
Reprinted from:
The American Mathematical Monthly
Volume 106, Number 1, pp 52–56
January, 1999

A Note on Jacobi Symbols
and Continued Fractions

A. J. van der Poorten and P. G. Walsh

1. INTRODUCTION. It is well known that the continued fraction expansion of a
real quadratic irrational is periodic. Here we relate the expansion for

√
rs , under the

assumption that rX2 − sY 2 = ±1 has a solution in integers X and Y , to that of
√

r/s

and to the Jacobi symbols
(
r
s

)
which appear in the theory of quadratic residues.

We have endeavoured to make our remarks self-contained to the extent of providing a brief
reminder of the background theory together with a cursory sketch of the proofs of the
critical assertions. For extensive detail the reader can refer to [5], the bible of the subject.
The introductory remarks following in §§2–3 below are inter alia detailed in [1].

Let p and q denote distinct odd primes. In [3], Friesen proved connections between the
value of the Legendre symbol

(
p
q

)
and the length of the period of the continued fraction

expansion of
√

pq . These results, together with those of Schinzel in [6], provided a solution
to a conjecture of Chowla and Chowla in [2].

We report a generalization of those results to the evaluation of Jacobi symbols
(
r
s

)
, and, in

the context of there being a solution in integers X , Y to the equation rX2 − sY 2 = ±1,
to remark on the continued fraction expansion of

√
r/s vis à vis that of

√
rs .

Theorem 1. Let r and s be squarefree positive integers with r > s > 1 , such that
the equation rX2 − sY 2 = ±1 has a solution in positive integers X , Y . Suppose the
continued fraction expansion of

√
rs is [ a0 , a1 , a2 , . . . , al ] . Then both the length of the

period l = 2h , and the ‘central’ partial quotient ah , are even, and the continued fraction
expansion of

√
r/s is

[ 1
2ah , ah+1 , . . . , al , a1 , . . . , ah ] = [ 1

2ah , ah−1 , . . . , a1 , al , a1 , . . . , ah−1 , ah ].

Theorem 2. Let r and s be squarefree positive integers with r > s > 1 , such that the
equation rX2 − sY 2 = ±1 has a solution in positive integers X , Y . Denote by l the
length of the period of the continued fraction expansion of

√
rs . Then the following Jacobi

symbol equalities hold:

(
r

s

)
=

(−1
s

) 1
2 l+1

,

(
s

r

)
=

(−1
r

) 1
2 l

.

As an immediate consequence we obtain the following results which respectively appeared
as Theorem 2 and Theorem 5 in [3].

Corollary 1. Let p ≡ q ≡ 3 (mod 4) be distinct primes and set N = pq . Denote by l the
length of the period of the continued fraction expansion of

√
N . Then l is even, and

(
p

q

)
= ε(−1)

1
2 l,

where ε = 1 if p < q and ε = −1 if p > q .
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Corollary 2. Let p ≡ 3 (mod 8) and q ≡ 7 (mod 8) be primes and set N = 2pq . Denote
by l the length of the period of the continued fraction expansion of

√
N . Then l is even,

and (
p

q

)
= ε(−1)

1
2 l,

where ε = 1 if 2p < q and ε = −1 if 2p > q .

2. CONTINUED FRACTIONS. In this section we recall some basic facts about
continued fractions that will be appealed to in the proof of our results.

Given an irrational number α , define its sequence (αi)i≥0 of complete quotients by setting
α0 = α , and αi+1 = 1/(αi − ai). Here, the sequence (ai)i≥0 of partial quotients of α is
given by ai = �αi� where � � denotes the integer part of its argument. Plainly we have

α = a0 +
1

a1 +
1

a2 +
1

a3 + .. .

It is only the partial quotients that matter, so such a continued fraction expansion may be
conveniently denoted just by [ a0 , a1 , a2 , a3 , . . . ] .

The truncations [ a0 , a1 , . . . , ai ] plainly are rational numbers pi/qi . Here, the pairs of
relatively prime integers pi , qi are given by the matrix identities

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ai 1
1 0

)
=

(
pi pi−1

qi qi−1

)

and the remark that the empty matrix product is the identity matrix. The alleged corre-
spondence, whereby matrix products provide the convergents pi/qi , may be confirmed by
induction on the number of matrices on noticing the definition

[ a0 , a1 , . . . , ai ] = a0 + 1/[ a1 , . . . , ai ], [ a0 ] = a0 .

Incidentally, it clearly follows from transposing the matrix correspondence that

(1) [ ai , ai−1 , . . . , a1 ] = qi/qi−1, for i = 1, 2, . . . .

The matrix correspondence entails pi/qi = pi−1/qi−1 + (−1)i−1/qi−1qi whence, by induc-
tion, α = a0 +

∑∞
i=1(−1)i−1/qi−1qi , and so

0 < (−1)i−1(qiα − pi) < 1/qi+1 ,

displaying the excellent quality of approximation to α provided by its convergents. Con-
versely, if

(2) |qα − p| < 1/2q ,

then the rational p/q must be a convergent to α .
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3. CONTINUED FRACTIONS OF SQUARE ROOTS OF RATIONALS. In
the case α =

√
N , for positive integer N not a square, it is well known and easy to confirm

by induction that its complete quotients αi are all of the shape

αi = (Pi +
√

N)/Qi ,

with the sequences of integers (Pi) and (Qi) given sequentially by

Pi+1 + Pi = aiQi, and Qi+1Qi = N − P 2
i+1 ,

where α0 =
√

N entails P0 = 0 and Q0 = 1. Plainly, always P 2
i ≡ N (mod Qi).

Moreover, it is easy to see that the integers Pi all satisfy 0 ≤ Pi <
√

N and the positive
integers Qi are all less than 2

√
N . It follows by the box principle that the continued

fraction expansion of
√

N must be periodic. Much more is fairly clear.

First, note that the generic step in the continued fraction algorithm for α =
√

N is

αi = (Pi +
√

N)/Qi = ai − (Pi+1 −
√

N)/Qi .

Under conjugation
√

N �→ −
√

N , this step transforms to

(3) (Pi+1 +
√

N)/Qi = ai − (Pi −
√

N)/Qi .

But the 0-th step, ingeniously adjusted by adding a0 = P1 ,

a0 +
√

N = 2a0 − (a0 −
√

N)

is plainly invariant under conjugation. Moreover, because −1 < P1−
√

N < 0 we have (P1+√
N)/Q1 > 1. On the other hand P1+

√
N > 1 of course entails −1 < (P1−

√
N)/Q1 < 0.

It’s now easy to see, by induction on i , that in (3) −1 < (Pi −
√

N)/Qi < 0. So ai is the
integer part of (Pi+1 +

√
N)/Qi and (3) is a step in the continued fraction expansion of

a0 +
√

N , and thus of
√

N .

It follows that the sequence of steps detailing the continued fraction expansion of a0 +
√

N
is inverted by conjugation, that since it has a fixed point the entire tableaux must be
periodic, and that, with l the length of the period, we must have

(4) a0 +
√

N = [ 2a0 , a1 , a2 , . . . , al−1 ],

moreover with the word a1a2 . . . al−1 a palindrome.

Lemma. The symmetry just mentioned entails that for even period length l there is a
‘central’ step, at h = 1

2 l ,

αh = (Ph +
√

N)/Qh = ah − (Ph+1 −
√

N)/Qh ,

invariant under conjugation. So Ph+1 = Ph , and ah = 2Ph/Qh . It follows that Qh

∣∣2N .
Conversely, if N is squarefree and Qj

∣∣2N , where j �= 0 , then l is even and 2j = l .

Proof. Plainly Qh

∣∣N −P 2
h and Qh

∣∣2Ph entails Qh

∣∣2N . As regards the converse, it suffices
to notice that Qj

∣∣N −P 2
j and Qj

∣∣2N implies Qj

∣∣2P 2
j . The only possible square factor of

Qj is 4, since N is squarefree and Qj

∣∣2N , so it follows that Qj

∣∣2Pj ; say 2Pj/Qj = aj .
Thus

αj = (Pj +
√

N)/Qj = aj − (Pj −
√

N)/Qj
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is a step in the continued fraction expansion of
√

N invariant under conjugation. It there-
fore must be the central such step, and this is what we were to show.

Again by induction, or otherwise, one can confirm that(
pi pi−1

qi qi−1

) (
1 Pi+1

0 Qi+1

)
=

(
pi Nqi

qi pi

)
;

which entails in particular that p2
i − Nq2

i = (−1)i+1Qi+1 . In other words, the Qi+1 arise
from the convergents as just indicated.
Conversely, one sees that when x2 −Ny2 = t with |t| <

√
N then, if t > 0, |x/y−

√
N | <

1/2y2 , whilst if t < 0 then |y/x − 1/
√

N | < 1/2x2 . In either case it follows from the
remark following (2) that x/y is a convergent to

√
N , whence t is (−1)i+1Qi+1 , some i .

4. PROOF OF THE THEOREMS.

Proof of Theorem 1. Set N = rs . By the definitions of the sequences (Pi) and (Qi) we
have

(Ph +
√

N)/Qh = [ ah , ah+1 , ah+2 , . . . ] = [ ah , ah+1 , . . . , al , a1 , a2 , . . . , ah ].

Let (X, Y ) be a positive integer solution to rX2 − sY 2 = ±1. Then (sY )2 − NX2 = ∓s ,
so because s <

√
N it follows that sY/X is a convergent to

√
rs , and, more to the point,

s is some Qi for
√

N . Since, trivially, s
∣∣N = rs , we see that the lemma entails that

i = 1
2 l = h , whence sY/X = ph−1/qh−1 .

Here Qh = s is squarefree by hypothesis and, since now it divides N , the argument given
at the lemma entails that Qh

∣∣Ph . Thus Ph/Qh = 1
2ah is an integer, and so

√
rs/Qh =

√
r/s = [ 1

2ah , ah+1 , . . . , al , a1 , . . . , ah ] .

Finally, our remark at (1), or, if one prefers, the observation at (4) that the word a1a2 . . . al−1

is a palindrome, provides the given formulation of the expansion.

Proof of Theorem 2. We saw above that the data entails sY/X = ph−1/qh−1 . Thus

p2
h−1 − Nq2

h−1 = (−1)hQh is (sY )2 − rsX2 = (−1)hs,

and so
sY 2 − rX2 = (−1)h ,

from which the desired conclusions follow.

We now establish the proofs of the corollaries.

Proof of Corollary 1. With N = pq divisible by a prime congruent to 3 modulo 4, it is
plain that U2 −NV 2 = −1 has no solution in nonzero integers U , V . Thus the period of√

pq has even length l = 2h , say. Hence there is a solution in relatively prime integers x ,
y for x2 − pqy2 = ±Qh with some Qh dividing 2pq , and 1 < Qh < 2

√
pq .

However, it is plain that x2 − pqy2 ≡ 2 (mod 4) is impossible so we must have Qh is one
of p or q ; say Qh = q . But x2 − pqy2 = ∓q implies x = qY , y = X , giving a solution in
integers X , Y to pX2 − qY 2 = ±1, satisfying the conditions of Theorem 2.

Proof of Corollary 2. As above, U2 − 2pqV 2 = −1 is impossible in nonzero integers U ,
V , so there is a solution in relatively prime integers x , y for x2 − 2pqy2 = ±Qh , for some
Qh dividing 4pq , and 1 < Qh < 2

√
2pq .

It’s easy to see that the possibilities modulo 8 are x2 − 2pqy2 = ±2p or x2 − 2pqy2 = ±q
and that either yields integers X , Y satisfying 2pX2 − qY 2 = ±1. Thus again the
hypotheses of Theorem 2 are satisfied, and the result follows by noticing that the Jacobi
symbol

(
2
q

)
= 1 for q ≡ 7 (mod 8).

1999] NOTES 55



5. CLOSING REMARKS. Suppose we know both that√
r/s = [ 1

2ah , ah+1 , . . . , al , a1 , . . . , ah ] and
√

rs = [ a0 , a1 , . . . , ah , ah+1 , . . . , al ].

The two expansions have the same ‘tail’, that is, they differ only in a finite number of
initial partial quotients. Thus the numbers

√
rs and

√
r/s are equivalent and one sees,

for example from the matrix correspondence, that there are integers X , Y , U , and V
satisfying V X −UY = ±1 and so that (U

√
r/s+B)(X

√
r/s+Y ) =

√
rs . But, removing

the surd from the denominator yields

(rUX − sV Y ) + (V X − UY )
√

rs

rX2 − sY 2
=

√
rs.

It follows that rUX − sV Y = 0 and, this is the point, rX2 − sY 2 = ±1. So the shape of
the two continued fraction expansions, and first principles, shows that there is a solution
in integers X , Y to rX2 − sY 2 = ±1.
We might also recall a cute result mentioned by Nagell [4]. Namely, given an integer N ,
consider the collection of all equations aX2 − bY 2 = ±1 with integers a and b so that
ab = N . Nagell’s remark is that at most two of that collection of diophantine equations
can have a solution. One of us happened to have been reminded of this fine fact by Dmitri
Mit’kin at a meeting at Minsk, Belarus in 1996.

Proof. The cases N less than zero or N a square are uninteresting and trivial, so we
suppose that N > 0 and is not a square. Then we have at least one equation with a
solution, namely 1 · X2 − NY 2 = 1. Further, if the length l of the period of

√
N is odd

then also NX2−1·Y 2 = 1 has a solution. If there is some other one of the equations with a
solution, say aX2 − bY 2 = ±1 with a > b > 1, then, as we saw above, (bY )2 −NX2 = ∓b
so l = 2h , b = Qh , and ∓1 = (−1)h+1 . Thus there is at most one ‘other’ equation, and if
it has a solution then l is not odd.
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