attack against
any quantum bit commitment scheme. We conclude in section 7.

2 Mathematical Background

Here, we introduce a suitable vector space for the representation of quantum
objects. We then introduce the definitions and basic properties of linear operators
relevant to our discussion. More complete information can be found in almost
any book about the basic of linear algebra.

2.1 Vectors and Vector Spaces

In quantum mechanics, states, system evolutions and measurements are all rep-
resented by objects in a complex vector space. An appropriate vector space is
called Hilbert space which is, for our purposes, not different from the complex
vector space with the scalar or inner product defined. In the following we denote
by α∗ the complex conjugate of any number α ∈ C. Let u = (u1, . . . , un),v =
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(v1, . . . , vn) ∈ H be two arbitrary vectors which belong in the same arbitrary
Hilbert space H. The inner product 〈u,v〉 ∈ C between u and v is defined as

〈u,v〉 =
n∑

i=1

u∗
i vi.

From the inner product (or scalar product) we define the norm (or length)
‖v‖ of vector v ∈ H by ‖v‖2 = 〈v,v〉 ∈ R. Two vectors v and w are orthogonal
if 〈u,v〉 = 0. We say that a vector is normalized if its norm is 1. As usual, any
vector v ∈ H can be written as a linear combination of an infinite number of
possible basis. In the following,Hn stands for the n-dimensional Hilbert space. A
basis E = {e1, . . . , en} for Hn is said to be orthonormal if for all 1 ≤ i �= j ≤ n,
we have that 〈ei, ej〉 = 0 and ‖ei‖ = 1.

2.2 Dirac’s Notation

A very popular notation for vectors and operators in an Hilbert space is the
Dirac’s notation. In Dirac’s notation, vectors representing states are denoted by
a ket. For any vector v = (v1, . . . , vm) ∈ H, we write the state of a quantum
attribute by |v〉. One can see |v〉 as the column vector:

|v〉 =


v1

v2

...
vm

 .

The ket notation allows to simplify expressions. In particular, it is often con-
venient to drop the description of vector v using only symbolic notations. One
possible orthonormal basis for H2 is + = {(1, 0), (0, 1)}. Basis + is called the
standard or computational or rectilinear basis. The orthonormal vectors for the
standard basis are + = {|0〉, |1〉} = {|0〉+, |1〉+}. Another important orthonor-
mal basis in H2 is the diagonal basis × = {( 1√

2
, 1√

2
), (−1√

2
, 1√

2
) = {|0〉×, |1〉×}.

Together with the ket comes the bra notation. If v = (v1, . . . , vm) ∈ Hm then
the bra of v is noted 〈v| and is defined as 〈v| = (v∗1 , v

∗
2 , . . . , v

∗
m).

Bras and kets can be combined in order to denote operations. For u =
(u1, . . . , um),v = (v1, . . . , vm) ∈ Hm we have that 〈v|u〉 =

∑m
i=1 u

∗
i vi is the

inner product between u and v. Another operation sometime called the dyadic
is denoted by |u〉〈v| and is such that

|u〉〈v| =


u1v

∗
1 u1v

∗
2 . . . u1v

∗
m

u2v
∗
1 u2v

∗
2 . . . u2v

∗
m

...
...

...
...

umv∗1 umv∗2 . . . umv∗m

 .

For any v ∈ Hm, |v〉〈v| is a matrix V = {vij}1≤i,j≤m such that for all i �= j we
have vij = v∗ji and vii ∈ R. In the following and except when stated otherwise we
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shall use vectors with only real components. In this case, the bra and the ket of
vector v have the same components, the first one being v as a row vector and the
later being v as a column vector. The inner product between u = (u1, . . . , um) ∈
Rm and v = (v1, . . . , vm) ∈ Rm is simply

∑m
i=1 uivi.

2.3 Unitary Evolution

We shall see in next section that vectors in a Hilbert space represent quantum
states. The possible evolution of a quantum state can always be described by
a unitary transformation. We say that a transformation in a m-dimensional
Hilbert space is unitary if it can be written as a bijective mapping between
two orthonormal bases. The following transformation is unitary and acts in a
2-dimensional Hilbert space:

H : |0〉 �→ 1√
2
(|0〉+ |1〉)

|1〉 �→ −1√
2
(|0〉 − |1〉)

Any unitary transformation acting in a m-dimensional Hilbert space can easily
be written as a m×m matrix. We only have to label each column and each row
by one vector of the basis E = {e1, . . . , em} we start with. The matrix entry
labelled (ei, ej) contains the complex number αi,j that appears in front of vector
ej when the input state is ei. For example, the matrix form for H is:

H =

|0〉 |1〉
|0〉 1√

2
−1√

2

|1〉 1√
2

1√
2

=
1√
2

(
1 −1

1 1

)
.

In the following we will also use the sign shift operator S acting on vectors in
H2 and defined as

S : |0〉 �→ |0〉
|1〉 �→ −|1〉

For any vector v = (v1, v2) ∈ H2, S applied on v produces the vector v′ =
(v1,−v2). The matrix representation of S is

S =

(
1 0

0 −1

)
.

Any unitary transformation U has an inverse U−1 = U † where U † is the trans-
posed conjugate of U (also called the Hermitian conjugate). One important prop-
erty of unitary transforms is that they always preserved the inner product namely
(i.e. for all u,v ∈ H we have that 〈u|v〉 = 〈Uu|Uv〉).

Throughout this paper, we shall denote operators by capital letters. When
we write A ∈ H, we mean that A is an operator acting on vectors in H.
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2.4 Relevant Operators

A special case of operators, called Hermitians, will be useful in order to define
what is a measurement of a quantum state. An operator A ∈ Hn is Hermitian if
when A is expressed by n× n matrix {aij}1≤i,j≤n we have that

1. for all i ∈ {1, . . . , n} the element aii ∈ R. This means that all principal
diagonal elements are real.

2. for all i �= j, aij = a∗ji.

An Hermitian operator A is always such that A = A†. When A contains only
real elements, then A is Hermitian if and only if A is symmetric. Projections are
special cases of Hermitian operators:

Definition 1. An Hermitian operator P that satisfies P = PP is called a pro-
jection.

The condition P = PP translates what we intuitively consider a projection,
namely that a projection does not transform vectors that are parallel to the rays
on which it projects. One can show that A is Hermitian in Hm if and only if it
can be written for some l ≤ m as,

A =
l∑

i=1

aiPi (1)

where the Pi’s are projection operators projecting on mutually orthogonal rays.
We say that v is an eigenvector with eigenvalue a ∈ C if A is such that av = Av.
The zero vector 0 is not an eigenvector but a = 0 is a possible eigenvalue. The set
EA = {ai}li=1 is the set of eigenvalues of A and the decomposition appearing in
equation 1 is called the spectral decomposition of A. If #EA = m then the spec-
tral decomposition is unique and all projections are into orthogonal subspaces of
dimension 1 (i.e. they project on rays). One can verify that all Hermitian oper-
ators have only real eigenvalues. The following projection operators are relevant
to our discussion:

P0 =

(
1 0

0 0

)
,P π

4
=

1
2

(
1 1

1 1

)
,P π

2
=

(
0 0

0 1

)
and P 3π

4
=

1
2

(
1 −1

1 1

)
.

In the above, projection Pα for α ∈ {0, π
4 ,

π
2 ,

3π
4 } is the projection on the ray

(i.e. one dimensional subspace) at angle α with vector (1, 0). The projection
operator Pv on the ray parallel to the normalized vector v ∈ H is Pv = |v〉〈v|.
For instance, the above projections P0 = |0〉〈0|, P π

4
= |0〉×〈0|, P π

2
= |1〉〈1|, and

P 3π
4

= |1〉×〈1|.
The trace Tr(A) of an operator A ∈ H, is the sum of its principal diagonal

elements. More formally, we write

Tr(A) =
∑
e∈E

〈e|Ae〉 (2)

for any basis E for H. It is easy to verify that any projection P is such that
Tr(P ) = 1. The trace has the following properties:
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1. Tr(A + B) = Tr(A) + Tr(B),
2. Tr(cA) = cTr(A) for c ∈ C and
3. Tr(AB) = Tr(BA).

It follows from equation 1 that if A has eigenvalues EA then

Tr(A) =
∑

a∈EA

aTr(Pa) =
∑

a∈EA

a. (3)

We shall see in section 3.4 that general quantum states are modelled by a special
class of operators characterized by their traces:

Definition 2. An operator D is a density operator if Tr(D) = 1.

2.5 Space Extension

Two Hilbert spaces H1 and H2 can be merged together in order to get a larger
one H containing both of them. Let m1 and m2 the dimension of H1 and H2

and let E = {e1, . . . , em1} and F = {f1, . . . , fm2} be orthonormal bases for H1

and H2 respectively. We define the tensor product operation “⊗” that allows,
given E and F, to get a new orthonormal basis H for the m1m2 dimensional
Hilbert space H = H1⊗H2. The tensor product is dyadic operation acting upon
vectors. If vector e = (e1, . . . , em1) and f = (f1, . . . , fm2) then we define:

e⊗ f =



e1f1

e1f2

...
e1fm2

e2f1

...
em1fm2


. (4)

It is now possible to define H = H1 ⊗ H2 as the Hilbert space generated by
the orthonormal basis H = {e1 ⊗ f1, e1 ⊗ f2, . . . , em1 ⊗ fm2}. The tensor prod-
uct operation can also be generalized in order to deal with operators as well.
Assume A is an operator in the m1 dimensional Hilbert space H1 and A′ is an
operator in the m2 dimensional Hilbert space H2. Assume A = {aij}1≤i,j≤m1

and A′ = {a′ij}1≤i,j≤m2 are expressed as m1×m1 and m2×m2 squares matrices
respectively. The composite operator A⊗A′ ∈ H1 ⊗H2 is defined as

A⊗A′ =


a11A

′ a12A
′ . . . a1m1A

′

a21A
′ a22A

′ . . . a2m1A
′

...
...

...
...

am11A
′ am12A

′ . . . am1m1A
′

 .
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3 Quantum States

In quantum cryptography, classical information is encoded in the state of a
quantum system. In this section, we describe what is meant by a quantum state.
We shall define pure states as a special case of all quantum states. Complete
measurements of quantum states are also discussed. Finally, we introduce the
most general quantum states allowed by the theory: quantum mixture.

3.1 Maximal Tests

Before giving the definition of a quantum state, it is convenient to introduce
maximal quantum tests [38]. Suppose you want to observe the property of a
quantum system that can possibly take N different values. If the test you devise
allows to distinguish between all N possibilities, we say that it is a maximal
quantum test. A N -outcome measurement of this property implements a maximal
quantum test. A test that gives only partial information about the measured
property is said to be a partial test.

3.2 Pure States

If a quantum system is prepared in such a way that one can devise a maximal
quantum test that yields with certainty a particular outcome then we say that
the quantum system is in pure state. It follows that measuring several times a
pure state yields always the same outcome [38].

In quantum mechanics, pure states are described by normalized vectors in
some Hilbert space. If the maximal test for a pure state has n possible outcomes
then the state is described by a vector |φ〉 ∈ Hn. The polarization state of a
photon is the usual way to encode information in quantum cryptography. Pure
states for the polarization of a photon can be tested by a 2-outcome maximal test.
It follows that the polarization state (i.e. here we drop the word pure adopting
the convention that unless stated otherwise a state is pure) is described by a
normalized vector in H2. As an example, |0〉, |1〉, 1√

2
(|0〉 + |1〉) = H |0〉 and

1√
2
(−|0〉 + |1〉) = H |1〉 are all possible states for the polarization of a photon.

The pure state |0〉× = 1√
2
(|0〉+ + |1〉+) is said to be in superposition of pure

states |0〉+ and |1〉+.
It is easy to verify that the tensor product operation |φ〉 ⊗ |φ′〉 for φ ∈ H

and φ′ ∈ H′ preserves the purity of the two quantum states |φ〉 and |φ′〉. That
means that whenever |φ〉 ∈ H and |φ′〉 ∈ H′ are brought together then the new
composite system remains in pure state. This must be the case since the maximal
test in H for |φ〉 followed by the maximal test in H′ for |φ′〉 defined one maximal
test in H⊗H′ for |φ〉 ⊗ |φ′〉.

The time evolution of a pure state (and also for mixture as defined in section
3.4) is always unitary and any unitary transformation is a possible evolution of
a quantum state. Let U ∈ H2l be any unitary transformation acting on vectors
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in Hilbert space H2l =
⊗l

i=1H2. Let E = {e1, e2, . . . , e2l} be a basis for H2l

and let |φ〉 ∈ H2l be any pure state in H2l . We have that

U |φ〉 = U

2l∑
j=1

αj |ej〉 =
2l∑

j=1

αjU |ej〉

for αj ∈ C and
∑

j |αj |2 = 1. This means that U is in fact applied simultaneously
to each element appearing in the superposition |φ〉. This kind of parallel com-
putation is very important for speeding up classical algorithms using quantum
phenomena. As we shall see in section 6, it has also important consequences in
cryptography.

3.3 Complete Measurements

We have seen that pure states are quantum states for which there exists a max-
imal test giving a predictable outcome (thus repeatable). Measurements are im-
plementations of the testing procedures. Quantum mechanics define complete
measurements as measurements implementing a maximal test for some quan-
tum states. Formally,

Definition 3. A complete or Von Neumann measurement of a quantum state in
Hn is described by an Hermitian operator M ∈ Hn with n distinct eigenvalues
EM = {a1, . . . , an}. Each eigenvalue a ∈ EM is a possible outcome for the
measurement.

From definition 3, the outcomes of a complete measurement M are in one to
one correspondence with the set of orthogonal projections PM appearing in M ’s
spectral decomposition, since the decomposition is unique when all eigenvalues
are distinct. Let Pa ∈ PM be the projection associated with eigenvalue a ∈ EM .
It is always possible to write Pa = |ψa〉〈ψa| for a normalized vector |ψa〉 that is
an eigenvector of M . Definition 3 does not describe the behaviour of complete
measurements but just the way they are modelled. In order to understand what
is a complete measurement, we have to specify what is the probability to observe
the outcome corresponding to any eigenvalues in EM and what happens to the
system once the outcome has been observed. This is where quantum measure-
ments and consequently quantum states differ from the classical ones. When a
system Φ in quantum state |φ〉 ∈ Hn is measured by a complete measurement
M , the following is always satisfied:

– The outcome corresponding to a ∈ EM is obtained with probability pφ(a) =
〈φ|Pa|φ〉.

– If a ∈ EM is the outcome then the state of Φ after the measurement is |ψa〉.
Any normalized vector |φ〉 ∈ Hn can be tested maximally by a complete mea-
surement M having projection Pa = |φ〉〈φ| in its spectral decomposition. The
outcome of M applied upon |φ〉 is predictable since the eigenvalue a satisfies
pφ(a) = 〈φ|Pa|φ〉 = 〈φ|φ〉〈φ|φ〉 = 1. It is always possible to find such an M so
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that normalized vectors really describe pure states. Since projections and nor-
malized vectors are in one to one correspondence, one can describe a pure state
by a projection as well. It follows that a pure state |φ〉 can always be written as
the projection operator Pφ = |φ〉〈φ|. From definition 2 and equation 1 we have
that any pure state Pφ is represented by a density operator but not all density
operators represent pure states, as we shall see in next section.

We have seen that complete measurements in Hn are modelled by Hermitian
operators M ∈ Hn having n distinct eigenvalues. The set of eigenvectors EM

for M defines a basis for Hn. It follows that a complete measurement can also
be described by a orthonormal basis F for Hn where each v ∈ F is a possible
outcome of M . Another equivalent way to specify a complete measurement is
a set of the n orthogonal projections PM in Hn appearing in M ’s spectral
decomposition. Each projection P ∈ PM is one of the possible orthogonal rays
on which M projects the initial state. Using this representation of complete
measurements, the following two complete measurements

M+ = {P0,P π
2
} and M× = {P π

4
,P 3π

4
}

will be used extensively in the following.

3.4 Mixed States

Suppose an observer is sitting next to a source of photons S. The dynamic of S is
such that with probability 1

2 a photon in state |0〉 is sent and with probability 1
2 a

photon in state |1〉 is sent. The behaviour of S can be described by a probability
distribution DS = {(1

2 , |0〉), (1
2 , |1〉)} over pure states in H2. Clearly, the next

photon π that is going to be transmitted by S is not in pure state since no
complete measurement can be defined such that the outcome will be predictable
by the observer. To verify this, observe that if M represents a maximal test on
DS then we have that p|0〉(a0) = p|1〉(a1) = 1 where a0 �= a1 are two eigenvalues
of M . Let p(a0) and p(a1) be the probability to observe a0 and a1 respectively
when the next photon transmitted by S is measured. We have that

p(a0) =
1
2
p|0〉(a0) =

1
2
p|1〉(a1) = p(a1) =

1
2
.

We conclude that no implementation of a maximal test is predictable when
applied on the next particle produced by S. The quantum state transmitted by
S is therefore not in pure state.

Definition 4. A quantum mixture is a probability distribution over pure states
in some Hilbert space H. Moreover, any quantum state is a quantum mixture.
In general we say that a quantum system is in a mixed state if it is not in pure
state.

Definition 4 does not say how a measurement behave when a mixed state is
observed. Let D = {(pi, |si〉)}li=1 be an arbitrary quantum mixture in Hilbert
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space H. We define the operator ρD ∈ H as

ρD =
l∑

i=1

pi|si〉〈si|. (5)

By definition, ρD is a density operator since each |si〉〈si| has trace 1. Equation
5 reminds us of the spectral decomposition except for the pure states |si〉’s that
are not necessarily orthogonal. Since ρD is Hermitian, it is always possible to
write

ρD =
l∑

i=1

pi|si〉〈si| =
m∑

i=1

p̃iPi (6)

where for all i �= j, Pi and Pj are orthogonal and
∑m

i=1 p̃i = 1. One consequence
of equation 6 is that two different mixtures D and D′ may share the same density
matrix. Let Psi = |si〉〈si| be the projection operator associated with the pure
state |si〉. We have that

ρD =
l∑

i=1

piPsi =
m∑

i=1

p̃iPi = ρD′

whereD′ = {(p̃i, Pi)}mi=1. The physical interpretation is that several and different
physical preparations can produce the same physical state.

If we return to our interpretation of a quantum mixture as a probability dis-
tribution over pure states, it becomes clear how behave a complete measurement
on it. Each time an observer performs a measurement on a quantum mixture
D, the measurement is applied on a random pure state |φ〉 ∈ H picked accord-
ing to D. Let ρD be the density operator for mixture D = {(pi, |si〉)}i. Let
M =

∑
i aiPi ∈ H be a complete measurement with outcomes (or eigenvalues)

EM = {ai}i and such that all Pi’s are orthogonal. The behaviour of M when
applied upon D satisfies the following:

– The probability pD(a) that the complete measurement M gives the outcome
a ∈ EM is

pD(a) =
∑

(p,|s〉)∈D
p〈s|Pa|s〉 = Tr(PaρD) (7)

where Pa is the projection associated to the eigenvalue a in the spectral
decomposition of M .

– After the outcome a has been observed,the state of the system becomes in
pure state Pa.

Since the statistics of a measurement are completely specified by the density
operator ρD, it follows that two mixtures D and D′ having the same density
operator ρD behave the same when they are measured. We conclude that two
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mixtures sharing the same density operator are indistinguishable by any physical
process.

As an example, consider the mixture D produces by the source S and the
new mixture D′ = {(1

4 , |0〉), (1
4 , |1〉), (1

4 , |0〉×), (1
4 , |1〉×)} produces by the source

S′. One can verify that

ρD′ =
1
4

(|0〉〈0|+ |1〉〈1|+ |0〉×〈0|+ |1〉×〈1|)

=
1
4

((
1 0
0 0

)
+
(

0 0
0 1

)
+
(

1
2

1
2

1
2

1
2

)
+
(

1
2

−1
2−1

2
1
2

))
=

1
2

(
1 0
0 1

)
=

1
2
11 = ρD.

It follows that no physical process can distinguish between sources S and S′.
These two preparation methods are equivalent.

In the following we sometime denote quantum systems in H2 by qubits. As we
have seen, a qubit cannot store more than 1 classical bit of information since any
complete test on it has only two possible outcomes. This explains the analogy
between “qubits” and “bits”.

Henceforth, we shall write ρ ∈ H, for a density operator ρ, if it acts on vectors
in H.

4 Oblivious Encoding of Information

In this section we shall see that the indistinguishability between quantum mixed
states sharing the same density matrix leads to an encoding of classical informa-
tion that cannot be recovered with 100% reliability by the receiver. This kind
of encoding scheme is relevant to cryptography since it allows to perform non
trivial cryptographic tasks. For instance consider the classical binary symmetric
channel (BSC) that allows to send bits with error probability 0 < ε < 1

2 . The
transmission of a classical bit through a BSC does not disclose all information
to the receiver since the communication is noisy. The sender does not have all
the information neither since (s)he does not know whether the receiver got the
bit or its complement. Crépeau and Kilian [16] have shown that a BSC allows to
build a secure oblivious transfer protocol and thus provides all the power needed
for secure two-party computation. Noisy channels can also be used to imple-
ment secure secret-key distribution protocols as, for example, Wyner’s wire-tap
channel [45] or Maurer’s secret-key agreement from common information [30].
This oblivious encoding of information is what we would like to achieve based
on quantum mechanics. It would allow to see the quantum channel like a noisy
channel thus providing the power needed for secure two-party computation.
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4.1 The BB84 Coding Scheme

The BB84 coding scheme has been introduced by Bennett and Brassard [1] in
order to achieve quantum secret-key distribution. As we shall see, the coding
scheme can also be used in order to implement a wide variety of cryptographic
tasks using the same quantum transmission procedure. The coding implements
some kind of noisy transfer of a classical bit.

The idea behind the BB84 coding scheme is that classical bits 0 and 1 are
encoded by non-orthogonal states and therefore cannot be distinguished perfectly
by any measurement. For, we define the two following basis in H2:

– The rectilinear basis + = {|0〉+, |1〉+}
– The diagonal basis × = {|0〉×, |1〉×}.

Each vector in the rectilinear and diagonal basis will be the encoding of a classical
bit. The following quantum transmission scheme is the main tool used in almost
all quantum protocols. It is the standard quantum transmission between a sender
S and a receiver R:

BB84 Quantum Transmission

1. S picks a random b ∈R {0, 1} and a random θ ∈R {+,�},
2. R picks a random bθ ∈R {+,�},
3. S sends a photon π in quantum state |b〉θ through the quantum channel,

4. R measures π with the complete measurement M
bθ and records the outcome

bb = (0 if |0〉
bθ is observed,

1 if |1〉
bθ is observed.

One BB84 quantum transmission produces a photon π with polarization in
mixed state DBB84 = {(1

4 , |0〉+), (1
4 , |1〉+), (1

4 , |0〉×), (1
4 , |1〉×)}. From equation

6, the mixture DBB84 is described by the density operator

ρBB84 =
1
4

(|0〉+〈0|+ |1〉+〈1|+ |0〉×〈0|+ |1〉×〈1|)

=
1
2
11.

On the receiving end, R measures π either with the complete measurement M+

or with M×, each being chosen with probability 1
2 . For any θ̂ ∈ {+,×} the

Hermitian operator M
bθ with eigenvalues E

bθ = {0, 1} can be written as

M+ = P0 = |0〉+〈0| =
(

1 0

0 0

)
and M× = P π

4
= |0〉×〈0| =

(
1
2

1
2

1
2

1
2

)
.

Suppose S sends π in state |0〉 (i.e. when S chooses b = 0 and θ = +) and R
measures in basis θ̂ = +. The probability p+(0) that R gets the outcome 0 thus
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setting b̂ = 0 = b is

p+(0) = 〈0|P0|0〉 = 〈0|
(

1 0

0 0

)
|0〉 = 〈0|0〉 = 1. (8)

If R would have chosen measurement M× instead then the probability p×(0) for
R to decode correctly would be

p×(0) = 〈0|P π
4
|0〉 = 〈0|

(
1
2

1
2

1
2

1
2

)
|0〉 = 〈0|(1

2
,

1
2

)〉 =
1
2
. (9)

Equations 8 and 9 show the property of obliviousness of the BB84 quantum
transmission. If R chooses θ̂ = θ then the decoded bit b̂ = b with probability 1.
However, if R chooses θ̂ �= θ then the decoded bit b̂ is completely random. The
BB84 coding scheme is symmetric and behaves the same way if the basis θ is ×
instead of + and if the bit b = 1 instead of 0. It follows that the probability ps

that b̂ = b is

ps = P
(
θ̂ = θ

)
+

1
2

P
(
θ̂ �= θ

)
=

3
4
. (10)

From equation 10 we conclude that if S and R follow the protocol honestly then
the BB84 quantum transmission implements a BSC with error probability 1

4 .

4.2 BB84 Is Oblivious

We now look at what happens when one party involved in a BB84 quantum
transmission does not behave according the rules. We shall see what advantage
a dishonest receiver R∗ gets by choosing complete measurements different from
M+ and M×.

The goal for R∗ is to figure out the bit b with better probability than 3
4 . In

other words,R∗ is looking for a complete measurement that allows to distinguish
between D0 = {(1

2 , |0〉+), (1
2 , |0〉×)} and D1 = {(1

2 , |1〉+), (1
2 , |1〉×)} more accu-

rately than measurements M+ and M×. Let ρ0 and ρ1 be the density operators
for D0 and D1 respectively. We have that

ρ0 =

(
3
4

1
4

1
4

1
4

)
and ρ1 =

(
1
4

−1
4

−1
4

3
4

)
(11)

Using equation 7, one can verify that

ps = P
(
b̂ �= b

)
=

1
4

(
Tr(P0ρ0) + Tr(P π

4
ρ0) + Tr(P π

2
ρ1) + Tr(P 3π

4
ρ1)
)

=
3
4
.

Let MB = {P π
8
,P 5π

8
} be the complete measurement with possible outcomes P π

8
=

|b0〉〈b0| and P 5π
8

= 112 − P π
8

= |b1〉〈b1| where b0 = (cos π
8 , sin

π
8 ) and b1 =
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(− sin π
8 , cos π

8 ). Assume R∗ measures π with MB and let p̃s(b) be the probability
to get b̂ = b when ρb is sent. We have that

p̃s(0) = Tr(P π
8
ρ0) = cos2

π

8
(12)

p̃s(1) = Tr(P 5π
8
ρ1) = cos2

π

8
. (13)

Equations 12 and 13 show that if R∗ wants to maximize its information about
b, he has advantage to apply measurement MB on π. In this case, the probability
to decode b correctly is about 85% instead of 3

4 when M+ or M× is applied. We
can show that MB is in fact the measurement that maximizes the probability to
decode b correctly. The spectral decomposition of density operators ρ0 and ρ1

is,

ρ0 =cos2
π

8
|b0〉〈b0|+ sin2 π

8
|b1〉〈b1| and ρ1 =sin2 π

8
|b0〉〈b0|+ cos2

π

8
|b1〉〈b1|.

This means that D0 = {(cos2 π
8 , |b0〉), (sin2 π

8 , |b1〉)} and D1 =
{(sin2 π

8 , |b0〉), (cos2 π
8 , |b1〉)}. Therefore, sending b using the BB84 coding

scheme behaves like if it was sent through a BSC with error probability sin2 π
8

whatever measurement R performs. It follows that the quantum state ρb for
any b ∈ {0, 1} does not carry more information than H(cos2 π

8 , sin
2 π

8 ) about b.
The BB84 coding scheme is therefore inherently oblivious.

The BB84 coding scheme hides completely S’s basis θ ∈ {+,×}. To see this,
consider the mixed state Dθ corresponding to a photon π polarized in basis θ.
We have that Dθ = {(1

2 , |0〉θ), (1
2 , |1〉θ)}. Let ρ+ and ρ× be the density operators

corresponding to D+ and D× respectively. One can easily verify that,

ρ+ =
1
2

(|0〉+〈0|+ |1〉+〈1|)

=
1
2

(|0〉×〈0|+ |1〉×〈1|)
= ρ×.

This implies that, given a BB84 photon π, it is impossible to figure out what
basis θ has been used by S. This holds for any quantum measurement R could
perform on π. The basis θ is perfectly concealed by the BB84 coding scheme.

4.3 BB84 as a Quantum Primitive

The BB84 coding scheme is the quantum ingredient of most quantum protocols
[1,2,12,17]. The difference between all these protocols is the classical communi-
cation taking place after the quantum transmission. The BB84 coding scheme
is a kind of universal cryptographic primitive. Typically, a quantum protocol
requires many BB84 transmissions upon which the classical part of the protocol
is based. The parties involved in the classical part communicate only via the
public channel. The classical phase is very often the only task dependent part
of a quantum protocol.
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In the following, we write 〈(b, θ), (̂b, θ̂)〉 ← BB84N to denote N inde-
pendent BB84 quantum transmissions of photons π1, π2, . . . , πN . S’s random
bits are b = b1, b2, . . . , bN and the N choices for the polarization bases are
θ = θ1, θ2, . . . , θN ∈ {+,×}N . The N particles π1, π2, . . . , πN that are sent
through the quantum channel are therefore in composite state |b1〉θ1 ⊗ |b2〉θ2 ⊗
. . .⊗ |bN 〉θN ∈ H2N . On each received particle πi, R performs the measurement
M

bθi
for θ̂i ∈ {+,×} providing the outcome b̂i.

5 From BB84 to Quantum Oblivious Transfer

The BB84 coding scheme shows similarities with the description of an oblivious
transfer. In BB84, the receiver gets the bit b with probability 1

2 (i.e. when θ̂ = θ).
The only difference between a BB84 transmission and an oblivious transfer is
that in the BB84 case, R does not know if he receives the bit or not.

One way to tell R whether or not he gets b, would be for S to announce
the basis θ used to transmit b. If the receiver finds out that θ̂ = θ then b̂ = b.
Otherwise, the bit received b̂ is not correlated with the bit sent. However, this
method allowsR to cheat and receive b̂ = b all the time! R just stores the photon
he receives and waits (without disturbing it) for S to announce θ. Once R knows
θ, he measures the photon with measurement Mθ thus recovering b perfectly. One
way to overcome this problem would be to requireR to commit on θ̂ and b̂ before
S announces θ. With probability κ > 0, S asks R to open the commitment. S
then verifies that whenever θ̂ = θ R obtained the outcome b̂ = b. If it is not the
case then S stops the execution. With probability 1−κ, S announces θ allowing
R to find out if he receives b. We have made a step forward but the method
does not implement an oblivious transfer yet. R has still a probability 1 − κ
not to be asked to open the commitment. This allows him to take a chance and
to commit on random values allowing him not to measure the received particle.
The probability of not being caught remains better than 1− κ (i.e. in fact the
probability of being caught is κ

4 ).
The above construction is the idea behind the quantum oblivious transfer

protocol of Bennett, Brassard, Crépeau and Skuwbiszewska [5] called the BBCS
protocol. Below, we present a slight modification of the BBCS protocol allowing
Alice to send to Bob the bit x by oblivious transfer. N BB84 transmissions
are performed out of which about one half have been received perfectly. One
subset Sc, for c ∈ {0, 1}, contains the positions i such that θi = θ̂i whilst the
set S1−c contains the positions i such that θ̂i �= θi. The two sets S0 and S1

are announced to Alice without telling her the bit c. Alice encodes the bit x she
wants to transmit by OT using the bits in positions in Sq for a random q ∈ {0, 1}.
The encoding allows Bob to recover x if and only if q = c which happens with
probability exactly 1

2 . The protocol needs a bit commitment scheme in order to
be implemented securely. Let us assume that BC(w), for w ∈ {0, 1}, is a secure
commitment of bit w.
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BBCS QOT Scheme(x)

1. Alice and Bob execute 〈(b, θ), (bb, bθ)〉 ← BB84N where Alice is S and Bob is R,
2. Bob sends to Alice the commitments {(BC(bbi), BC(bθi))}Ni=1,
3. Alice selects a random subset of positions I ⊂ {1, . . . , N} that she announces to

Bob,
4. Bob opens {(BC(bbi), BC(bθi))}i∈I allowing Alice to verify that for all i ∈ I such thatbθi = θi it is the case that bbi = bi. If Alice finds errors she stops the execution else

let J = {1, . . . , N} \ I be the set of untested positions,
5. Alice announces θJ = {θi|i ∈ J}, Bob picks a random c ∈ {0, 1} and sets Sc =

{i ∈ J |θi = bθi}, S1−c = J \ Sc,
6. Bob announces (S0, S1) to Alice (he keeps c secret),
7. Alice picks q ∈R {0, 1} and announces q together with r = x⊕Li∈Sq

bi to Bob,

8. If q = c then Bob computes x = r ⊕Li∈Sc
bbi = r ⊕Li∈Sc

bi else Bob does not
receive x.

The security of the scheme is based upon the inability for Bob to decode reliably
the bi’s for all transmissions. Intuitively, the commitments ensure Alice that
Bob measured completely the particles he received before she announces θ =
θ1, . . . , θN . Therefore, it should be the case that there exists a z ∈ {0, 1} such
that the subset of positions Sz satisfies

|P
(⊕

i∈Sz

bi =
⊕
i∈Sz

b̂i

)
− 1

2
| ≤ 2−αN

for some α > 0. If Bob follows the protocol then for each photon πi we have that
θ̂i �= θi with probability 1

2 . We have seen that in this case, P
(
b̂i = bi|θ̂i �= θi

)
=

1
2 . It follows that there exists z ∈ {0, 1} such that #{i ∈ Sz|θ̂i �= θi} ≥ (1−µ)#Sz

2
for any µ > 0 as long as N is large enough. In that case, the bit

⊕
i∈Sz

bi cannot
be approximated by Bob. Since Alice encodes x in the XOR of all bits in Sq, for
a random q ∈ {0, 1}, with probability 1

2 we have that q = z and Bob is unable
to obtain information about x.

5.1 Security and Generalized Measurements

In this section we quickly review what is known about the security of the BBCS
protocol against dishonest parties that would take advantage of more elaborate
quantum processes. Complete measurements as described in section 3.3, are not
the only way an attacker can try to get extra information. Quantum mechanics
allows generalized measurements to be performed. General measurements can
extract information from a quantum state in such a way that the disturbance
caused by the measurement process is minimized. In particular, if one is willing
to get less information than what is achievable through a complete measurement,
then a generalized measurement (also incomplete) of the the original quantum
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state can be done with no complete destruction of the initial state. One example
of an incomplete measurement is the measurement that does nothing. This is
formally written as the identity operator 11 which has only one eigenvalue a = 1
and therefore is not a complete measurement (of course!). In general, incomplete
measurements are modelled by Hermitian operators with fewer distinct eigenval-
ues than the dimension of the Hilbert space in which they operate. They cannot
give more information than complete measurements do but can nevertheless be
completed later in order to get a complete measurement. For example, it is al-
ways possible to apply the useless measurement 11 on a quantum state |φ〉 and
later measures the untouched state |φ〉 with a complete measurement. The re-
sult is simply the same as if |φ〉 would have been measured completely the first
time. Or is it? One can see that even the useless measurement 11 allows to break
BBCS if no commitment was used. An incomplete measurement that gives in-
formation about the observed state |φ〉 must destroy a part of the initial state.
In general, more distinct eigenvalues your measurement has, more destructive it
is (an example of a non-trivial incomplete measurement is given in section 6.4).
Incomplete measurements can be useful to an attacker involved in a quantum
protocol (as we have seen with BBCS using no commitment). The reason is that
between the time the attacker performs the incomplete measurement and the
time the measurement is completed, some extra information is obtained (i.e. the
bases θ in the case of BBCS). With this extra information, the completion of
the measurement can be chosen more cleverly than before whilst giving more
information than if a complete measurement would have been chosen regardless
of the extra information.

We can already verify that Alice has no way to learn whether or not the
bit x has been received by Bob, as long as the commitments are concealing.
This, because Bob chooses randomly how to measure each photon πi and never
gives information that would allow Alice to figure out what measurements were
performed (if the commitments were not concealing Alice could easily find out!).
Therefore, given S0 and S1, Alice has no information about c ∈ {0, 1} such that
Sc contains the positions i where θi = θ̂i. It follows that no matter what Alice
tries, it is always the case that P (q = c) = 1

2 . Only Bob could cheat the protocol
by measuring photons π1, . . . , πN using measurements of its choice.

If we make the extra assumption that Bob only performs complete measure-
ments then the security of the scheme can be shown. To see how, assume that
Bob returns a commitment BC(θ̂, b̂) with the property that if θ = θ̂ then b̂ = b
with probability 1. It follows that Bob’s measurement is the complete measure-
ment Mθ. Clearly, Bob cannot get b more than half the time even once he gets
to know θ since after Mθ has been performed, the state of the original photon is
irreversibly destroyed. Another strategy for Bob would be to return a commit-
ment that has a small but nonzero probability of being caught (i.e. θ̂ = θ but
b̂ �= b) by applying complete measurements different than M+ and M×. This
strategy does not help Bob in increasing its chance to receive the bit x as shown
in [15].
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In [36], Bob was allowed to perform generalized measurements on single BB84
qubits. These measurements are strictly more powerful than complete measure-
ments but were shown not to allow Bob to cheat the protocol neither. The final
piece was provided by Yao [46] who showed that, given a perfectly secure bit
commitment scheme, QOT is secure against any strategy allowed by quantum
mechanics. The BBCS scheme can also be modified to deal with imperfect ap-
paratus whilst remaining secure.

5.2 Classical vs. Quantum Cryptography

Yao’s proof of security for the BBCS scheme holds relative to the existence of a
secure bit commitment scheme. It follows that the scheme described above does
not provide security for free (as it is for quantum key distribution) but rather,
reduce the security of QOT to the security of bit commitment. Nevertheless,
we achieved something classical cryptography does not: secure oblivious transfer
based on bit commitment. Classically, bit commitment can be built from any
one-way function but oblivious transfer requires trapdoor one-way functions. It
is very unlikely that one can find a proof that one-way functions and trapdoor
one-way functions are in fact the same thing [23]. In the classical world, bit com-
mitment is a weaker primitive than oblivious transfer. On the other hand, Yao’s
proof has shown that quantumly, oblivious transfer is reducible to bit commit-
ment. It follows that oblivious transfer can be based on a weaker assumption in
the quantum world (i.e. the existence of one-way functions) than in the classical
world.

6 Quantum Bit Commitment

The next important question is whether or not QOT can be shown secure under
the only assumption that quantum mechanics is correct. This would allow to
base any secure two-party computation upon the same principles than quantum
key distribution [31,35,6]. The first attempt to find a secure quantum bit com-
mitment scheme is as old as the first protocol for quantum key distribution [1].
This first scheme was known to be insecure but it was believed that a secure one
could be found. Several attempts were made in order to fix the original scheme
[11,12]. The last one was even claimed to be unbreakable [12]. Unfortunately,
two years later Mayers found a subtle flaw in the last proposal [32]. Afterward,
Mayers realized that the flaw he found was not only due to the particular broken
protocol but could be applied to a large class of quantum protocol for bit com-
mitment [33]. This has also been observed independently by Lo and Chau [27].
It is now known that no quantum bit commitment exists with security based
only on the correctness of quantum mechanics axioms [33,34].

In this section, we shall look at the general idea behind Mayers’ proof and
see why quantum mechanics completely forbids the existence of bit commitment.
Apart from being used in the proof of [33], concepts introduce here are of inde-
pendent interest. In particular, they show the striking difference between classical
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and quantum information. Quantum information will appear much more elusive
than its classical counterpart.

6.1 Purification

In this section we shall discuss the main tool needed in order to prove Mayers’
theorem. It is shown how a quantum mixture can be embedded in a pure state.
This process is called purification of a mixed state.

We start by considering an example taken from the BB84 coding scheme. Let
BB84(0) be the possible BB84 transmissions of classical bit b = 0:

BB84(0)

1. S picks a random θ ∈R {+,�},
2. S sends a photon π in quantum state |0〉θ through the quantum channel.

Clearly, the mixture associated with one transmission through BB84(0) is
D0 = {(1

2 , |0〉+), (1
2 , |0〉×)} which has density operator ρ0, as described in section

4.2. Now let us introduce a similar way to send one of the random state |0〉+
and |0〉× without requiring S to pick a random basis as in step 1 of BB84(0):

BB84∗(0)

1. S prepares |Ψ〉 = 1√
2
(|0〉 ⊗ |0〉+ + |1〉 ⊗ |0〉×) ∈ H4,

2. S keeps the first (the left one) particle and sends the other (the right one).
3. S measures in the standard basis “+” the particle he has kept. If the outcome is

0 then he sets θ = + otherwise he sets θ = ×.

In BB84∗(0), S never uses coin flips in order to determine which one of the two
possible states |0〉+ or |0〉× is going to be sent. The coin is provided by adding an
extra particle, called the auxiliary system (or ancilla), that is in superposition of
the two possible outcomes of the coin toss. The auxiliary system is entangled with
the particle that stores the qubit to be sent. When the the state of the auxiliary
system is measured then the state of the qubit can be determined. Before the
measurement, the states of the qubit and the auxiliary system were unknown.
To see this, consider the standard complete measurement that S applies on |Ψ〉.
The pure state |Ψ〉 can be written as

|Ψ〉 =
1√
2




1

0

0

0

+


0

0
1
2

1
2


 =


1√
2

0
1
2

1
2

 .

When S executes M+, he will observe the outcome P0 (i.e. which is the projection
on |0〉) with probability

p(0) = 〈Ψ ||(P0 ⊗ 112)Ψ〉 = 〈Ψ |
(

1 0
0 0

)
⊗ 112|Ψ〉 =

1
2
.
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This means that with probability 1
2 , S observes 0 and |Ψ〉 is projected in the

state

|Ψ0〉 = |0〉 ⊗ |0〉+. (14)

With probability also p(1) = 1− p(0) = 1
2 , the standard measurement produces

the outcome 1 that projects the original state |Ψ〉 into |Ψ1〉 defined as

|Ψ1〉 = |1〉 ⊗ |0〉×. (15)

Equations 14 and 15 imply that the receiver R is going to receive |0〉+ with
probability p(0) = 1

2 and |0〉× with probability p(1) = 1
2 . On R’s point of view,

the mixed state he receives is D0 as it is for BB84(0). Since the density operators
of BB84(0) and BB84∗(0) are the same, R has no way to tell what preparation
S is using to send the qubit.

Now, consider the mixed state DB = {(cos2 π
8 , |b0〉), (sin2 π

8 , |b1〉)}, and its
purification

|ΨB〉 = cos
π

8
|0〉 ⊗ |b0〉+ sin

π

8
|1〉 ⊗ |b1〉.

If the leftmost particle is measured with the standard measurement M+ then
with probability pB(0) = cos2 π

8 the outcome 0 will be observed. We see that
pB(0) and p(0) (defined above) are not the same but, as we have seen in section
4.2, DB and D0 share the same density operator ρ0. The two purifications |Ψ〉
and |ΨB〉 are therefore two different purifications for the same mixed state.

It is always possible to replace a probabilistic procedure as BB84(0) by an
equivalent one where no coin toss is necessary. Consider an arbitrary mixture
D = {(pi, |si〉)}li=1 where each |si〉 belongs to the Hilbert space H. Let Hl be an
Hilbert space of dimension l = 2lg 2l�. A system ΨD ∈ Hl ⊗H in pure state

|ΨD〉 =
l∑

i=1

√
pi|i〉 ⊗ |si〉 (16)

is called a purification of D. The auxiliary system (the leftmost register) is used
to store indices of all possible coin toss outcomes. Let w ∈ {1, . . . , l} be written
in binary as Binary(w) = w0, w1, . . . , wl. A value for w is encoded in pure state
|w〉 = |w0〉 ⊗ |w1〉 ⊗ . . . ⊗ |wl〉 ∈ Hl. The state of equation 16 is guaranteed,
when the leftmost particle is measured with M+, to give the outcome w with
probability pw in which case the rightmost particle is projected in state |sw〉. This
is exactly the behaviour of mixed state D that is provided by the entanglement
of an auxiliary system with the pure states in D.

One strange thing about purifications is that it allows to perform operations
upon the result of a coin toss without knowing the outcome of the coin toss. For
instance, in BB84∗(0) it is not necessary for S to measure the register he keeps.
Not measuring it changes nothing to what R will receive, it is still the mixed
state D0 that is sent. But if S does not measure the kept register then he does
not know what state has actually been transmitted although he knows that it
has been chosen according to D0. The only way of doing this classically would
be to require the sender to forget what he had done.
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6.2 Purifying a Coin Toss

The most simple case of purification is probably the coin toss. Suppose that one
instruction in a quantum protocol requires to flip a biased coin C(p) as follows

C(p) =

{
1 with probability p,

0 with probability 1− p.

Unlike classically, it is possible to store a coin toss in a quantum memory without
forcing the outcome. This is straightforward to achieve by preparing a quantum
register ΨC(p) in state

|ΨC(p)〉 =
√
p |1〉+

√
1− p |0〉.

By measuring |ΨC(p)〉 with measurement M+ one gets the outcome P0 with prob-
ability 1−p and the outcome P π

2
with probability p. As long as the measurement

is not performed, the register |ΨC(p)〉 keeps both possibilities in superposition.
The coin toss itself is a quantum object. Classically, a coins toss does not exist
until the outcome is known.

Assume that a quantum register is in mixed state ρ ∈ H and V0 and V1 are
two unitary transforms acting on states in H. One application of quantum coin
toss is the purification of the sequence of instructions:

1. Pick r ∈ {0, 1} such that P (r = 1) = p,
2. Apply Vr to ρ for some arbitrary density operator ρ ∈ H.

Let us define an unitary transformation V ∈ H2 ⊗ H acting on a one qubit
register ΨC(p) in addition to the register in state ρ. Transformation V simply
applies V0 to ρ if register |ΨC(p)〉 = |0〉 and applies V1 to ρ if |ΨC(p)〉 = |1〉. Let
E = {e1, . . . , em} be an orthonormal basis for H. Transformation V is defined
as

V : |0〉 ⊗ |e1〉 �→ |0〉 ⊗ V0 |e1〉
|0〉 ⊗ |e2〉 �→ |0〉 ⊗ V0 |e2〉
...

...
...

|0〉 ⊗ |em〉 �→ |0〉 ⊗ V0 |em〉
|1〉 ⊗ |e1〉 �→ |1〉 ⊗ V1 |e1〉
...

...
...

|1〉 ⊗ |em〉 �→ |1〉 ⊗ V1 |em〉.

The fact that both V0 and V1 are unitary ensures that V is also unitary. Using a
quantum coin toss and transformation V , one can purify the above instructions
as follows:

1. Prepare a register in state |ΨC(p)〉
2. Apply V |ΨC(p)〉 ⊗ ρ.



The Search for the Holy Grail in Quantum Cryptography 207

It can easily be shown that both procedures generate the same mixture. Measur-
ing the leftmost register allows to select the coin toss outcome and consequently
which of V0 or V1 has been applied on the rightmost register.

In the above construction, the number of outcomes for the coin toss is irrel-
evant. Any coin toss distribution D = {(pi, i)}i can be purified the same way.

6.3 Purifying a Measurement

The purification process is not only possible on S’s side of the quantum channel.
It can also be done on the receiving end. Typically, R is supposed to measure a
particle π with some measurement M picked according to a distribution DM =
{(p1,M1), (p2,M2), . . . , (pl,Ml)}. A purification of such a process would allow
to perform all possible measurements in superposition until R wants to know
what measurement and what outcome he gets. When he does so, R gets the
outcome of a measurement picked according distribution DM .

Without loss of generality, let us assume that DM = {(p+,M+), (p×,M×)}.
The BB84 coding scheme corresponds to the special case p+ = p× = 1

2 . Assume
that a quantum register ΨC(p+) in state |ΨC(p+)〉 ∈ H2 contains a purification
of the coin toss C(p+) as described in the previous section. Let π be a qubit
that R is supposed to measure according to DM . We now define the unitary
transformation UM ∈ H2 ⊗H2 that perform the required purification:

UM :

coin︷︸︸︷
|0〉 ⊗

π︷︸︸︷
|0〉 �→ |0〉 ⊗ |0〉

|1〉 ⊗ |0〉 �→ 1√
2
|1〉 ⊗ (|0〉+ |1〉)

|0〉 ⊗ |1〉 �→ |0〉 ⊗ |1〉
|1〉 ⊗ |1〉 �→ 1√

2
|1〉 ⊗ (|0〉 − |1〉).

The register containing the coin toss is the auxiliary system of the purification.
Transformation UM stores the measurement in the auxiliary system and stores
the outcome in the system that encoded particle π initially. Let |b〉θ be a BB84
qubit and let |ΨC(p+)〉 be the purification of an arbitrary coin toss. One can verify
that

UM (|ΨC(p+)〉 ⊗ |b〉θ) =
√
p+|0〉 ⊗

(√
p+(0)|0〉 ±

√
p+(1)|1〉

)
+
√
p×|1〉 ⊗

(√
p×(0)|0〉 ±

√
p×(1)|1〉

)
where p

bθ (̂b) is the probability of the outcome b̂ whenever the initial state is
|b〉θ and the measurement is M

bθ. If the leftmost register is measured with M+

then the outcome P0 is obtained with probability p+ and the rightmost register
contains the possible outcomes of measurement M+ when applied to the BB84
state |b〉θ. Similarly, the outcome P π

2
is obtained with probability p× and the

rightmost register contains the possible outcomes of measurements M× when
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applied on |b〉θ. If measurement M+ is applied on the rightmost particle first,
an outcome b̂ is obtained without the measurement being completely specified.
The leftmost register is in superposition of all possible measurements that can
produce outcome b̂ when the initial state is |b〉θ. Purifying a random measure-
ment and measuring the rightmost register (the outcome register) allows to get
the outcome of an unknown measurement!

Suppose R is asked to perform a measurement M ∈ {M+,M×} according to
distribution DM on the particle π. Let |b〉θ ∈ H2 be an unknown BB84 state for
π that is received by R through the quantum channel. The following implements
a purification of this procedure given a register containing the coin toss |ΨC(p×)〉
for choosing according to DM :

1. R applies |ΨM 〉 = UM |ΨC(p×)〉 ⊗ |b〉θ.

The state |ΨM 〉 contains a superposition of both possible measurements. If
at some point after the BB84 transmission, R must announce the outcome of
a random measurement M

bθ for θ̂ ∈ {+,×} according to DM , then the mea-
surement M+ applied to the rightmost register gives a possible outcome. To fix
the measurement M , R only measures with M+ the leftmost register. If P0 is
obtained then the selected measurement was M = M+ otherwise M = M× was
selected. Applying UM to a coin toss C(1

2 ) register and a BB84 particle π purifies
R’s part of the BB84 transmission. The same technique can be used for sets of
any N possible measurements by using a N -outcome quantum coin toss.

The measurement M+ performed by R on the leftmost register does nothing
to the leftmost register and is formally defined as M = M+ ⊗ 112. It is an
incomplete measurement since it has only 2 distinct eigenvalues but acts in H4.

6.4 From One Purification to Another

In this section we shall argue that two purifications of the same mixed state are
in fact equivalent. By equivalent we mean that one can transform a purification
to another purification of the same mixture by acting only on the auxiliary part
of the purification. This is a result of Hughston, Jozsa and Wootters [22].

Let us consider the unitary transformation U∗ = SH (see section 2.3) acting
in H2 when applied on the auxiliary part of |Ψ〉:

(U∗ ⊗ 112)|Ψ〉 = (SH ⊗ 112)
1√
2

(|0〉 ⊗ |0〉+ + |1〉 ⊗ |0〉×)

=
1
2

((|0〉 − |1〉)⊗ |0〉+ + (|0〉+ |1〉)⊗ |0〉×)

=
1
2

((|0〉 − |1〉)⊗ (cos
π

8
|b0〉 − sin

π

8
|b1〉) +

(|0〉+ |1〉)⊗ (cos
π

8
|b0〉+ sin

π

8
|b1〉))

= cos
π

8
|0〉 ⊗ |b0〉+ sin

π

8
|1〉 ⊗ |b1〉

= |ΨB〉.
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Applying U∗ on the auxiliary part of |Ψ〉 transforms purification |Ψ〉 into pu-
rification |ΨB〉. This allows S to decide which preparation D0 or DB he wants to
use even after the particle is gone! S just prepares the purification of D0 and
sends to R the leftmost particle keeping the auxiliary system. If at some point
S wants to change his mind and wants to prepare the photon already sent using
preparation DB instead, then he just applies U∗ upon the auxiliary part.

The above construction is not a coincidence. Any pair of purifications |Ψ〉 and
|Ψ ′〉 for the same density operator is always related by an unitary transformation
acting only on the auxiliary part of the purifications [22]. Let Ψ ∈ Hm⊗Hn be a
purification of the density operator ρ ∈ Hn. The Schmidt decomposition [22,38]
allows to write |Ψ〉 as a sum of bi-orthogonal terms. This means that there
exists r ≤ min(m,n) (depending only on ρ) and two sets of orthonormal vectors
E = {ei}ri=1 and F = {fi}ri=1 in Hm and Hn respectively, such that1

|Ψ〉 =
r∑

i=1

√
αi|ei〉 ⊗ |fi〉 (17)

where as usual
∑

i |αi|2 = 1. In equation 17, the set {αi}ri=1 is the set of eigen-
values of ρ ∈ Hn. Let |Ψ ′〉 ∈ Hm⊗Hn be another purification of density operator
ρ ∈ Hn. We make the assumption that the auxiliary system in Ψ ′ belongs to the
same Hilbert space Hm than the auxiliary system for Ψ . This can be done with-
out loss of generality by taking the larger Hilbert space whenever the auxiliary
systems for Ψ and Ψ ′ are defined in different Hilbert spaces. From the Schmidt
decomposition, there exists two sets of orthonormal vectors E′ = {e′i}ri=1 and
F′ = {f ′i}ri=1 such that

|Ψ ′〉 =
r∑

i=1

√
αi|e′i〉 ⊗ |f ′i〉. (18)

Clearly, the unitary transformation W ∈ Hm defined for all i ∈ {1, . . . , r} as

W : |ei〉 �→ |e′i〉

is such that

(W ⊗ 11n)|Ψ〉 = |Ψ ′〉

since the subsystem in Hn is the same mixed state ρ in both purifications. In
this case, it can be shown that F = F′.
1 More precisely, let |Ψ〉 ∈ H1 ⊗ H2 be an arbitrary pure state and let ρ = |Ψ〉〈Ψ |
be the associated projection. Let ρ1 = TrH1(ρ) and ρ2 = TrH2(ρ) be the par-
tial trace of ρ over H1 and H2 respectively. It is always the case that ρ0 and
ρ1 share the same nonzero eigenvalues (with the same multiplicity) {αi}ri=1 for
r ≤ min (Dim(H1),Dim(H2)). The Schmidt polar form of |Ψ〉 is described in equa-
tion 17 and is such that vectors in {ei}ri=1 and vectors in {fi}ri=1 are orthogonal.
This is why we call this a decomposition as a sum of bi-orthogonal terms.
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6.5 Purifying a Quantum Protocol

The main idea behind Mayers’ proof is that purifications can be applied not
only to the cases we have seen previously but to any sequence of instructions
that might occur in a protocol. One party can, without having any chance of
being caught, execute his part of the protocol at the quantum level, meaning
that every action is purified.

Let us first review what set of instructions one party involved in a quan-
tum protocol should be able to perform. The instructions should be enough to
execute what we considered intuitively a quantum protocol (that is basically a
pair of algorithms usually not quantum connected by a classical and a quantum
channels). The algorithm of party P defines, at each step, a transition function
from the actual view V ∈ V to the new view V ′ ∈ V for an arbitrary set of pos-
sible views V. The view V can be seen as the memory a player needs in order to
complete the execution of the protocol. The following describes what P should
be able to execute at step h > 0 given the view Vh−1 after step h− 1 (i.e. V0 is
the initial secret input if needed):

1. Picks a random bit r such that P (r = 1) = p and sets Vh = Vh−1 ∪ {(h, r)},
2. Computes a function f : V→ V and sets Vh = Vh−1 ∪ {(h, f(V))},
3. Announces, through the classical channel, the value v ∈ {0, 1} of some mem-

ory register and sets Vh = Vh−1 ∪ {(h, v)},
4. Sends a qubit in state depending on the view V through the quantum chan-

nel,
5. Stores in memory a classical bit received through the classical channel,
6. Measures a qubit received through the quantum channel using measurement

M chosen according the view V . The outcome OM is added to the actual
view Vh = Vh−1 ∪ {(h,OM )} (note that not measuring the received qubit is
also covered by this case since it is equivalent to apply measurement 11).

Intuitively, if one party P can execute all these instructions then P can execute
any quantum protocol. As we have seen in sections 6.1,6.2, and 6.3, most of
the above instructions can be purified if they are considered isolated. The only
missing piece is how to compose them in a such a way that the properties of
purification remain. Suppose P has a quantum memory QM ∈ H where H is large
enough for storing all possible states in V. Suppose that initially P ’s quantum
memory QM ∈ H is in state |QM0〉 where QM0 is state V0 encoded in quantum
registers. During the course of actions, QM will evolve to a quantum mixture
since mixed states will be received through the quantum channel and entangled
registers will be sent. We denote by ρQM(h) the mixed state of QM after step h > 0.
P purifies each of the above instructions as follows:

1. P prepares a new quantum register in state |ΨC(p)〉. The quantum memory
is now in state ρQM(h) = ρQM(h− 1)⊗ |ΨC(p)〉.

2. Let Uf ∈ H be an unitary transformation implementing f . It might be the
case that P has to append few quantum registers in some pure state |φ〉 in
order to satisfy the requirement that Uf is unitary. The new state of QM is
ρQM(h) = Uf (ρQM(h− 1)⊗ |φ〉).



The Search for the Holy Grail in Quantum Cryptography 211

3. P applies the standard measurement M+ on the quantum register Rv con-
taining v. He announces 0 if the outcome is P0 and announces 1 if the
outcome is P π

2
. The new state ρQM(h) for QM can be computed in terms of

ρQM(h− 1) as described in equation 7.
4. P simply sends away the quantum register containing the qubit to be sent.

This operation mixes the state of QM. The new state ρQM(h) is ρQM(h−1) with-
out register Rv (formally speaking ρQM(h) is the partial trace of ρQM(h − 1)
with respect to register Rv). The state of the qubit can be determined by
a sequence of coin tosses previously generated and other quantum registers.
The purification is performed by an easy generalization of the method de-
scribed in section 6.1.

5. P adds a new register in state |b〉 to QM where b ∈ {0, 1} is the bit received
through the classical channel. The new state is ρQM(h) = ρQM(h− 1)⊗ |b〉.

6. In this case, P does not store the outcome but all possible outcomes of all
possible measurements as we have seen in section 6.3. It is always possible to
determine an unitary transformation UM which applies each measurement
specified by the state of some registers in QM. This is because the set of
registers involved in the choice of the measurement behaves like a set of
quantum coin tosses.

Suppose a protocol performed between P and P ′ has the property that the final
view of P ′ corresponds to the mixed state ρ′ ∈ H. If P purifies each step then
the state of the system Ψ that contains P ’s quantum memory QM plus all what
P ′ has generated and received during the execution, is in pure state |Ψ〉 ∈ H⊗H′

where H′ is the Hilbert space for P ′’s part of the system. Moreover, since P ’s
behaviour is indistinguishable from the non-purified execution of the protocol
(that is the main property of the purification process) we have that |Ψ〉 is a
purification of ρ′.

To get to know more about how to purify a quantum protocol, consult [33]
and [34].

6.6 Quantum Bit Commitment Is Impossible

We are now ready to conclude the impossibility of quantum bit commitment.
Suppose BC is a candidate for a secure quantum bit commitment scheme between
Alice, the sender, and Bob, the receiver. A secure protocol for bit commitment
must be

Concealing: Let ρBC(0) ∈ H′ and ρBC(1) ∈ H′ be the density operator corre-
sponding to the mixed state received by Bob when Alice commits 0 and 1
respectively. In order for the commitment to be concealing, it must be the
case that ρBC(0) ≈ ρBC(1).

Binding: Once the committing phase completed, Alice can open with success
only one bit b.

We show that if the concealing condition holds then necessarily the binding con-
dition does not. First, if ρBC(0) and ρBC(1) are sensibly different then they can
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be distinguished with good probability by a quantum measurement. For more
information about how distinguishable are different density operators, consult
[21]. In the following, we assume that ρBC(0) = ρBC(1) instead of being approxi-
matively the same. To see how to address the case where ρBC(0) and ρBC(1) are
close but not identical, consult [32]. Alice’s attack, that is described next, is the
same in both cases.

Assume that Alice purifies the commitment of b = 0 using the technique
describes in the last section. The resulting quantum system Ψ0 ∈ H ⊗ H′ that
contains Alice’s QM and what has been generated and received by Bob, is a
purification of ρBC(0). At revelation, Alice can open b = 0 since all information
that was needed in order to commit honestly to b = 0, is still accessible in QM.
After the revelation phase, Bob accepts the opening of b = 0 exactly as it is in
the honest case (this is what purification is all about).

Alice could have purified the commitment of b = 1 instead. This would result
in a quantum purification Ψ1 ∈ H⊗H′ for the mixed state ρBC(1) corresponding
to the commitment of b = 1. When Ψ1 is created, QM contains all the neces-
sary information to open b = 1. Since ρBC(1) = ρBC(0) it follows that |Ψ1〉 is a
purification of ρBC(0) as well.

Assume Alice wants to open b = 1. We now take full advantage of the purifi-
cation of ρBC(0). In last section, we have seen that for any pair of purifications
Ψ0 and Ψ1 for the same density operator ρBC(0) there exists an unitary transfor-
mation W ∈ H such that

|Ψ1〉 = (W ⊗ 11H′)|Ψ0〉.

Moreover, the transformation W depends only upon the protocol specification
and is independent on what Bob does. Alice can therefore open b = 1 after
having applied W on her part of the system (i.e. which is QM) just by following
the revelation protocol honestly.

In conclusion, here is the always successful attack against the quantum bit
commitment scheme BC:

1. Alice purifies the commitment of b = 0,
2. If Alice wants to open b = 0, she executes the revelation protocol from her

part of the purification stored in QM,
3. If Alice wants to open b = 1, she applies W on QM and follows the revelation

protocol for b = 1.

This strategy is indistinguishable from the honest one and therefore can be
applied to any candidate for a quantum bit commitment scheme. We conclude
that no quantum bit commitment exists.

7 Conclusion

It is now clear that in quantum cryptography, security in two-party games is
much more difficult to achieve than the security of Alice and Bob against the
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world. Security against the world is what is needed in order to achieve secret-key
distribution and that, quantum cryptography can do for free. However, two-party
games involve two parties that, although collaborative, do not trust the integrity
of the other. In this model, we discussed the fact that quantum oblivious transfer
is reducible to bit commitment which is not known/expected to be true in the
classical world. We have also seen that the security conditions for bit commit-
ment cannot be met by any purely quantum process. After Mayers’ had shown
that no quantum bit commitment exists, the spontaneous attitude was to try
taking advantage of subtle assumptions appearing in the theorem statement.
Most of those approaches use classical assumptions that have to hold only tem-
porarily. The goal being to build from such assumptions a commitment scheme
that is both concealing and binding even after the assumption is withdrawn.
Unfortunately, none of these attempts provided more than what classical cryp-
tography alone provides [13]. Mayers’ attack is now known to apply in scenarios
lying beyond the original statement of the no-go theorem. It can also be shown
that perfect quantum coin tossing is also impossible [28]. However, quantum
bit commitment is possible under physical (not computational assumptions). In
[40], it has been shown that if one party is restricted to perform a subset of all
possible generalized quantum measurements then quantum bit commitment is
possible. The subset of possible measurements can be chosen in such a way that
the assumption is likely to hold in any practical situation that will occur in a
foreseeable future. In other words, the existence of an unitary process that breaks
a quantum protocol does not necessarily imply that it can be implemented in
real life. There is an inherent asymmetry between the complexity of physical
processes involved in the execution of quantum protocols and those involved in
quantum algorithms breaking them. It is not clear if Mayers’ attack will be im-
plementable in real life for all practical quantum bit commitment protocols. It
would be interesting to characterize the physical complexity of the attack against
protocols designed to make it difficult to implement.

Although they aim at solving the same kind of problems, the structure of
quantum and classical cryptography differ. In a particular situation, one may
offer advantages over the other. One thing we did not talked about yet is the
possibility to use hybrid systems. Quantum encoding of information, like the
BB84 coding scheme, allows to send classical information in an oblivious way.
The receiver does not know for sure what was the original classical bit, and
the sender does not know whether or not the receiver got the bit sent. But the
sender, by announcing the transmission basis θ, allows the receiver to determine
whether or not he received the bit perfectly. This simple primitive, although not
powerful enough to provide bit commitment, cannot be done classically using no
assumptions. It would be interesting to see if it can be used in a purely classical
setting in order to weakened the classical assumptions required for a particular
task. We have already seen that it is the case for oblivious transfer based on bit
commitment; what about other cases?

In conclusion, quantum information is more elusive than its classical counter-
part. One must always take care when analyzing and reasoning about quantum
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protocols. Although the Holy Grail is not achievable quantumly (nor classi-
cally), quantum cryptography offers a good alternative to classical cryptography.
Quantum cryptography provides an independent framework to complexity-based
cryptography and several open questions remain in order to get a better under-
standing of its possibilities and limits.
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18. Crépeau, C., J. van de Graaf, and A. Tapp, “Committed Oblivious Transfer
and Private Multi-Party Computation”, Adavances in Cryptology, proceedings of
Crypto’95, Lecture Notes in Computer Sciences, Springer-Verlag, Vol. 963, 1995,
pp. 110 – 123. 186

19. Diffie, W. and M.E., Hellman,“New directions in cryptography”, IEEE
Transactions on Information Theory, vol. IT-22, 1976, pp. 644–654. 184

20. Goldreich, O., S. Micali, and A. Wigderson, “Proofs That Yield Nothing
but Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems”,
Journal Assoc. Comput. Mach., vol. 38, 1991, pp. 691–729. 185

21. Fuchs, C.A. and J. van de Graaf,“Cryptographic Distinguishability Measures
for Quantum Mechanical States”, Los Alamos preprint archive quant-ph/9712042,
December 1997. 212

22. Hughston, L. P., R. Jozsa,and W. K. Wootters, “A complete classification
of quantum ensembles having a given density matrix”, Physics Letters A, vol. 183,
pp. 14 – 18, 1993. 208, 209

23. Impagliazzo, R and S. Rudich, “Limits on Provable Consequences of One-Way
Permutations”, in the 24th ACM conference on the theory of computing, 1989.
185, 203

24. Jacobs, B.C. and J.D. Franson,“Quantum cryptography in free space”, Optics
Letters, vol. 21, no. 22, November 15, 1996. 184

25. Jozsa, J., “Fidelity for mixed quantum states”, Journal of Modern Optics,
vol. 41(12), pp. 2315 – 2323, 1994.

26. Kilian, J.,“Founding Cryptography on Oblivious Transfer”, Proceedings of the
20th Annual ACM Symposium on the Theory of Computing, Chicago, 1988,
pp. 20 – 31. 186

27. Lo, H.–K. and H. F. Chau, “Is quantum bit commitment really possible?”,
Physical Review Letters, vol 78, pp. 3410 – 3413 (1997). 186, 203

28. Lo, H.–K. and H.F. Chau, “Why quantum bit commitment
and ideal quantum coin tossing are impossible.” Available at
http://xxx.lanl.gov/ps/quant-ph/9711065. 213



216 L. Salvail

29. Lo, H.–K. and H.F. Chau,“Security of Quantum Key Distribution”, available
at http://xx.lanl.gov/list/quant-ph/9803006, March 1998.

30. Maurer, U.M.,“Protocols for Secret Key Agreement by Public Discussion Based
on Common Information”,Advances in Cryptology, proceedings of CRYPTO’92,
Lecture Notes in Computer Sciences vol. 740, Springer-Verlag, 1993, pp. 461–470.
196

31. Mayers, D., On the security of the quantum oblivious transfer and key distribu-
tion protocols, Advances in Cryptology, proceedings of Crypto’95, Lecture Notes
in Computer Sciences, Springer-Verlag, vol. 963, 1995, pp.124–135. 203

32. Mayers, D., “The trouble with quantum bit commitment”, LANL Report No.
quant-ph/9603015 (to be published). The author first discussed the result in
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