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Chapter 1

Preliminaries

This course aims to cover the newly emerging discipline of quantum comput-
ing. It is addressed to graduate students, senior undergraduate students, and
academics who would like to learn more about this research area.

The course is based on a variety of materials including “Quantum Computa-
tion and Quantum Information” by Michael L. Nielsen and Isaac L. Chuang [80],
“Lecture Notes for Physics 229: Quantum Information and Computation” by
John Preskill, Caltech, September 1998 [87], “Introduction to Quantum Compu-
tation and Information”, edited by Lo, Popescu and Spiller [70], “The Physics of
Quantum Information”, edited by Bouwmeester, Ekert and Zeilinger [17], “Ex-
plorations in Quantum Computing” by Colin P. Williams and Scott H. Clearwa-
ter, Springer Verlag, New York, 1998 [104], our previous notes for B679, research
papers, and various other sources.

Quantum computing is not about computational quantum physics, or quan-
tum chemistry as it is done today. It is not about modelling quantum systems
using classical computers, although we will attempt to model a very simple two-
gate quantum computer using a classical computer in section 4.5.7, which talks
about the Feynman Quantum Computer.

Quantum computing is about computing with quantum systems, called quan-
tum computers. Once you have a system like this, in principle you can model
various quantum phenomena with it far more efficiently than with a classical
computer. It is also possible to use quantum computers to solve otherwise in-
tractable computational problems in other areas, e.g., break unbreakable codes.

Quantum computing is rooted, as the name suggests, in quantum mechanics.
The logic it is based on is that of quantum logic, not classical logic. Quantum
logic differs from classical logic in many important respects. To begin with there
is no distribution axiom in quantum logic. Instead of operating on bits, we will
operate on qubits, which, for most practical purposes can be thought of as spin-1
systems or polarization states of a photon. If you have ever encountered spin-5
systems you will notice some similarities to binary logic: to begin with spin-5
systems can exist in two states: |1) or [||), like a classical bit, which can be
either 1 or 0. But unlike classical bits, qubits can also exist in a superposition

7



8 CHAPTER 1. PRELIMINARIES

of [1) and |[{). They can be entangled with other qubits too. Superposition and
entanglement enrich quantum logic (and quantum physics in general) immensely.
In the so called thermodynamic limit many of those quantum riches average
away, they disappear, and we are left with classical physics, classical bits, and
classical computers. It is possible to use a quantum computer like a classical
probabilistic computer, but this is not a very interesting use of quantum systems.

One of the holy grails of the newly emerging discipline of quantum computing
is to find what more can be done with quantum computers and if those truly
peculiar quantum features associated with qubits can be utlized in their full
quantumness to accomplish tasks that may be too hard for classical computers.

The other holy grail is to build usable and programmable quantum comput-
ers. The systems that quantum computer scientists play with today, such as
heteropolymers, nuclear magnetic resonance machines, quantum electrodynamic
cavities, quantum dots and Josephson junctions demonstrate that quantum com-
puting is possible, but we're here still only on the level of just a few qubits, and
people get very excited if they can demonstrate something very basic such as a
single qubit control, or a very simple error correction procedure.

For a physicist, chemist and a philosopher quantum computers are very
interesting for a yet another reason: you can turn the table around and use a
quantum computer in order to investigate the very fundamental principles of
quantum mechanics. You can look at quantum interference effects, at quantum
entanglement, at quantum teleportation. All this, possibly, on a single chip
with quantum dots and Josephson junctions. Einstein Podolsky Rosen paradox,
Schrédinger cat paradox, wave function collapse — these and many other puzzling
effects can be studied experimentally using quantum computers and quantum
computing.

1.1 The Aims of the Course

The main purpose of the course is to provide an introduction to and a fairly
thorough review of quantum computing as it stands today. If you work through
the notes diligently, at the end of the day you should be able to follow most
quantum computing literature published in Nature, Science, Physical Review
A, or on the LANL Archive. Special emphasis is placed on experimental accom-
plishments in quantum computing and related technologies. These are quoted
whenever available. Whatever physics and mathematics are introduced and dis-
cussed serve primarily as a background needed to design and analyze quantum
circuits and to discuss their implementation and related laboratory experiments.
Axiomatic and formalistic approaches to quantum mechanics are neither men-
tioned nor followed. Like Peres, I strongly believe that quantum mechanics does
not happen in Hilbert space — it happens in the laboratory.
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1.2 When and Where?

There will be two lectures a week in the Fall semester of 2001.

Classes will be held on Wednesdays and Fridays, 2:30PM to 3:45PM, in
SW218.

1.3 Required Background

How much quantum mechanics do you need to know to attend the lecture?

I will attempt to explain enough of it to make the lecture comprehensive
even if you have never studied quantum mechanics before. The lecture is
aimed at senior undergraduate and graduate students majoring in Computer
Science, Chemistry, Molecular Biology, Electronic Engineering, Mathematics,
and Physics. With such a broad background I cannot assume much and so the
course is going to provide whatever is required to follow the material.

Nevertheless quantum mechanics being a very difficult and a very rich sub-
ject cannot be easily compressed to just one or two lectures. Consequently
the more you know about it the better. An introductory quantum mechanics
course, e.g., similar to Feynman’s volume III [35] but not to the Berkeley Physics
Course, is going to be helpful. The reason why Berkeley Course is less useful
than Feynman in our context is because we will work almost exclusively with
mechanics of simple discrete systems, and will stay away from the Schrédinger
Wave Equation. Yet most traditional Quantum Mechanics courses dwell more
on the latter than on the former.

The course will also require a certain level of mathematical skills. You
need to have some background in algebra and analysis: vector spaces, complex
numbers, complex functions, ordinary differential equations — roughly at the
level that corresponds to what you end up with after a second year mathematics
course. It is good to know a difference between a form and a vector. It is good
to know about linear operators, eigenvalues, and stuff like this.

1.4 Recommended Reading

This section recapitulates what I have already said above. The books listed
below are recommended reading. None of them are required. Quite detailed
lecture notes are going to be provided on-line (this document) and they should
be sufficient to follow the course.

The notes will change and evolve as the course develops. Although the B679
Notes of 1999 are a starting point for us, we covered a lot of additional material
in the Spring 2001, and only some of it found its way to the on-line notes. This
material as well as other updates will be added to the notes as we plough on.

Apart from the notes I recommended the following three texts, on which the
notes are largely based:
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e M. A. Nielsen and Isaac L. Chuang, “Quantum Computation and Quan-
tum Information”, Cambridge University Press, 2000, ISBN 0521635039,
700 pages [80]

This is the most recommended reading of all. Chuang from
IBM and Nielsen from Caltech and the University of Queens-
land (Australia) are amongst the most experienced researchers
in the field. Their book is probably the first comprehensive in-
troduction to the ideas and techniques of quantum computation
and information.

The book is divided into three parts.

The first part provides introduction to quantum mechanics
and to computer science — concepts and methods needed to follow
the remainder of the test.

The second part discusses quantum circuits, quantum algo-
rithms and realizations of various quantum computers.

The last part is dedicated to quantum information theory.

To find more about the book connect to

http://www.squint.org/qci
or to
http:/ /www.cup.org
or to
http:/ /uk.cambridge.org
To view Mike Nielsen’s home page go to
http://www.theory. caltech.edu/ "mnielsen/
To view Isaac Chuang’s home page go to
http://www.almaden.ibm.com/cs/people /ichuang

You can buy this book on-line from amazon.com. There is
a link that points directly to the appropriate shopping page at
WWW.squint.org.

e John Preskill and Alexei Kitaev, “Lecture Notes for Physics 229, Quantum
Information and Computation” [87]

http://www.theory. caltech.edu/people/preskill /ph229

This is a rather high flying and ambitious text. Perhaps
even the best I have seen in this area so far. The course is given
twice weekly, 90 minutes at a time, over two semesters. Pro-
vided notes are divided into 6 large chapters, and my impression
is that the authors still didn’t manage to cram all they wanted to
convey to their audience in the time available, so that only the
last chapter, 6th, is dedicated to Quantum Computing, with the
preceding chapters providing background. But the background
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they provide is very thorough. The course is addressed to (Cal-
tech) physicists, mathematicians, computer scientists and engi-
neers. It is a highly recommended reading for those, who would
like to study the subject in some depth.

e Colin P. Williams and Scott H. Clearwater, “Explorations in Quantum
Computing”, Springer Verlag, 1998, IBSN 0-387-94768-X, 307 pp., CDROM
included [104]

This meat little text provides a wvery basic introduction to
Quantum Computing. Quantum Mechanics material itself is
reduced to an absolute minimum. Computer Science and com-
putational aspects, on the other hand are treated in more depth.
The book provides some simulation examples and illustrations
that make its rather difficult subject quite palatable. There are
some errors in the book though, and their effect is such that some
“derivations” accompanied by o fair amount of hand-waving are
totally incomprehensible. It is at times like these that you learn
to appreciate more rigorous approach.

In addition students who need to catch up on quantum mechanics should read

e Richard P. Feynman, Robert B. Leighton and Matthew L. Sands, “The
Feynman Lectures on Physics”, Addison-Wesley, 1989, Volume 3, “Quan-
tum Mechanics” [35]

This last volume of Feynman Lectures is seldom used or even
recommended in introductory physics courses. One of the rea-
sons is that it introduces the Schrédinger wave equation pretty
late and instead devotes something like 2/3rd of its initial ma-
terial to study of simple finite quantum mechanical systems, or,
in other words to what some people call matrix mechanics. But
this is just what we need for our course, so if you haven’t studied
quantum mechanics in the past at all, this is a very good place
to start. If you have, but haven’t progressed much beyond scat-
tering of a Schrédinger wave against a rectangular barrier or a
well, this is again o place to go to. If your course was very heavy
on functional analysis, linear combinations of atomic orbitals,
and the like, but quite lightweight on basic foundations, you may
find Feynman’s volume 3 quite an eye opener too.

The following are books, which I found useful, insightful and interesting in many
ways and which are going to enrich students’ understanding of the topic:

e Arno Bohm, “Quantum Mechanics”, Springer-Verlag, 1979, 522 pp. [15]

A beautiful, precise and quite thorough text/monograph about
quantum mechanics, based on a course that the author taught at
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the University of Texas at Austin. Not for the beginners. Cov-
ers foundations, oscillators, rotators, angular momenta and the
Wigner-Eckart theorem, Kepler problem, perturbation theory,
spin, multielectron systems, time evolution, the Stern-Gerlach
experiment and the measurement theory, transitions, elastic and
inelastic scattering, resonances, time reversal, and decay of un-
stable systems.

e Asher Peres, “Quantum Theory: Concepts and Methods”, Kluwer Aca-
demic Publishers, 1993, ISBN 0-7923-2549-4, 446 pp. [86]

This is a splendid text for those who want to understand
quantum theory better, as opposed to just manipulating its math-
ematical formulas thoughtlessly, which does happen more often
than you would think.

The book introduces formal tools of quantum mechanics with
great precision but without being excessively abstract. The phys-
ical interpretation is rigorous: no use is made of the uncer-
tainty principle and other ill-defined notions. The book pro-
vides one of the best discussions of Bell’s theorem and then goes
on to some of the most interesting topics of current research:
spacetime symmetries, quantum thermodynamics, quantum in-
formation theory, irreversibility, quantum chaos and measure-
ment theory.

e Josef M. Jauch, “Foundations of Quantum Mechanics”, Addison-Wesley,
1968, 299 pp. [52]

This text concentrates on logical foundations of quantum me-
chanics and on quantum logic. As such it should appeal to lo-
gicians and computer scientists interested in quantum comput-
ing. On the other hand it predates our present day interest in
quantum computing and even the very concept of a qubit. Con-
sequently, quantum logic as presented by Jauch is not immedi-
ately transferable onto the much more precise and simpler world
of qubits. Nevertheless the book contains a number of important
insights and may prove to be of some assistance.

e David Bohm and B. J. Hiley, “The Undivided Universe: An Ontological
Interpretation of Quantum Theory”, Routledge, 1993, 397 pp. [14]

Like Giordano Bruno, David Bohm was o heretic and a mar-
tyr. Following de Broglie and Schrédinger he concocted a very
interesting and insightful interpretation of Quantum Mechanics
that attracted wrath and ire of orthodox physicists, whose usual
approach to mystery and weirdness of Quantum Mechanics used
to be to sweep it all under the carpet and resort to a dogma.
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Luckily in 1964 a British physicist, John Stewart Bell, demon-
strated that some of the most intriguing questions about the in-
terpretation of Quantum Mechanics can be investigated exper-
imentally. Then in 1982 Aspect, Dalibart and Roger carried
on experiments suggested by Bell that demonstrated non-locality
of quantum physics, and quantum physics was never the same
again.

Today quite serious folks, for example John Preskill (see
above), ask insightful questions about “where do quantum prob-
abilities come from” and “why does a quantum measurement
select a single basis state from a superposition thereof”, and old
Bohm laughs in his grave and says “I told you so”.

In short some of Bohm’s insights bring home the bacon, and
for this reason I'm going to bring them to this lecture occasion-
ally, although like Bohm himself I'm quite ready to acknowledge
that not all in the presented picture may be quite right.

There are two reasons why some of this stuff is of relevance
to quantum computing. The first one is quantum teleportation,
and the second one is that in quantum computing information
is stored on o multi-qubit system, and a system like that is de-
scribed in terms of a temsor product on Hilbert space. This,
in turn, implies non-local and anti-relativistic interactions, and
those bring us right back to “The Undivided Universe”.

The following texts provide a standard introduction to present day electronics.
Since quantum computing is currently at the stage where elementary electron-
ics was 40 or even 50 years ago, these texts should help students understand
the basic differences between quantum computing and conventional computing
technologies, as well as gain a better understanding of how computing is actu-
ally done in real life — and hence, what really matters as opposed to what may
be just a fancy decoration.

e Richard Dalven, “Introduction to Applied Solid State Physics”, Plenum
Press, 1981, 330 pp. [27]

This book provides a good discussion of physics behind present
day computing: pn-junctions, MIS junctions, MIS devices. But
for us the most important is chapter 8 that talks about Joseph-
son junctions and devices based thereon. Josephson junction
emerges as a leading technology for the HTMT Petaflops Com-
puter, see

http:/ /www.sc99.o0rg/proceedings /invtalk. htm#sterling

for some background, and a leading technology for solid state
implementation of a qubit, see Nakamura et al. [79]

e James J. Brophy, “Basic Electronics for Scientists”, McGraw-Hill Ko-
gakusha, 1977, 430 pp. [21]
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This text will lead you all the way from the basic principles
of solid state device physics to simple computational circuitry:
flip-flops, counters and registers. It should be helpful at this very
early stage in quantum computing in figuring out and under-
standing how to assemble simple quantum logic circuitry. The
text will also bring home the fact that there is plenty of quantum
mechanics in present day classical computing too.

The Notes

These lecture notes are not a book. They are what you would write down in
your own notebook if you were to attend a traditional lecture of this nature.
For your (and our) convenience I have placed these notes on-line.

The notes are based on numerous sources. And so

Chapters 2 and 3 are based on Dalven [27], Brophy [21] and Williams and
Clearwater [104].

The first 3 sections of chapter 4 are based on Feynman [35] with some
minor modifications of our own (we replace the Stern-Gerlach apparatus
with a birefringent crystal), whereas the section about Berry phase is
based on Berry’s original paper [12].

The section about multiparticle systems is based initially on Feynman [35],
then it briefly switches to Nielsen and Chuang [80]. Section about stop-
ping and reversing time is based on paper by Leung, Chuang, Yamaguchi
and Yamamoto [67]. The discussion of Feynman computer is taken from
Williams and Clearwater [104] as is the section about nonlocality, which
is further enhanced by material taken from a paper by Pan, Bouwmeester,
Daniell, Weinfurter and Zeilinger [82].

The sections about the measurement and interaction with the environment
are based on Preskill and Kitaev [87], but their content is really condensed
to the bare minimum compared to what you’ll find in the original source.
The part that talks about NMR measurement is based on Nielsen and
Chuang [80].

Chapter 5 is based mostly on Preskill and Kitaev [87] with some bor-
rowings from Nielsen and Chuang [80], and chapter 6 is based mostly on
Nielsen and Chuang [80], though the introduction to the chapter is based
on Williams and Clearwater [104]. The brief discussion of decoherence-
free spaces is based on a paper by Kielpinski, Meyer, Rowe, Sackett, Itano,
Monroe and Wineland [59].

Various asides in the notes are derived from all over the place, with the
main sources being perhaps Bohm and Hiley [14], and Peres [86], followed
by recent papers and even press clippings.
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1.6 Computer Simulations

You will find a number of quantum computing and quantum teleportation sim-
ulations, as well as other auxiliary codes designed for Mathematica in

/afs/ovpit.indiana. edu/common/mathematica/quantum_computing

This area is restricted only to users with valid AFS tokens in the AFS cell
ovpit.indiana.edu. The material contained therein is copyrighted [104]. There
are three directories there: mac, unix, and windows, which contain the following
Mathematica notebooks for Mathematica Version 2.2 and Mathematica Version
3.0

BraKet Defines basic operations on bras and kets, direct product, nuts and
bolts QM

ErrorCo Simulation of Quantum Error Correction

Feynman Simulation of Feynman’s Quantum Computer

Interfer Graphical Tllustration of Interference Effect

OTPExamp Example of a Provably Secure Cryptosystem

QBugs Code for Monte Carlo Analysis of Error Propagation
QCdata Database of References in Quantum Computing

QCrypt Simulation of Quantum Cryptography

RSAExamp Example of RSA Public-Key Cryptography
SearchEn A Search Engine for our Quantum Computing Database
ShorFact Simulation of Shor’s Algorithm

Schroe2D Animation of Particle Impinging a Double Slit (Interference)
Teleport Simulation of Quantum Teleportation

TimingFa Illustration that Factoring is a Hard Problem Classically

Indiana University Distributed Storage Systems Group can provide AFS clients
for all commonly used UNIXes, Linuxes, Windows NT and 2000, and for Ma-
cOSX.
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1.7 Conference Announcements

April 22-25, 2002 2002 Applied Computational Research Society Joint Meet-
ing, Computational Micro and Nano Technology, San Juan, Puerto Rico

April 1-5, 2002 Quantum Computing III - Part of SPIE’s 16th Annual Inter-
national Symposium on AeroSense, Orlando, Florida

September 25 - October 2, 2002 Perspectives in Decoherence Control and
Quantum Computing, Center for Theoretical Physics, Ann Arbor, Michi-
gan (Workshop)

January 14-17, 2002 QIP 2002, The Fifth Workshop on Quantum Informa-
tion Processing, IBM, T. J. Watson Research Center, Yorktown Heights,
New York

1.8 Scholarship Announcements

The National Science Foundation has funded graduate fellowships at Indiana
University for students interested in quantum computing. Each three year
fellowship carries $18,000 stipend, a tuition waiver, health insurance, and no
teaching duties. The fellows will be working with professor Zhenghan Wang on
applications of topology and knot theory to theoretical computer science. The
ultimate goals of quantum computing research are developing quantum algo-
rithms that are exponentially faster than the algorithms of classical computer
science and building scalable quantum computers. To apply for this fellow-
ship submit a regular application to the Department of Mathematics at Indiana
University and in your personal statement indicate your interest in this kind of
research. For more information send e-mail to zhewang@indiana.edu.



Chapter 2

Physics of Computation

2.1 From Counters to Qubits

Consider a simple 4-bit counter shown in Figure 2.1.

The basic computational elements in the counter are JK flip-flops. A typical
JK flip-flop is based on an RS master-slave flip-flop with clear and set and
comprises 9 NAND gates, as shown in Figure 2.2.

Perhaps the simplest way to make a NAND gate is to use 2 transistors as
shown in Figure 2.3.

Now, what’s inside a transistor? Figure 2.4 shows a cross-section of a Metal-
Oride-Semiconductor Field Effect Transistor, or MOSFET for short.

The idea here is to modulate the flow of electrons from the Source to the
Drain by applying a signal to the Gate. In particular a MOSFET can be used
like a switch. A negative potential can be applied to the gate that will repel all
electrons from the region just under the oxide. Without carriers there can be
no current. Alternatively if a sufficiently high positive potential is applied to
the gate it will attract electrons from the bulk to the region under the oxide.

ol
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Syl
N

Q

L clock

J
-
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|
NN
|
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Q

Qi
=
Qi

Figure 2.1: An asynchronous binary-coded decimal 4-bit counter (from Brophy

[21]).
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Set
S == »
T — )
R=— »

Clear

Figure 2.2: RS master-slave flip-flop (from Brophy [21]). Connecting =@ to one
of the S inputs and @ to one of the R inputs results in a toggle action. The
remaining S inputs are renamed to J and the remaining R inputs are renamed
to K. The resulting configuration is then called a JK master-slave flip-flop.

+5V

o
)

-(AANBAC)

e

Figure 2.3: Transistor-transistor logic implementation of a NAND gate (from
Brophy [21]).
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Gate
Source Drain
Al
510 | Al | Si0; | a1 | [sios
N N
p-type Si

Figure 2.4: Schematic view of a MOSFET (from Dalven [27]).

A very thin electron rich inversion layer will form there and a current will flow
from the source to the drain.

This device is based on the notion that in a single crystal of Silicon you
can have regions with different types of conductivity. The n-type regions under
the source and the drain are obtained by diffusing or implanting Phosphorus in
Silicon. The p-type bulk is Boron rich. What this does to conductivity is that
in the n-type region current is conducted by electrons, whereas in the p-type
region current is conducted by holes. Holes and electrons in crystals are very
similar to positrons and electrons in vacuum. The mathematics that describes
the former and the latter is very similar.

How does all this come about?

A relatively simple quantum mechanical computation tells us that as you
bring together more and more atoms, their energy levels split more and more
finely. Ultimately in a crystal, where atoms of Silicon are only about 5 A apart,
you end up not with energy levels, but with energy bands. In particular there are
two bands there of special importance: the valence band and the conductivity
band. Electrons in the valence band are still attached to their atoms. But
electrons in the conductivity band are like ionized electrons in vacuum: they
can move freely around the crystal.

But quantum mechanics gives us more than the bands. Quantum mechanics
gives us also a very peculiar distribution function that describes the proportion
of electrons at each energy in a crystal. This distribution function is due to
Fermi and Dirac and it looks as follows:

1
f(E) = e(E—Er)/(kT) +1

(2.1)

For energies that are much higher than k7 and Er, which is referred to as the
Fermi level
f(B) ~ e~ B/(T) (2.2)
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Figure 2.5: A schematic diagram of energy bands in n- and p-type semiconduc-
tors (from Dalven [27]).

which is the Boltzmann distribution. But for energies that are much lower than
FE the Fermi-Dirac distribution attains a constant value.

If the Fermi level happens to be positioned in the conductivity band, then
it means that the conductivity band is full of electrons. Such materials conduct
current very well. All metals belong in this category.

If the Fermi level is positioned in the middle of the energy band gap, and
the gap between the valence band and the conductivity band is very wide, i.e.,
wider than several kT, then the material is an insulator.

If the Fermi level is positioned in the valence band, then the valence band
is full of holes. A material like that conducts current very well too, although
there are no metals in this category. A silicon wafer very heavily doped with
Boron may behave like that.

But if the gap is relatively narrow compared to k7' and the Fermi level is
positioned within the gap, then depending on whether it is closer to the con-
ductivity band or to the valence band, you will find either electrons contributed
to the conductivity band (in an n-type semiconductor) or electrons withdrawn
from the valence band (in a p-type semiconductor), which leaves holes.

Figure 2.5 shows the band structure and the Fermi level in a semiconductor.

Holes like electrons can move freely within the crystal. Both holes and
electrons have an effective mass, which is usually different from the electron mass
in vacuum. Furthermore effective mass and mobility may differ for electrons and
holes in the same material, which implies differing conductivities in n- and p-
type regions.

All this stuff is quantum mechanical. And yet, devices that are based on
the diffusion of electrons or holes within a crystal implement classical logic.
How come? The reason for this is that in a typical semiconductor material
there is a very large number of electrons and holes involved in transmitting
and storing information. A typical electron density in an nT region may be
1018 cm~3, sometimes even 10'® cm~3 (such semiconductors are said to be de-
generate). Quantum systems that comprise a very large number of constituents
and interacting frequently with the environment and with each other lose their
distinct quantum character and all that we end up with is a classical diffusive
flow of electrons or holes from the source to the drain.



2.1. FROM COUNTERS TO QUBITS 21

What are typical dimensions in a MOSFET today? You may often hear
expressions such as “0.18 micron technology”. What this means is that the
tiniest details that can be produced on a wafer are 0.18 ym wide. In the 0.18 ym
technology the length of the channel that links the source with the drain is
going to be somewhat more than 0.18 um. Perhaps twice that. This level of
miniaturization is currently encountered in only the best and newest devices, for
example the Intel 1 GHz Coppermine chip, which was demonstrated in February
2000, featured 0.18 um interconnects [44]. More commonly it is going to be
something like 0.32 ym or 0.28 yum. 0.18 um is 1,800 A, which is 360 Si lattice
constants (Si lattice constant is ~ 5A). The thickness of the silicon dioxide
layer under the gate is somewhat less, e.g., 200 A (40 Si lattice constants). It
cannot be made too thin for two reasons:

First If the oxide is too thin, electrons may tunnel through it, thus shortcir-
cuiting the gate.

Second The capacitance of a two plate capacitor, and a gate in a MOSFET is
an example of such, is inversely proportional to the thickness of the gap
between the plates of the capacitor, i.e., the thinner the gap, the greater

the capacitance:

1
C o (2.3)

But the time it takes for the capacitor to discharge is proportional to the
square root of the capacitance:

T ooc\/g (2.4)

This means that the thinner the oxide, the slower the device.

The capacitor discharge time also depends on the length and the width of the
gate: the smaller the area, the shorter the discharge time. Also the shorter the
channel, the less time electrons need in order to cross it.

There is a thin charge depletion layer between the n™ and p-type regions.
The width of the depletion layer is given by:

_ ekT Na —|—Nd NaNd
(B () e

(2

where € is a dilectric constant of Si, e is the elementary charge, kT is ambient
temperature in Joules, N, and Ny are fixed charge densities in the depletion
layer, and n; is the intrinsic charge density. For very pure silicon with N,
and Ny of the order of 10Y* cm™2, W ~ 1pum, and it can be made narrower
with increased doping. In a typical modern MOSFET the depletion layer would
normally stretch all the way from the source to the gate.

How much can we shrink the gate and still expect a classical operation?
As the gate gets shorter, the first thing we’ll notice is that instead of diffusing
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electrons may begin to move ballistically between the source and the drain. This
is actually quite good, because ballistic transport is bound to be faster than
diffusive transport. At the International Electron Devices Meeting in December
1999 Bell Laboratory researchers demonstrated a MOSFET with a 500 A gate
(100 Si lattice spacings), although 248nm (2,480 A) lithography was used to
create most of the device structures. For a gate that short, ballistic effects were
clearly visible, and the transistor demonstrated performance much better than
would be the case with diffusive electron transport only. The oxide deployed in
the device was extremely thin. The researchers tried 13 A and then 16 A oxide.
Oxide that is so thin leaks because of quantum tunneling. Consequently the
transistors were not very efficient. However at 16 A the leakage across the oxide
was still tolerable [43].

But if the gate shrinks by a yet another order of magnitude, e.g., to 50 A,
electrons may begin to tunnel between the drain and the source. At this stage
the device ends up leaking in every direction, and ceases to operate as a switch.
There is a physical limit to how far you can shrink those devices and still expect
them to work according to classical physics.

The limits that plague MOSFETSs can be overcome by switching to
quite different technology, while still preserving the basically classical
functioning of a transistor. On the 27th of August 2001 IBM demon-
strated a carbon nanotube based flip-flop [25]. Carbon nanotubes are
only 10-atoms wide. But they can be quite long. They are relatively easy
to produce too. Certain chemical processes result in nanotube precipita-
tion. This precipitation is then captured onto soapy surfaces. The trick is
in assembling them to form useful electronic circuits. Once perfected this
technology should yield at least a 10,000-fold improvement over the best
electronic circuitry of today. Consequently, if today’s state of the art PC
is a 2GFLOPS machine with about a GB memory and, say, 80GB hard
drive, a nanotube based PC should deliver 20TFLOPS, it should have
10TB memory and 160TB disk space. Do not laugh. We may well see
this technology sooner than you’d expect!

On the other hand, going down into the quantum domain, and changing the
computational paradigm, at least hardwarewise (e.g., to hell with MOSFET)
may open new and entirely different ways of doing computing. And this is
exactly what this lecture is going to be about.

There is a difference between what is currently called molecular com-
puting and quantum computing, even though both rely on using individual
molecules or atoms to accomplish various operations. Molecular comput-
ing as understood today is usually classical computing, where MOSFET
switches are replaced with molecular switches.

An example of a very simple molecular computer is a catenane, an
organic molecule composed of two interlocking rings. It is possible to make
one of the rings move between two different states, for example a different
angle with respect to the other ring. The trigger for the change can be
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either electric or optical. This device is a simple molecular switch that
can replace a MOSFET. Catenanes were invented by J. Fraser Stoddart
from the University of California Los Angeles (UCLA). The demonstration
of switching in catenanes was performed by Fraser Stoddart and James
Heath in late August 2000 [48].

While such devices accomplish ultimate in miniaturization, the logic
that they implement is still classical logic, and no advantage is taken of
quantum parallelizm, about which more below.

A good review and comparison of molecular, quantum and membrane
computing can be found in “Computing with Cells and Atoms: An In-
troduction to Quantum, DNA and Membrane Computing” by Cristian S.
Calude and Gheorghe Paun [22].

Another novel approach to computation is called spintronics. Spin-
tronics can be classical or quantum. Here the idea is that instead of
associating information with electric charge, as is the case for electronics,
we could associate it with electron spin instead [24]. Once loaded with in-
formation spin packets could be moved between semiconductors, much the
same as we move charge packets today in order to transmit information.
That this is possible has been demonstrated recently by four researchers
from Santa Barbara, who demonstrated a persistent spin conduction in
biased semiconductor heterostructures [73].

There is a laboratory device called Molecular Beam Epitaxial Reactor (“MBE”
for short). Using this device it is possible to grow extremely thin and very highly
controlled layers of various materials on semiconductor wafers. These layers can
be only one lattice spacing thick, and fully conforming to the underlying crystal
structure. This works especially well with GaAs and AlGaAs. The former is a
semiconductor with a fixed energy band gap, but depending on the proportion
of Al to Ga in the latter the width of the energy band gap in AlGaAs alloy can
be varied continuously. By alternating GaAs and AlGaAs, it is possible to grow
a very thin layer of GaAs sandwiched between two layers of AlGaAs (see Figure
2.6). The GaAs layer may be only one lattice spacing thick. The insertion of
that layer between AlGaAs regions produces a very thin, sheet-like potential
well also shown in Figure 2.6. That well can be so thin that only one electron
may fit into it vertically. The resulting structure is a two dimensional electron
sheet. Electrons in such a sheet have a very high mobility. It is possible to make
field effect transistors, in which the two dimensional quantum sheet of electrons
is placed right under the gate instead of an induced channel (as in MOSFETS).
Such devices are called High Electron Mobility Transistors (HEMTSs) and are
used in microwave electronics (which is one to two orders of magnitude faster
than digital microelectronics).

Such 2-dimensional electron sheets have many other marvellous prop-
erties. For example tiny electron-fluid vortices may form in them if the
sheets are immersed in very high magnetic fields and cooled. Localized
electrons can sometimes become trapped in those vortices: they sit right
in the middle of a vortex, where normally there shouldn’t be any electrons
at all. When this happens the combined electron-vortex system acquires
bosonic properties — such systems are referred to as composite fermions
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Figure 2.6: A quantum sheet structure built of GaAs and AlGaAs. The GaAs
layer sandwiched between the AlGaAs layers may be only one lattice spacing
thick. The plot on the right shows the potential well formed by the sandwich.
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Figure 2.7: A quantum-line or a quantum-dot structure implemented in GaAs
and AlGaAs.

— and a peculiar kind of superconductivity may arise as the result [47].
Quantum sheets with vortices are of great interest to some quantum com-
puting researchers, who believe that the topological character of the vor-
tices may be more suitable for quantum computing devices that dynamic
systems such as spins or photons [36], [37].

Recently a group of Japanese researchers published a paper in Nature
where they claimed to have resolved and imaged individual vortices of
this type in Bis Sra Ca Cuz Og thin films. The vortices were trapped by
columnar defects produced by irradiation of the film by heavy ions [99].

Using electron-beam or X-ray lithography, we can pattern the quantum sheet
shown in Figure 2.6 and produce either a quantum line or a quantum dot (see
Figure 2.7). A single electron may become trapped in a quantum-dot and ma-
nipulated in various ways. Such devices are of great interest to physicists. They
can be used to test the most basic assumptions of quantum mechanics in ways
that the fathers of quantum mechanics themselves could only dream and hy-
pothesize about.

But a quantum dot can be also used for quantum computation, because
information can be stored on the single electron trapped within the quantum
dot and manipulated together with the electron. Such a single isolated electron
is called a qubit.

In practice a slightly more complex configuration of quantum dots has to be
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used to implement a single qubit. Daniel Loss and David P. DiVincenzo from the
Institute for Theoretical Physics of the University of California, Santa Barbara,
demonstrated recently how a universal set of one- and two-quantum-bit gates
can be constructed from quantum dots [71].

This lecture course will not progress much beyond what you can do with just
a couple of qubits. Quantum computing today is at the point where classical
computing was 70 years ago. We ponder on how to assemble very simple systems
that can perform some very simple computations. We ponder on the nature of
those computations. And we ponder on how to extract computational results
from such a system. Reading and interpreting results of quantum computations
is a much more complex process than is the case with classical computers.

Why should we climb this mountain at all? A simple answer is “because
it is there”. Very simple quantum computers can be made today and they
have been made already. A small number of intriguing quantum algorithms
was demonstrated. The potential applicability of quantum computers to attack
quantum physics and quantum chemistry problems is undeniable: it derives
right from physics itself. But most importantly, this is a completely new, open,
and still quite unploughed research area. What else can be done with quantum
computers? How can practical quantum computers be built? These are all open
questions.

It is possible to imitate certain important features of Quantum Com-
puting with classical light beams. In May this year (2001) Ian Walmsley,
professor of optics at the University of Rochester, demonstrated that “. ..
if you have a quantum computer that is based entirely on quantum in-
terference, we can build you a computer that is equally efficient, based
entirely on light interference. And light is a whole lot easier to manipulate
than quantum systems.” What really distinguishes Quantum Computing
is not superposition and interference, but entanglement. It turns out
that some algorithms, e.g., database searches, which were thought of as
quantum, do not rely on entanglement, and can therefore be run just as
efficiently on a classical optical computer.

2.2 Thermodynamics of Computation

Computers are machines and like all machines they are subject to thermody-
namic constraints. It costs a lot of time and energy to shape, maintain, and then
move around a digital signal. This is why analog devices can be much faster,
while generating less heat, than digital devices, and why analog computers, in
particular, can be a lot faster than digital computers.

So why don’t we use analog computers? Speed, as it turns out, is not
everything. Errors and inaccuracies, for example, can be controlled within a
digital computer much more precisely than in an analog computer. Digital
computers are much easier to program too.

Can digital computers be improved so as to minimize production of heat?
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Could heat generation be eliminated entirely? It is clear that there is some-
thing very fundamental missing from the Turing Machine model, because it
says nothing about it.

It turns out that it is possible to think (in agreement with the laws of physics)
of an ideal computer that would be somehow capable of shaping, maintaining,
and moving around digital signals without any heat generation. There is one
place, however, where heat must be produced. Whenever information is erased
the phase space associated with the system that stores that information must
shrink.

Information must be written somehow on a physical medium: whatever that
medium may be. Processing information occurs by the means of manipulating
the system on which the information has been written. Erasing a single bit of
information reduces entropy of the system that stored that information by at
least AS = klog2. This reduction of entropy results in heat transfer to the
environment. This result is due to Rolf Landauer, 1961 (also see Landauer’s
paper in Physics Today, “Information is Physical”, [64]).

But this, apparently, is the only place, where an ideal computer wastes en-
ergy. So if we were to construct a computer that does not erase any information,
such a computer could work without generating any heat at all. Of course, in
reality the computer would still generate a lot of heat. Electric pulses moving
along copper wires would have to work their way against resistance. Electrons
diffusing from a source would still collide with crystal imperfections and with
electrons in the drain, again, generating heat. But, at least in a fantasy world,
you could replace all wires with superconductors, you could use ideal crystals
without any imperfections and then the only place where you would still have
to generate some heat would be whenever and wherever you erase information.

NOR, AND, NAND, and XOR gates are all irreversible: they must generate
heat. Amount of information on the right hand side of

(a,b) = =(aADb) (2.6)

is less than the amount of information on the left hand side.

But it is possible to perform any computation using only reversible steps
(this result is due to Charles Bennett, “Logical Reversibility of Computation”,
1973, [9]). Special gates have been conceived and fabricated (e.g., Toffoli gates,
[98]), which maintain all information that is passed to them, so that the com-
putation can be run forward and backward. The computation results in a very
large amount of junk, because every intermediate step is remembered, but heat
generation is eliminated while the computation goes on. After the computation
is finished the computation can be run backwards in order to restore the initial
state of the computer and avoid its spontaneous combustion.

Amongst the reasons why quantum computing attracted so much interest
recently is that quantum computation is reversible (but not the read-out of the
results of that computation). It is therefore possible, at least in principle, to
carry out quantum computation without generating heat.
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2.3 Quantum versus Classical Information

Information and logic, which is the art of managing information, cannot exist in
detachment from the laws of nature. In particular information must be written
on some physical substance, be it neural connections in our brain, or paper, or
magnetic media, or electrons trapped in quantum dots, or a beam of photons.
Physics of the media that is used to store information determines logic that
can be used to manipulate that information. Classical media, e.g., transistors,
magnetic domains, or paper determine classical logic as the means to manipulate
that information. Electric charge either is stored in a particular CCD location
or isn’t. A magnetic domain on the drive either is aligned with the direction of
the head or isn’t. Things are either true or false, and any memory location can
be read without destroying that memory location.
Not so in the world of quantum physics.

1. Quantum information cannot be copied with perfect fidelity. The latter
was demonstrated by William Wootters (Williams College, Massachusetts),
Wojtek Zurek and Dennis Dieks in 1982 [87]. This implies that quantum
information cannot be read in its entirety either, because the process of
reading is the same as the process of copying.

2. Quantum information can be transferred with perfect fidelity, but in the
process the original must be destroyed. Quantum teleportation was first
described by Bennett, Brassard, Crepeau, Jozsa, Peres, and Wootters
in 1993 [10]. It was demonstrated experimentally in February 1998 by
Nielsen, Knill, and LaFlamme [81].

3. Any measurement performed on a quantum system destroys most of the
information contained in that system leaving it in one of the so called basis
states. The discarded information is unrecoverable.

4. Although in some cases it is possible to predict with certainty which basis
state a quantum system will end up in after the measurement, in general
probabilistic predictions can be made only.

5. Certain observables cannot simultaneously have precisely defined values.
This affects our ability to define initial conditions at the beginning of a
computation, and further affects our ability to read the results.

6. Quantum information can be encoded (and usually is) in non-local corre-
lations between the different parts of a physical system.

2.4 Quantum Communication

In a classical computer information is moved between processing elements (in-
cluding memory and peripherals) using metal wires. Those wires are often
printed on plastic boards or on oxidized silicon wafers. But, by and large,
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they’re the same wires that have been used for electric telegraphy since its inven-
tion by Sir William Fothergill Cooke, Sir Charles Wheatstone and Prof. Samuel
F. B. Morse of the University of the City of New York in 1837. All three sub-
mitted patents for an electric telegraph in that year.

The British telegraph, invented by Cooke and Wheatstone utilized 6
wires which actuated five needle pointers attached to five galvanoscopes
at the receiver end. It was a very clumsy device and, not surprisingly,
was never really deployed “in production”. The Morse telegraph, how-
ever, was very practical. Soon after its invention it attracted attention of
the US government, which financed its experimental deployment between
Washington DC and Columbia in 1843. The telegraph was commissioned
on the 24th of May 1844. The first message transmitted over the telegraph
said “What hath God wrought!”.

The principles behind the Morse telegraph are very similar to the
principles employed in digital communications. The Morse code was ef-
fectively the first binary code and it was used for the next 100 years all
around the world in a very much the same way we transmit data over the
Internet today.

We can well say then that Internet was invented 163 years ago by
Samuel Morse, and not by Al Gore. What we have seen since have been
numerous and gradual improvements to the original idea and hardware,
but the basic principle remains unchanged: information is transmitted
over a wire as a sequence of digital pulses.

Long haul communications and sometimes high bandwidth local communi-
cations between computers or computer components also utilize optical waveg-
uides, e.g., optic fibres. This technology dates back to 1950s. It was used
originally for endoscopy, i.e., looking at stomach, lungs, and things at the other
end. Optic fibres were first used for telecommunication in 1966 in Britain by
Kao and Hockham (two electrical engineers working for British Telecom). To-
day nearly all long haul, i.e., interstate and intercontinental, data transfers take
place over optics.

There is a substantial physics difference between moving data over copper
wires by the means of diffusing massive electrically charged particles such as
electrons and moving data by the means of massless and electrically neutral
photons. Yet, once the information enters an information processing system at
the receiver, it is transferred from photons to electrons, and from this point
onwards it is moved around the old fashioned way, i.e., over telegraph wires.
Purely optical information processing is in statu nascendi and hasn’t left re-
search laboratories yet.

But how do you move quantum information, which is contained in the wave
function of a quantum system, not in a charge or in a pulse, between processing
elements of a quantum circuit?

The answer is teleportation.

In the November 25th issue of Nature (1999), pp. 390-393, Daniel Gottesman
and Isaac Chuang showed that a universal quantum computer can be built
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by combining single qubit operations, teleportation, and Greenberger-Horne-
Zeilinger states [41]. Moreover, they also present a systematic construction for
an infinite class of fault tolerant quantum gates.

We will talk about a teleportation circuit (suggested by Brassard in 1996
[18]) in Chapter 4.5.8.

The simulation code for the circuit lives in
/afs/ovpit.indiana.edu/common/mathematica/quantum_computing/unix/nbooks3/teleport.nb

So, what is quantum teleportation?

I have already remarked that multiparticle quantum systems are described
in terms of tensor products on Hilbert space, and that this implies existence
of non-local interactions between components of a quantum system. In prin-
ciple the whole universe is entangled and you cannot take a chunk of it and
isolate it from the rest. FEven particles that are on two opposite sides of the
universe are connected by entanglement. This interaction is not mediated by
any conventional field known to physics such as electromagnetism or gravity. It
is instantaneous and in clear violation of special relativity. The latter can be
restored for the so called “expectation values”, i.e., measured quantities, but the
anti-relativistic correlations are still there. Bohm [14] demonstrates that these
non-local interactions can be described in terms of a very special anti-relativistic
quantum information field that does not diminish with distance and that binds
together the whole universe. This field is not physically measurable though and
the only way in which it manifests itself is through the non-local correlations.
So it is, at least at this stage, a matter of religion whether you want to believe in
it or not. But the idea is interesting and derivable entirely from the Schrédinger
equation.

Anyhow, whether you want to describe the non-local correlations in terms
of Bohm’s field or magic, they are there. Their existence was demonstrated
experimentally by Aspect, Dalibard and Roger in 1982 [1], and predicted by
Bell in 1964 [7]. But they manifest themselves also in superconductivity, super-
fluidity, and even in the Bohm-Aharonov effect. The first two are macroscopic
phenomena, and in the Aspect, Dalibard and Roger experiment, the existence
of non-local correlations is demonstrated over a distance of 12m. More recently
non-local correlations were demonstrated over a distance of some 20 km.

Quantum teleportation uses this non-local interaction, combined with a clas-
sical information channel (e.g., telephone wires) in order to transfer a quantum
state, intact, from one location to another one. How exactly this is done will be
explained in section 4.5.8.
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2.5 Faster, Smaller, and Cheaper: Quantum Com-
puters

2.5.1 Heteropolymers

The first heteropolymer based quantum computer was designed and built in
1988 by Teich, Obermayer and Mahler from Institut fiir Theoretische Physik at
the University of Stuttgart [96], and then improved by Lloyd in 1993 [69].

In a heteropolymer computer a linear array of atoms is used as memory
cells. Information is stored on a cell by pumping the corresponding atom into
an excited state. Instructions are transmitted to the heteropolymer by laser
pulses of appropriately tuned frequencies.

Because of dipole interactions between atoms in a heteropolymer energy
levels of different atoms in the molecule are slightly different. It is therefore
possible to send a laser pulse addressed to a specific atom or a group of atoms
in the heteropolymer chain.

By sending a very carefully designed sequence of pulses of various colours,
shapes, and durations it is possible to accomplish feats such as transmission of
a single classical bit (or a qubit state, which is not in a superposition), from one
atom to another one along the chain. But superpositions of multiatom states
can be constructed too, and at this stage our heteropolymer becomes a true
quantum computer.

The nature of the computation that is performed on selected atoms is deter-
mined by the shape and the duration of the pulse.

After the computation has completed answers are read by the means of
resonance fluorescence.

2.5.2 Ion Traps

An ion trap quantum computer was first proposed by Cirac and Zoller in 1995
[26], and implemented first by Monroe and colaborators in 1995 [77], and then
by Schwarzschild in 1996 [89).

The ion trap computer encodes data in energy states of ions and in vibra-
tional modes between the ions. Conceptually each ion is operated by a separate
laser. Ions are coupled to each other by electrostatic repulsion. A centre of
mass of the system represents non-local entanglement and a “bus” to carry out
manipulations on individual qubits of the entanglement.

Using a single berillium ion it is possible to implement a two input controlled
NOT gate, by combining energy levels of an electron in the ion with energy
levels of the ion in the harmonic trap. Initial measurements demonstrated a
correct performance about 90% of the time and a decoherence time of about a
millisecond.

A preliminary analysis demonstrated that Fourier transforms can be eval-
uated with the ion trap computer. This, in turn, leads to Shor’s factoring
algorithm, which is based on Fourier transforms.
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Computation in an ion trap computer is steered by sending laser pulses to
selected atoms. It turns out that there is a limit on the maximum number of
bits that can be factored with such a computer and it depends on Z — the degree
of ionization, L — number of trapped ions, 7 — the decoherence time, A — the
atomic number of an ion, A — the wavelength of a laser and F' — a focusing
capability of the laser:

27T
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Nmax = (2.7)
It is also possible to predict a total number of pulses needed to factor an integer
of a certain size too. Because of the dependence of Np., on A and 7, some ions
are better than others. For example an ion of ytterbium has a transition with
a lifetime of 1533 days. If we were to use ytterbium, the maximum number of
bits that can be factored is 385. The number of laser pulses required to factor
the integer is 30 billion. The number of ytterbium ions required to perform the
computation is 1926 [50]

2.5.3 QED Cavity

A quantum electrodynamic (QED) cavity computer was demonstrated by Turchette,
Hood, Lange, Mabuchi, and Kimble in 1995 [100]. The computer consists of a
QED cavity filled with some cesium atoms and an arrangement of lasers, phase
shift detectors, polarisers and mirrors. Kimble’s group implemented a 2-qubit
quantum XOR gate. Control and target bits of the gate are two photons of
differing polarization and colour, which pass through the cavity. A very low
intensity of the beam results in there being only two photons in the cavity at
a time, i.e., the target and the control photon. The control bit is a circularly
polarized photon, and a target bit is a linearly polarized one. The dimensions of
the cavity have been tuned to resonate with a specific transition in the cesium
atom and target and control photons. On read-out rotation of the target pho-
ton polarization is measured in function of the control photon intensity. The
computer implements a classical XOR function, i.e., the target bit is flipped
depending on the state of the control bit. But the set up is also a true quantum
computer, because it can create, manipulate, and preserve superpositions and
entanglements.

2.5.4 Nuclear Magnetic Resonance

A Nuclear Magnetic Resonance (NMR) computer consists of an ampule filled
with a liquid and an NMR machine. Simple! Each molecule in the liquid is an
independent quantum memory register. Computation proceeds by sending radio
pulses to the sample and reading its response. Qubits are implemented as spin
states of the nuclei of atoms comprising the molecules. There is an Avogadro
number, ~ 6 x 10?3, of computers per mol (or & 2.7 x 10*° computers per cubic
centimeter).
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In an NMR computer the readout of the memory register is accomplished by
a measurement performed on a statistical ensemble of, say, 2.7 x 101 molecules.
In this an NMR computer differs from some quantum computers considered so
far, for example, a QED-cavity computer, or an ion-trap computer, in which
a single isolated quantum system was used. It has been shown that an NMR
computer can solve NP complete problems in polynomial time. Because an
NMR computer is based on a very well understood and highly sophisticated
technology most practical accomplishments in quantum computing so far have
been achieved using NMR.

NMR works by looking at transitions associated with spin flips in nuclei
comprising an investigated molecule. The ampule with the liquid is immersed in
a very strong magnetic field, between 9T and 15T. Because there is a magnetic
moment associated with the nuclon spin, also in case of neutrons, the energy of
a nucleus varies depending on whether the spin is aligned with the direction of
the magnetic field or counter-aligned. For spin I there can be 21 + 1 values that
the component of the spin in the direction of the magnetic field can assume.
As the spin of the nucleus flips between those values, photons of appropriate
wavelength, usually within the radio part of the electromagnetic spectrum are
emitted. Flipping of the spin can be induced by massaging the sample with a
radio pulse, in which the direction of the magnetic field is perpendicular to the
direction of the spin, and thus the direction of the original static magnetic field.

As the nucleus interacts with the surrounding electron cloud and with other
nuclei within the molecule the energy levels that correspond to those 27 + 1
values shift. This way by looking at NMR spectra it is possible to infer the
chemical composition and structure of a molecule. That’s the normal use of
NMR.

But, of course, you can reverse this process too, and knowing the chemical
structure of a molecule and its NMR spectrum you can manipulate its nuclear
spins by bathing the ampule in radio pulses of appropriately tuned frequencies.

An so, if you have, say, a molecule with 3 magnetically active nuclei, you can
use it to build a 3-qubit Toffoli gate. Given current state of NMR technology
it should be possible to cook 73 qubit registers. For larger registers the size of
the samples would have to be increased exponentially.

The most powerful NMR computer demonstrated so far is a 5-qubit
system built by Isaac Chuang and his colleagues from IBM Almaden Re-
search Center, Stanford University and the University of Calgary in early
August 2000 [46], [102]. The computer uses a specially designed molecule
with five fluorine atoms. '°F magnetically active isotope of fluorine is
used for this purpose. The computation, which solves the order-finding
problem, comprises 200 logical steps (quantum gates), which are executed
in about 0.3s.

But NMR systems can be used also for more than “conventional” spin-
flipping quantum computers. In February 2000 Jones, Vedral, Ekert and
Castagnoli demonstrated an NMR experiment in which a controlled phase
shift gate was implemented by the means of a conditional Berry phase [53].
The point here is that although phase shifts are usually dynamic in origin,
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they may also arise as a result of geometric operations, as, for example, in
the Bohm-Aharonov effect. In particular those Berry phases depend only
on the geometry of the path executed, and gates based on this concept
should therefore be resilient to errors, or at least some types of errors. If
this pans out then intrinsically fault-tolerant quantum computing may be
possible.

2.5.5 Quantum Dots

The four quantum computer implementations discussed in previous sections
all suffer from the same malady: compared to present day notebooks they’re
quite impractical. They require a bulky and very expensive equipment — lasers,
very strong magnets, cryogenics — and tremendous experimental, theoretical
and mathematical skills to boot. On the one hand this is exactly what makes
quantum computing such fun, on the other, this is exactly what keeps it away
from our desktops and computer rooms.

It is a common opinion that quantum computers need to be implemented as
solid state devices before they can be used for anything other than entertain-
ment and doctoral dissertations. This opinion may reflect old-fashioned and
outmoded XXth century thinking, so you shouldn’t treat it like a gospel, but it
reflects our experience in these matters so far.

There are two quite realistic possibilities here. The first one is based on the
quantum dot technology, the second one on the Josephson junction technology.

Two promising quantum dot based schemes were proposed recently by Loss
and DiVincenzo [71] and by Sherwin, Imamoglu and Montroy [91]. Both groups
are associated with the Center for Quantum Computation and Coherence in
Nanostructures of the Quantum Institute of the University of California at Santa
Barbara.

The first scheme is based on a concept of an array of quantum dots, in which
the dots are connected with their nearest neighbours by the means of gated
tunneling barriers. Such gated tunneling barriers are very difficult to make
(a tunneling barrier should not be thicker than about 100 A, so how can you
attach a gate electrode to it?), but such barriers have already been achieved ex-
perimentally using a split-gate technique by Waugh, Berry, Crouch, Livermore,
Mar, Wetervelt, Campman, and Gossard in 1996 (two teams participated in this
work: one from Harvard and one from Santa Barbara).

This scheme has one great advantage: the qubits are controlled electrically.
In their paper Loss and DiVincenzo demonstrated how single qubit and the so
called square root of the swap gates can be made from quantum dots. The quan-
tum XOR gate can, in turn, be made of these, and once you have the quantum
XOR gate and single-qubit gates, you can do any quantum computation with
it (this result is due to Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor,
Sleator, Smolin and Weinfurter, 1995 [6]). The disadvantage of this architecture
is that quantum dots can communicate with their nearest neighbours only. Data
read-out is quite difficult too. The authors propose that electrons trapped in
quantum dots could be transferred via tunneling into an array of supercooled
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paramagnetic dots, which would nucleate a formation of a ferromagnetic do-
main whose magnetization direction could then be measured by conventional
means. Another possiblity would be to use a spin-dependent switchable “spin
valve” tunnel barrier. An initial condition could be set by cooling the chip in a
uniform externally applied magnetic field down to cryogenic temperatures, and
then by pushing electrons into the dots through the spin-valve tunnel barriers.

Well, it looks like there is just no escape from cryogenics and magentic fields
— even if solid state devices are used in place of molecules or trapped ions.

The second scheme is very similar to the QED cavity computer discussed
in section 2.5.3. The difference this time is that instead of using an atom of
cesium trapped in an electrodynamic cavity we use a single electron trapped in
a quantum dot, which is a QED cavity in its own right. Information is stored in
the lowest energy levels of the dot, with the energy levels themselves controlled
by a dedicated gate electrode. Then instead of using external optical lasers we
use infrared semiconductor lasers in the THz regime. The whole system could
probably be implemented on a single GaAs wafer or, at worst, as a hybrid GaAs
chip. The laser could provide connectivity between several quantum dots, not
necessarily adjacent ones, thus performing the function of a data bus. The
computation is steered by applying a sequence of adiabatic voltage pulses to
individual quantum dots.

The lifetime of a cavity photon must be sufficiently long to enable multiple
quantum gate operations with high fidelity. The cavity itself would thus have
to have a very high figure of merit (or a very low loss). Metal based cavities are
too lossy, so they cannot be used in this context. The authors proposed using
a dielectric cavity made of ultrapure silicon instead.

There are many other very interesting things that can be done with
quantum dots.

For example, in August 2000 Michler, Imamoglu, Mason, Carson,
Strouse, and Buratto from the University of California at Santa Barbara
observed photon antibunching from a single cadmium selenide quantum
dot at room temperature [49], [75]. This demonstrates that a quantum
dot acts like an artificial atom with a discrete anharmonic spectrum. The
result is very surprising, because, first, it shows that manipulations and
observations pertaining to a single quantum dot can be performed and
single photon emission events observed with great precision, and that all
these observations can be carried out at room temperature. The latter
brings great encouragement to people who work on dot based quantum
computers.

Quantum dots can be also used for classical computing, but in this
case computing is done quite differently than with MOSFETs. Craig
Lent and his co-workers at the University of Notre Dame use electron
configurations rather than electron currents to implement various logical
operations [38], [94]. Every dot in their system contains two electrons.
Electrostatic repulsion pushes the electrons into the opposite corners of
a quantum dot. If the dot is additionally flat there are only 4 corners to
choose from, so the electron pair can either connect south-west and north-
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east corners or north-west and south-east corners. If two dots are put next
to each other electrons in these dots will assume the same configuration.
If an electron pair in a dot that is a part of a chain is flipped forcibly,
the change may then propagate along the chain like in a domino, flipping
every other pair. It is possible to construct quantum dot wires, inverters,
gates, fanouts and various other circuit elements based on this elegant
principle.

2.5.6 The Kane Computer

This computer looks a little like a quantum dot computer, but in other ways it
is more like an NMR computer, so it really forms a category of its own.

The Kane computer was proposed by B. E. Kane from Cambridge, UK, in a
brief paper in Nature in 1998 [56]. His idea was to embed a single magnetically
active nucleus of 3!P in a crystal of isotopically clean magnetically inactive 28Si.
The sample would then be placed in a very strong magnetic field in order to
set the spin of 3'P parallel or antiparallel with the direction of the field. The
spin of the 3'P nucleus can then be manipulated by applying a radio frequency
pulse to a control electrode, called A-gate, adjacent to the nucleus. Electron
mediated interaction between spins could in turn be manipulated by applying
voltage to electrodes, called J-gates, placed between the 3P nuclei.

It is not impossible to build a computer like this even today. Single atoms
of phosphorus can be placed on an ideally polished silicon surface with atomic
precision, every 200 A or so, using atomic force microscopes (AFM) and scan-
ning tunneling microscopes (STM). The atoms can then be burried under an
ultrapure epitaxial layer grown either in an MBE or even just in a CVD reactor.
It should be possible to ensure isotopic purity of silicon and phosphorus too,
though this may not be cheap.

However, it is not obvious why a computer like that should be any better
than, say, a molecule based NMR computer. It certainly wouldn’t be any faster,
because its speed would be ultimately determined by the required frequency of
the RF pulses. Also the electrodes attached to the device could melt when high
electric currents are induced in them when a very strong external mangetic field
is turned on. Furthermore it is not clear that interactions with a very large
number of surrounding silicon atoms would not destroy the coherence of any
quantum configuration very quickly.

Nevertheless it is an interesting idea, and it is currently being pursued ac-
tively at the Semiconductor Nanofabrication Facility of the University of New
South Wales in Sydney, Australia [90].

2.5.7 Josephson Junctions

The Josephson junction quantum computer was demonstrated in April 1999
by Nakamura, Pashkin and Tsai of NEC Fundamental Research Laboratories
in Tsukuba, Japan [79]. So a Josephson junction quantum computer is no
longer a stuff of theoretical considerations, but a practical reality. In the same
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month, only about one week earlier, Ioffe, Geshkenbein, Feigel’'man, Fauchere
and Blatter, independently, described just such a computer in Nature [51].

Nakamura, Pashkin and Tsai’s computer is built around a Cooper pair bozx,
which is a small superconducting island electrode weakly coupled to a bulk su-
perconductor. Weak coupling between the superconductors creates a Josephson
junction between them. Like most other junctions, the Josephson junction is
also a capacitor, which is charged by the current that flows through it. A gate
voltage is applied between the two superconducting electrodes. If the Cooper
box is sufficiently small, e.g., as small as a quantum dot, the charging current
breaks into discrete transfer of individual Cooper pairs, so that ultimately it
is possible to just transfer a single Cooper pair across the junction. The effec-
tiveness of the Cooper pair transfer depends on the energy difference between
the box and the bulk and a maximum is reached when a voltage is applied,
which equalizes this energy difference. This leads to resonance and observable
coherent quantum oscillations [2].

This contraption, like the quantum dot computer of Loss and Vincenzo [71],
has the advantage that it is controlled electrically. Unlike Loss and Vincenzo’s
computer, this one actually exists in the laboratory. Nakamura, Pashkin and
Tsai did not perform any computations with it though. At this stage it was
enough of an art to observe the coherence for about 6 cycles of the Cooper pair
oscillations, while the chip was cooled to about 30mK and carefully shielded
from external electromagnetic radiation.

Further progress is likely to be difficult. Nevertheless NEC executives were
justifiably very proud of this remarkable accomplishment and announced that a
practical quantum computer may be only a decade or so away from reality [42].
Tsai was more cautious, but emphasized the importance of having mastered the
control of quantum states in the Cooper pair box.

Because of the importance of Josephson junction in quantum computing and
in the HTMT computer [95] I am going to spend some more time on it in future.

2.5.8 Topological Quantum Computer

The so called topological quantum computer is a computer in which qubits are
encoded into a system of anyons. Anyons are quasiparticles in 2-dimensional
media. One can show that in such media particle statistics are neither strictly
fermionic nor bosonic. But in a way anyons are still closer to fermions, because
a fermion-like repulsion exists between them, for example the trajectories of
two anyons cannot cross. What makes anyons very unusual though is that this
fermion-like interaction depends on how they move with respect to each other.
Their movements are described by the so called braid group.

The existence and properties of anyons were predicted by Leinaas and Myrheim
in 1977 [66]. And only a few years later, Laughlin [65] proposed that some
unusual effects observed in 2-dimensional electron sheets cooled to nearly an
absolute zero and immersed in a horrendous magnetic field could be explained
by assuming that in these conditions collective excitations of electron fluid can
form, which have anyon properties.
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The idea behind the topological quantum computer is to make use of the
braid group properties that describe the motion of anyons in order to carry out
quantum computations. This idea was proposed by Freedman, Kitaev and Wang
in 2000 [36], who also claimed that such a computer should be invulnerable to
quantum errors, because of the topological stability of anyons.

In a paper published in October 2001, Averin and Goldman [3] proposed a
device based on these ideas. In their model anyons group around anti-dot holes
of 0.2 ym diameter made in a 2D electron sheet. The holes are separated by
0.01 pym wide gates. Individual anyons are then moved between the anti-dots in
a way that allows for controlled braiding. They demonstrated how a two-qubit
controlled-NOT gate and single qubit gates could be constructed this way, thus
showing that their scheme implemented universal computation.

They also discussed the decoherence mechanisms that would affect their
model and provided some estimates of the dissipation and decoherence rate,
which showed that the device would not be significantly better, in this respect,
than, say, schemes based on quantum dots. The advantage of the topological
quantum computer, however, is in the ease with which controlled entanglements
can be created between qubits. The other advantage would be in the stability
of anyon-encoded qubits against depolarization errors.



Chapter 3

An Abstract Quantum
Computer

3.1 Quantum Turing Machine

The aim of mathematical theory of computation is to discuss and model com-
putation in abstraction from any particular implementation of a computer. As
technology develops computers change and evolve. Furthermore at any given
time there are many different computer architectures around. In order to be
useful mathematics has to abstract all those superficial differences away and
concentrate on what really constitutes computation.

Early in XXth century Godel, Church and Turing proposed 3 different mod-
els of computation:

e general recursive functions of Godel

e lambda expressions of Church (Lisp and other functional programming
languages are based on those)

e the Turing machine

and somewhat later it turned out that they were very much the same. But
later still, towards the end of XXth century, it turned out that certain physical
assumptions, which may not necessarily correspond to how certain computa-
tions can be done, were smuggled into all three models. In particular quantum
computation, the subject of this lecture, is not modelled correctly by any of the
above. But there are even some aspects of classical computation, which are not
adequately accounted for by the Turing machine and equivalent models, e.g.,
the thermodynamics of computation.

The Turing machine was invented by Alan Turing in 1936 [101] in order to
address Hilbert’s Entscheidungsproblem. It is sufficiently simple so that various
mathematical theorems can be proven about it. In particular by using this model
Turing was able to show that the Entscheidungsproblem must be answered in

39
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negative, i.e., there is no mechanical procedure, in general, which can be used
to decide a theoremhood of an arbitrary statement in mathematics. This, in
combination with Go6del theorem, came as a bit of a surprise to mathematicians.
On the other hand, it merely demonstrated what the greatest mathematicians
always knew and practiced, namely that mathematics is an art. Also, that some
of the best mathematics is constructed by broadening a particular theory that
is an object of some assertion and attacking the problem from a higher level.
For example, algebraic problems can often be tackled with a surprising efficacy
by rolling out the apparatus of complex analysis.

The original purpose of Turing machine was to model a formalist math-
ematical reasoning, the way Hilbert wanted it to be. And Hilbert wanted a
mathematician to forget about the meaning of various mathematical constructs

and, instead, just operate on symbols. In order to do that the mathematician
had to

¢ invoke some symbol transformation rules
e record each step on paper

e go back and forth over the proof and sometimes combine earlier inferences
with the later ones

¢ have some mechanism for deciding about which transformation rule to
use.

Turing simplified this whole procedure by
e replacing symbols with sequences of 1s and Os,

¢ replacing a writing pad with a 1-dimensional paper tape divided into cells
which would accommodate either 1 or 0,

e inventing a read/write head, which could go back and forth over the tape,

o allowing the head to exist in various states that would define a context
within which read/write operations would take place.

How does Turing machine go about its business?

The computation begins with the program and the initial data being written
on the tape, which is otherwise empty. The head is put in a state, which tells it:
read the program. The program is read, program instructions are intepreted,
i.e., the head moves up and down, reading some data, writing some other data,
and, in general, using the rest of the tape as a scratch pad.

Soon enough it turned out that Turing machine was universal, that is, that
every classical computation could be performed with it. It also turned out that,
in a way, all classical computers are the same: be it a PC, or a Fujitsu VPP, or
a Mac — the most essential difference between them is the colour, transparency
and the size of the box they live in. If a computation can be done on a Fujitsu
VPP, it can be done on a PC too, even if it’s going to take longer.
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The original Turing machine was deterministic (DTM): the head would be
always in a single state, which would uniquely determine which direction it
would go into and how far. There is a variant of the Turing machine, which is
not deterministic. The head may be in a state, which gives the machine certain
choices as to the direction and length of the next traverse. The choices are then
made by throwing dice and possibly applying some weights to the outcome. A
machine like that is called a probabilistic Turing machine (PTM), and it turns
out that it is more powerful than the deterministic Turing machine in the sense
that anything computable with DTM is also computable with PTM and usually
faster.

But both PTM and DTM are based on classical physics: the states of the
tape and of the head are always readable and writable, data can be always
copied, everything is uniquely defined.

A mathematical theory of computation that is based on quantum physics is
bound to be different. As you move from classical physics to quantum physics
there is a qualitative change in concepts that has profound ramifications.

So here’s a brief history of how quantum Turing machine came about.

1973 Bennett demonstrates that a reversible Turing machine is possible [9].

1980 Benioff observes that since quantum mechanics is reversible a computer
based on quantum mechanical principles should be reversible too [8].

1982 Richard Feynman shows that no classical Turing machine can simulate
quantum phenomena without an exponential slow down, and then observes
that a universal quantum simulator can [34].

1985 David Deutsch of Oxford University, UK, describes the first true quantum
Turing machine (QTM) [28]

In the quantum Turing machine read, write, and shift operations are all
accomplished by quantum interactions. The tape itself exists in a quantum
state as does the head. In particular in place of the Turing cell on the tape,
that could hold either 0 or 1, in quantum Turing machine there is a qubit,
which can hold a quantum superposition of 0 and 1. The quantum Turing
machine can encode many inputs to a problem simultaneously, and then it can
perform calculations on all the inputs at the same time. This is called gquantum
parallelism.

A qubit is often represented graphically by a sphere with an arrow in it, see
figure 3.1.

Arrow up corresponds to a classical 1. Arrow down corresponds to a classical
0. Arrow in between corresponds to a superposition of 1 and 0. Additionally
the arrow may be rotated about the vertical axis, as shown in figure 3.1, which
corresponds to the phase of the qubit.

The tape of the quantum Turing machine can now be drawn as shown in
figure 3.2.
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Figure 3.1: A graphical representation of a qubit
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Figure 3.2: A graphical representation of a quantum Turing machine and its
evolution. The top row represents an initial condition. As the machine evolves,
the head moves simultaneously in three different directions — the state of the
machine becomes a superposition of the three states illustrated below the top
rOw.
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The machine evolves in many different directions simultaneously. After some
time ¢ its state is a superposition of all states that can be reached from the initial
condition in that time.

This model, like the classical Turing machine was sufficiently simple and at
the same time universal to prove various theorems about quantum computation.

3.2 Quantum Computability

There is a connection between physics and computability. To begin with all
computers are physical devices. But, it turns out, that it’s the other way round
too. Simple physical systems can be made into computers.

In 1990 Christopher Moore from Cornell University showed that a single
classical particle moving in a three-dimensional potential well made of a finite
number of parabolic mirrors is equivalent to a Turing machine, and hence is
capable of universal computation [78].

This very interesting result is far from trivial.

The reason for this is that a motion of a single classical particle in a
“normal” potential well is described in its entirety by Newton’s equations
of motion. These equations are deterministic and in great many cases
easily integrable. As the result the state of the particle can be predicted
for all times ahead, or, in other words, any question about the state of
the particle at some time in the future can be easily decided. So a system
like this cannot map onto a Turing machine, which is undecidable.

Since early 60s (of the XXth century!) scientists have been investi-
gating some classical and quantum systems, which, while deterministic in
principle, turned out to be totally chaotic in practice. Damped pendula,
accelerator beams, spin-orbit coupling, and many other similar systems,
which are usually referred to as chaotic Hamiltonian systems, fall in this
category.

However, these systems still cannot be mapped onto the Universal
Turing Machine. Because the systems are fully deterministic in principle,
it is possible to answer with precision many questions about them, for
example escape rates, Lyapunov exponents, periodic sequences, all can be
easily determined.

In his brief paper Moore discussed a new type of “maps”, i.e., trans-
formations that a dynamical system is subjected to as it evolves in time.
The maps are called Generalized Shift Maps. Moore showed that there
was a simple correspondence between the maps and the Universal Turing
Machine: the latter could be easily implemented using a particular form
of the Generalized Shift Map. This immediately implied that as the Uni-
versal Turing Machine is undecidable then so was the dynamics governed
by the Generalized Shift Maps.

The next question that Moore answered was if this type of dynamics
could be found in physical systems. A simple example of a system like
that was a classical particle (or a family of classical particles) trapped
between a finite number of parabolic mirrors, which had a property of
expanding and contracting congruences of particle trajectories.
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The resulting motion was unpredictable in a qualitatively stronger way
than that of chaotic Hamiltonian systems. It was, in fact, as unpredictable
as the Universal Turing Machine. The trapped particles were in effect the
Universal Turing Machine.

Consequently, a demonstration that the universal Turing machine is not
capable of something or other implies that the corresponding physics systems
(simple or complex) are similarly not capable of some equivalent result.

It is also possible to demonstrate a physics equivalent of the Gédel’s theorem.
In 1985 Asher Peres argued that it was possible to make certain true statements
about a physical system, which could not be confirmed by a measurement [85],
sic!

These observations led Peres and Wojtek Zurek to state that quantum me-
chanics, being a formal system, could not be closed: some truths pertaining to
quantum mechanical systems had to exist that could not be analyzed within
the body of quantum mechanics [84]. This, argued Peres in “Quantum Theory:
Concepts and Methods” [86],

was not a flaw of quantum theory, but a logical necessity in a theory which
is self-referential and describes its own means of verification. This, con-
tinued Peres, reminds of Godel’s undecidability theorem: the consistency
of a system of axioms cannot be verified because there are mathematical
statements that can neither be proved nor disproved by the formal rules of
the theory; but they may nonetheless be verified by methamathematical
reasoning.

The latter clearly suggests, although this is probably quite unintentional,
that as was the case, for example, with the Fermat conjecture, which had ul-
timately been proven some 358 years later by Andrew Wiles from Princeton
University and Richard Taylor from Cambridge University, who went far be-
yond elementary number theory and used tricks from algebraic geometry to
deliver the proof, similarly those unanswerable questions in Quantum Mechan-
ics may be answered by going beyond Quantum Mechanics — perhaps also some
358 years later.

This is a very telling example of how one can turn the tables and use theory
of computation in order to say something profound about physics.

Quantum Turing machine can be used to simulate the classical Turing ma-
chine and the probabilistic Turing machine too. But quantum Turing machine
can do more than that. For example it can generate truly random numbers,
something that classical Turing machines cannot do.

Quantum parallelism is not easy to harness though. On measurement of
final results the wave function of the computer must collapse, so that only a
single result is delivered. On the other hand, it turns out that it is possible to
measure certain joint properties of all the outputs.

The unique features of a quantum computer pose the following paradox:
imagine that the computer is used to prove automatically a mathematical the-
orem. Classical computer programs that do just that exist and have delivered a
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number of genuine proofs of nontrivial theorems. But in a quantum computer
the details of the reasoning cannot be followed. An attempt to do that converts
the quantum computer into a classical computer. The situation is exactly the
same as in the Feynman double-slit Gedankenexperiment. The moment you
insert an apparatus that can tell you which way the particle goes, the quantum
intereference image vanishes and you’re left with a classical distribution and a
classical trajectory. This led some authors, e.g., Williams and Clearwater [104],
to ponder a situation whereupon a quantum computer would be able to tell you
if your theorem is true or false, but it would not be possible to extract the proof.

This may indeed be the case, but it does not imply that a classical proof of
that theorem does not exist or that it cannot be found. One can demonstrate
easily that the solution of the Schrédinger wave equation that describes the
double-slit Gedankenexperiment represents a congruence of classical trajectories
[14]. Whether there is a classical particle that follows those trajectories or not
is highly debatable. But this is a matter of interpretation. From a strictly
mathematical point of view a congruence of trajectories is there in the solution
of the Schrodinger equation.

Translating this result onto our quantum theorem prover tells us that if we
were able to somehow measure the whole wave function of the computer as it
goes through the proof, and it may be possible to do that by running the job
repetitively and measuring distributions, then it should be possible to extract a
“classical trajectory” from that function that represents a classical proof of our
theorem. The wave function will, in fact, deliver a whole congruence of proofs
of numerous theorems, of which ours will be but one.

3.3 Quantum Complexity and Quantum Algo-
rithms

Complezity is a measure of how efficiently can solvable problems be solved.
What is of special interest is the growth of solution time and memory require-
ments with the size of the problem. The idea is to scrutinize a problem itself
and deliver the assessment of its complexity abstracted away from any partic-
ular computer architecture. So, like Turing machine, complexity is an abstract
concept. But complexity is related to the model of computation. There are
special complexity classes for a deterministic Turing machine, special classes for
a probabilistic Turing machine and then special classes for a quantum Turing
machine.

The most important class is P: a class of problems that grow polynomially,
as opposed to an exponential growth. Problems that grow exponentially are
considered intractable in general. An example of such an intractable problem
is large integer factoring which is exponential in the number of bits needed to
represent an integer number. For example to factor a 200 digit number would
take nearly 3 billion years on a machine that runs a million instructions per
second.
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P problem can be solved by a QP problem can certainly be PcQP [13]
UTM in polynomial time at solved by a QTM in
worst polynomial time at worst
ZPP | problem can certainly be ZQP | problem can be solved by a ZPP C ZQP
solved by a PTM in QTM without errors in
polynomial time on average polynomial time
BPP | problem can be solved by a BQP problem can be solved by a BPP C BQP
PTM in polynomial time with QTM in polynomial time at
probability greater than 2/3 worst with probability greater
than 2/3, i.e., in 1/3 cases the
computer may return an
erroneous result

Table 3.1: Classical and quantum complexity classes.

The most important classes are shown in table 3.1

Apart from the classes shown in the table there are quite a few more, distin-
guished by ever finer criteria that specify them. An important class is NP. This
is a class of problems that are known to be intractable. But imagine that you
can guess a solution to such a problem. Having guessed it you need to check
that this indeed is a solution. But how easy it is to check a solution to such a
problem. This is a problem in its own right. If this problem is of class P, then
the class of the original problems, i.e., the intractable ones is called NP.

A relatively small number of quantum algorithms is known. Amongst them
are:

e find a true statement in a list of two statements, Deutsch and Jozsa 1992
[29]

e integer factoring, Simon 1994 [93], Shor 1994 [92], Kitaev 1995 [60]
e database search, Grover 1996 [39]

e median estimation, Grover 1996 [40]

e mean estimation, Durr and Hoyer 1996 [32]

In most cases they rely on a quantum version of the Fourier transform. The
quantum Fourier transform algorithm itself was discovered by Bernstein and
Vazirani in 1993 [11].

3.4 Quantum Circuits

For practical purposes, especially for the design and analysis of quantum com-
puters and algorithms an abstraction of a quantum circuit is going to be more
useful than a quantum Turing machine. In 1993 Andrew Yao demonstrated the
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equivalence of a quantum Turing machine and quantum circuits for the QP class
of problems [105]. This does not prove the equivalence in general, but since the
Turing machine itself is not a very useful concept in practical applications, there
hasn’t been much more development in this direction.

Some people believe that practical quantum computers will implement spe-
cific functions as quantum circuits and that they are not going to be pro-
grammable devices. It is difficult to see where this assertion comes from be-
cause NMR computers of today are perfectly programmable — programs are con-
veyed to molecules as judiciously tuned and shaped sequences of radio-frequency
pulses. But semantically speaking, the only programming language for quan-
tum computing today is the language of quantum circuits. It may be quite
entertaining to think of higher level languages that would somehow encapsulate
quantum logic and that could be compiled to the language of quantum gates.

Quantum circuitry comprises quantum gates in a sequence as they are ap-
plied to quantum registers. A quantum register is a collection of individually
addressable qubits with individually controllable couplings and is represented by
horizontal lines in circuit diagrams. Vertical lines in circuit diagrams illustrate
couplings between various qubits of the register. You can see a typical example
of a quantum circuit in Figure 4.14, section 4.5.8, page 141. Each quantum gate
is reversible with a transformation between inputs and outputs described by a
unitary operator. An operator U is said to be unitary when

vlu =1 (3.1)

Quantum circuits may also contain other non-unitary operations such as
measurements, which may be performed towards the end of a computation or
in the middle of a computation on a part of the register. For example, CSS
circuits discussed in section 6.3, page 235, all perform measurements of error
syndromes prior to application of error correction procedures. Measurements
are not unitary operations. But measurements, unitary transformations, and
some other procedures and natural processes can be described together using
a formalism of quantum operations, to which you will be introduced in section
4.7.2.

A quantum circuit can therefore be defined as a quantum register, to
which a finite number of quantum operations is applied.

There is another subtlety involved here. A quantum register will always
evolve by itself following whatever free Hamiltonian describes its structure. The
notion of a quantum circuit assumes that this natural evolution is halted and
replaced with a steered evolution in the form of the sequence of quantum oper-
ations. This may not always be possible. Whether it is possible depends on the
dynamics of the system chosen as the register. In section 4.5.6 you will see how
this can be done for an NMR computer.

The definition of a quantum circuit as a finite sequence of quantum
operations is quite general and encompasses all circuits we are going to
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study in this course. You will also find a narrower definition in litera-
ture, in which a quantum circuit is defined as a finite sequence of unitary
operations terminated with a measurement. It turns out that for certain
purposes a circuit with a measurement in the middle of its sequence of
operations can be transformed into a circuit with all measurements at the
end.

In the Brassard circuit (Figure 4.14, page 141) a measurement is per-
formed in the middle of the computation. In the actual experiment, about
which you will learn in section 4.5.8, this is done by allowing quantum
states on two carbon nuclei in a molecule of trichloroethylene to deco-
here naturally. The states that are left on the carbon nuclei after this
operation are then used in following computations. We therefore have a
genuine non-unitary operation carried out in the middle of the compu-
tation with a causal relationship between quantum states on the carbon
nuclei immediately after the measurement and just a little later when the
computation restarts. The states are, as a matter of fact, the same and
the algorithm depends on them being the same.

But if we were to ignore this causal relationship this whole operation
could be modeled by assuming that the point at which the decoherence
is allowed to take place is the final point in this part of the circuit. Then
the point at which the computation is restarted can be thought of as an
entry point to the circuit where two additional qubits are endowed with
certain initial conditions, which, incidentally only happen to be what the
original states on the carbon nuclei decohered to.

In this way the circuit can be thought of as comprising unitary op-
erations within and non-unitary operations, i.e., the imposition of initial
conditions and the measurements, at the left and right edges of the circuit
only.

Although such a transformation does not correspond necessarily to
how the operations are actually performed, it may be useful for mathe-
matical purposes, e.g., when proving theorems about quantum circuits in
general.

Of course, one can object that ignoring causal relationships between
parts of the circuit and redrawing it for the sake of sweeping non-unitary
operations to the edges produces a different circuit that is not going to
behave always in the same way as the original circuit. For example, the
two carbon nuclei in the molecule of trichloroethlene may decohere to | 0)
and | 1). In the original circuit the computation will then restart from
| 0) and | 1) on the carbon nuclei. But nothing stops us from assigning
| 1) and | 1) to the two additional qubits in the redrawn circuit, which
would lead to a quite different final result. The redrawn circuit is therefore
not quite equivalent to the original circuit. It imitates the behaviour of
the original circuit for certain assignments of initial conditions, as long
as these correlate with whatever the measurement is going to return on
the top two lines, but it also adds other possibilities, which the original
circuit would not realize.



Chapter 4

A Brief Rehash of Quantum
Mechanics

4.1 Probability Amplitudes

4.1.1 The Interference Experiment

Consider the experiment shown in Figure 4.1. We start with a strong beam of
coherent monochromatic light, e.g., a laser beam, which emerges from source s.
The beam then passes through two narrow slits and, as you should remember
from school, an interference pattern results on the screen. The pattern is regis-
tered by a photographic emulsion, or by a highly sensitive light detector, which
as is shown in Figure 4.1, we can move along the = axis.

Next we turn the intensity of light down until. .. something quite amazing
happens. At very low light intensities light becomes granular. The detector
begins to “tick” (or flash) audibly (or visibly) as it receives light packets. The
packets all transmit the same amount of energy, which is related to the colour of
light by the well known Planck-Einstein relation E = hw, where E is energy, w
is the angular frequency of light and % is h/27, where h is the Planck Constant.

What happens to the interference fringes we’ve seen on the screen when the
light intensity was high? The packets arrive at random locations. It is quite
impossible to predict where a given packet is going to hit. Yet, as the counts
accumulate, we see the inteference pattern emerging. What used to be light
intensity in classical physics, here becomes probability density. A probability
that a photon emitted from s is going to arrive at some point z if there are two
slits in between.

The image would be quite different if there were three slits or if there were
two walls with slits in between. The packets of arriving light seem very well
localized. You can make the detector as small as you like, even as small as a
single atom, and it is still going to detect the arrival of the whole packet of light.

Light intensity in classical physics is proportional to E2, where E is electric

49
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[«]

Figure 4.1: The interference experiment with photons: s —source, x — a position
of the detector, 1 —slit 1, 2 — slit 2.

field vector. The interference pattern arises on the level of E and is caused by
the vectors associated with light beams arriving from the two slits adding with
varying phase.

In quantum mechanics a similar thing happens. In order to derive an expres-
sion for probability density associated with arrival of photons in the detector
located at some x we need to have some amplitudes (equivalents of E), which we
could add with different phases, so that the inteference pattern would emerge.

We call these probability amplitudes and we use the following symbol to
describe a probability amplitude that a photon emitted from source s is going
to arrive at the detector location x:

probability amplitude = (z | s) (4.1)

The probability density is then obtained by squaring the amplitude, which, in
general, is a complex number.

probability = (z | s)(z | s)* = |(z | s)|° (4.2)

The probability amplitude that an electron emitted from source s is going to
travel through 1 and then from 1 to the detector located at x is:

(@ | $)viar =(z [ 1)(1]s) (4.3)

The interference pattern is obtained by adding probability amplitudes for the
two alternative paths, one through slit 1 and the other through slit 2.

(@] shviarora = (x| 1)(1]s) + (x[2)(2]s) (4.4)
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Figure 4.2: A more complex interference experiment: s — source, x — a position
of the detector, 1 and 2 are slits in the first wall, a, b, and ¢ are 3 slits in the
second wall.

Depending on the position of  the two components in the above sum are added
with different phases and so the interference pattern emerges when the ampli-
tude (z | S)via 1 or 2 i squared. The mechanics of this are much the same as
in the classical theory of light. The difference being basically that of interpre-
tation. What in classical physics was light intensity, here becomes probability
density. What in classical physics was a field amplitude, here becomes proba-
bility amplitude.

The same machinery can be used for more complex situations, for example,
for an experiment with two screens and five slits shown in Figure 4.2.

The probability amplitude that a photon which passed through slit 1 arrives
at location z is given by

(@ | Dviaa,b,ore = (@ [a)(a[1) +(z b} 1) + (z ] c)(c[1) (4.5)

and similarly for a photon which passed through slit 2. The probability ampli-
tude for a photon that leaves source s and arrives at the detector located at x
is now the sum of probability amplitudes for all possible trajectories:

(@ | 8)via1or2,andthen = D (@ | )| i)i]s) (4.6)
via a, b, or ¢ i=1,2
j=a,b,e

In order to convert these expressions into numbers we need an expression for
(re | r1), i.e., a probability amplitude that a photon that had passed through
Ty arrived at ro. This is given by

eip-’l‘lz/ﬁ

(ra|r1) = Tz (4.7)
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Figure 4.3: A birefringent crystal splitting the beam of incident light into two
perpendicularly polarized beams.

where p is the momentum of the photon:
p = hk (4.8)

where k is the wave number of the photon.

A truly amazing discovery of early XXth century was that this formalism
describes not only photons, but also electrons and all other elementary particles.
For relativistic particles the momentum p is given by:

p’c® = E% — (m002)2 (4.9)

and for slow Newtonian particles, we can use the following expression instead

P _pg, (4.10)

4.1.2 Experiments with Polarized Light

Apart from having intensity and colour light can be also polarized. This can be
seen best by transmitting a beam of light through a birefringent crystal. Two
beams emerge: one is polarized horizontally, the other one vertically. Figure 4.3
illustrates this experiment. We can now place two birefringent crystals back-
to-back and merge the two beams back into one. If the original beam was not
polarized, then the merged beam will not be polarized either. This is shown in
Figure 4.4.

We can also insert a block between the two crystals, as shown in Figure 4.5
and filter one of the beams away, so that the beam that emerges has a well
defined polarization.

This apparatus can now be used to prepare an initial state of the beam. We
can then send the beam through another apparatus like this one, although in
this second apparatus we may choose to filter away the top beam instead of the
bottom one. If we filter away the bottom beam in the first apparatus and then
we insert a filter in the top beam trajectory in the second apparatus, we will
filter away all light in the beam and end up with nothing.
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[+]

Figure 4.4: A beam is first split into two polarized beams, which then merge
back into one beam.

] U N

Figure 4.5: A beam is first split into two polarized beams, then one beam is
filtered away, so that light that emerges from the apparatus is fully polarized.
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Suppose that light in the top beam is polarized vertically and light in the
bottom beam is polarized horizontally. We will use symbols v and h to denote
polarization states of the beams. Now we are going to repeat our procedure with
turning down light intensity until we can see individual photons, and what we
used to call light inensity in classical physics now become probability. Photons
carry polarization like classical beams.

We can describe our experiment in which we have extinghished the whole
beam by writing the following formula:

(h|v)=0 (4.11)

The probability amplitude that vertically polarized photon can be found in the
horizontally polarized state is zero. Similarly, by blocking the top beam first
and the bottom beam next we arrive at:

w|h)=0 (4.12)

Then we can block the bottom beam in both apparatuses, and of course, the
top beam will emerge at the end undisturbed. The probability that a photon
that is in vertical polarization to begin with is found again in the same state is
1. Hence the corresponding amplitude is 1 too:

(v vy=1 (4.13)

and similarly
(h|h)y=1 (4.14)

Now suppose the second apparatus has been rotated about the beam axis
by some angle. Now the situation becomes really interesting. From classical
physics we know that if a vertically polarized beam strikes a polarizer, whose
axis has been rotated away from vertical, the intensity of the transmitted beam
will be attenuated, until, the polarizer has been rotated by 90 degrees at which
stage the beam becomes completely extinguished.

Switching to photons we discover that the relations we wrote above will no
longer hold. Namely:

[ e e B )

These probability amplitudes are a function of the angle of rotation of the second
apparatus. We could figure out how they change by, again, making analogies
with classical physics (and we know what the solution to this problem is there),
but we can make some general statements without it. And these statements are
as follows:
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1. For every polarization h or v the probability that a photon will emerge
from the second apparatus as either A’ or v’ is 1:

(W | o)A [o)* + @' | o) o) =1 (4.15)
and

(R"| h)CR" | R)™ + (" | h) (" [ h)* =1 (4.16)
These two relations hold for every angle subtended between the two ap-
paratuses.

2. Consider an experiment with three apparatuses. The first and the third
one are not rotated with respect to each other and the middle one is rotated
by an angle a about the beam axis. Now suppose that there are no filters
at all in the middle apparatus. This means that the beam that enters this
apparatus exits unchanged. Hence the probability that a photon polarized
vertically in the first apparatus is registered as still polarized vertically by
the third apparatus is 1, and the same holds also for a photon polarized
horizontally. But when you write down what happens inside the middle
apparatus the following emerges:

()" [v) + (W [B) (R |v) = 1
(R [V [ B + (R | )R [ R) = 1

Comparing relations obtained in these two experiments shows that we must
have:

(W' [o)(R" | 0)" + (" [0)(o' [0)* = 1
(| R)R [v)+ @] [v) = 1

and
(W [h)R [ R)" + (" [ [ h) = 1

(R IR [ )+ (R [V [h) = 1

Observe that these relations must hold for all angles a. This can be ensured
only if

WIn = (W)
W IRy = (] o)
Wy = (oK)
Wl = (0]

Now let us consider an even more complex experiment. Suppose we have
an apparatus S, followed by an apparatus T, followed by some very complex
apparatus A made of various filters and birefringent crystals, followed again by
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T and by S. We can describe polarization states generated by apparatus S by
S;, where i is either v or h. Similarly for apparatus T. The first S apparatus
defines the state of the beam and the last S aparatus measures the state of the
emerging beam. The probability amplitude that an initial state x, which can be
either S, or Sy, will emerge as some other state ¢ is described by an amplitude

(@1 Alx) (4.17)

which thanks to the apparatus T can be described as follows:
(X TA) =Y (x| TNTi | A| TiNT5 | 6) (4.18)
ij

Matrix (T; | A | T;) thoroughly describes apparatus A.

4.1.3 Dirac Notation and Hilbert Space

In the previous section we have demonstrated the following rules for probability
amplitudes describing polarization states xy and ¢ of a photon:

v

(xlg) = Y (xli)i| o) (4.19)
i=h
xlo) = (210" (4.20)
(i[g) = & (4.21)
Dirac observed that you can drop (x from these formulas and instead work
with:
| ¢} = Z |i)(i | 6) (4.22)

Those “half-amplitude” objects, | ¢) are called quantum states, or, sometimes
kets (because they are the second half of a bracket). The complementary objects
such as (x | are called bras.

The language of quantum states or bras and kets is uncannily similar to the
language of forms and vectors. Here we have:

v = Zviei = Zei(wi,v), (4.23)

where e; are basis vectors and w? are basis forms conjugate to e;, i.e.,
(W' e;) =0'; (4.24)

This, of course, is not accidental. Kets can be thought of as vectors, and bras
can be thought of as forms. The vector space of quantum mechanics conceived
thusly is in every respect a kosher vector space with some enhancements:

1. vector components are complex numbers
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2. because
(xlo)=(|x)"

every vector can be upgraded to a form and vice versa. This implies
that the vector space of quantum mechanics has a naturally defined scalar
product: (x | ¢). This scalar product satisfies additional conditions:

(a) (9| ¢) >0 for | #) # 0 and 0 otherwise

(b) (x| a1 + bg2) = a{x | ¢1) + b(x | ¢2), where a and b are complex
scalars.

3. the space is complete in the norm ||@|| = /(4 | ¢), this means that every
Cauchy series in this norm is convergent to an element of the space

A vector space with these properties is called a Hilbert space.
The last condition is often broken by admission of states with well defined
momentum, energy, or both, for example

(z) = eP/h (4.25)

Such states are not kosher, because their norm is infinite, i.e., they are spread
over the entire infinite universe. But they are used for computational and con-
ceptual convenience. If you admit these states to the Hilbert space, the resulting
space is called a rigged Hilbert space.

4.1.4 The Copenhagen Interpretation

The interpretation that an expression such as (i | ¢) represents a probability am-
plitude that a quantum system originally in state | ¢) is found, when measured,
in state | 7) and that

[9)=2_1iXi|9)

yields a complete description of a quantum system in terms of probability am-
plitudes of finding that system in any of the basis states is often called the
Copenhagen Interpretation. However, even experts disagree on what exactly is
meant by Copenhagen Interpretation. As observed by Asher Peres[86]:

Ballentine gives this name to the claim that “a pure state provides
a complete and exhaustive description of a single system.” The
latter approach is called by Stapp the “absolute-y interpretation.”
Stapp insists that “critics often confuse the Copenhagen interpreta-
tion, which is basically pragmatic, with the diametrically opposed
absolute-1 interpretation ... In the Copenhagen interpretation, the
notion of absolute wave function representing the world itself is un-
equivocally rejected.” There is therefore no real conflict between
Ballentine and Stapp, except that one of them calls Copenhagen in-
terpretation what the other considers as the exact opposite of the
Copenhagen interpretation.
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4.2 Quantum Evolution

4.2.1 A Historical Note

Although we promised to stay away from Schrédinger equation it is important,
as we embark on defining equation that describes quantum evolution, and for
historical reasons too, that we bring some of the early picture of quantum me-
chanics here.

Planck and Einstein It all began when Planck derived correct equations de-
scribing black body radiation by assuming that matter can absorb and
emit light in portions of E = hv = hw. Einstain took it then one step
further in his paper about the photoelectric effect, where he assumed that
light propagates as particles, which he called photons, and the relation
between light colour (frequency) and photon energy was w = E/h

de Broglie Then de Broglie advanced the following intriguing hypothesis.
He said that if light, which until then has been thought of as a wave
process, can sometimes behave as particles, then particles such as electrons
can perhaps behave sometimes as waves. He then proceeded to explain
quantization of energy levels in an atom of hydrogen as corresponding
to standing electron waves that form around a nucleus. The energy of
the electron and the frequency of the wave were linked by the Planck
relationship.

stationary state In a stationary state the electron wave would be de-
scribed by ¥(r,t) = ae~t = ae~“P/Mt This is a flat wave that
fills the entire universe. It is OK, because here we have a particle
with a well defined momentum (which is zero). By the Heisenberg
uncertainty principle, which says that AzAp, ~ h we must have
Az = 00.

uniform motion Now let us change the system of reference so that the
particle gains some momentum The energy-momentum of the parti-
cle, (E,p) and its location in space-time, (¢,7), are 4-vectors. Re-
member that Et — p - r is a Lorentz invariant. Therefore in the
new system of reference de Broglie’s wave must have the following
form: ¥(r,t) = ae”“Ft=P")/h from which we derive, by comparing
it with an expression for a traveling wave, ¥(r,t) = ae #(“!~*7) that
E/h=wand p/hi=k

Schrodinger (from [57]) Ernest Schrodinger then took de Broglie’s relation
on board and reasoned as follows. If you take a partial derivative of ¥
with respect to time you get % = %"E\I!(r,t), or ih% = EV. So,
he aspecu}ated, the time derivative operator must correspond to energy:

H 1 H 8\11( ,t) —
When you take a gradient of de Broglie’s wave function you get a—: =
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%p\I’(n t), or —iﬁg—g’ = p¥. So, he speculated, the gradient operator must
correspond to momentum: —iha% =P

Then he speculated further that if he combined the energy and momentum
operators in the same way that energy and momentum combine in classical
physics, £ = % +V,ie, E = % + V, he would end up with a partial
differential equation that should describe propagation of de Broglie waves:

0 (r,t) R _,
——= =—-—VU 1\ 4.2
ih Y 2mV (r,t) + V(r,t)¥(r,t) (4.26)
and so he arrived at his celebrated Schrodinger equation. It was a lucky
and educated guess. His equation, of course, cannot be derived from

classical physics.

This was still before people performed experiments with photons like the
one we have described above, so it wasn’t clear back then what the func-
tion ¥ (7, t) really represented. The Copenhagen interpretation came much
later, and not everybody was happy with it. In particular neither Planck,
nor Einstein, nor de Broglie, nor Schrédinger even ever subscribed to it,
sic! De Broglie and Schridinger developed their own alternative interpre-
tation for this function, which was further developed by Bohm. We are
going to talk about this interpretation a little in the last sub-section of
this section.

Using the Schrédinger equation it is possible to describe quite easily many
interesting quantum effects such as discretization of electron energy levels in
atoms, tunneling across a potential barrier and many others. These you will
find covered in every standard book about quantum mechanics, and we won’t
dwell on them here. If at any stage we’ll need them, we’ll use them like ”off the
shelf physics” and refer you to literature.

4.2.2 The Hamiltonian Matrix

The passage of time and its effect on a quantum state can be thought of as an
apparatus for moving the quantum state in time: U (¢, 1)

(Ut t1) | 8) =D (x| )i | Ut2,11) | 5)(5 | 6)
ij
where | ) and | j) are some basis states, which can be polarization states of a
photon, or spin states of an electron, or energy levels of electron in an atom of
hydrogen.
The apparatus for moving the quantum state in time must be transitive:

U(ts,t1) = U(ts, t2)U (t2,t1)

Consider a small increment in time and the effect this increment has on the

quantum state:
| Bt + At)) = U(t + At, 1) | T(t))
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Since U (t,t) must be an identity, we can expand U (t + At,t) in a Taylor
series around U (¢, t) thusly:

U(t+Att)=1— %HAt

The —i/h factor is here for historical reasons only: we’ll see soon enough why.
The evolution of | ¥) over time At now looks as follows:

| T(t+ Ab)) = (1 - %HAt) | T(t))

Moving | ¥) from the left hand side to the right hand side and dividing both
sides by At yields:
| B+ At)— [¥(t)) _ i@

- = —H | ¥(0)

L0 Y(t)
ih— ==k = H | () (4.27)

The H matrix in this equation is called the Hamiltonian matrix, because of the
equation’s similarity to equations of Hamiltonian formalism in classical dynam-
ics.

Now Compare this equation with the Schrodinger equation 4.26

., 0¥(r,t)
mi@t

We get the following;:
o U(r,t) =| ¥(t))
o« H=—EV2 1 V(rt)
Here ¥(r,t) is a probability amplitude of finding a particle in loca-

R _,
= —%V U(r,t)+ V(r,t)¥(r,t)

tion r at time ¢, and —%VQ + V(r,t) is the Hamiltonian matrix.

You can see that ¥(r,t) is a vector if you identify each r with
an index. The vector is infinitely dimensional and the number of
dimensions is 83. The Hamiltonian matrix in this case is an infinitely
dimensional matrix that acts on vector ¥(r,t).

Such vector spaces are very difficult to work with: the relevant
area of mathematics is called functional analysis. In this course
we'll stay away from it. But it’s good to know what’s what, and, in
particular, you’ll see that even in finite systems, e.g., 2-dimensional
ones, hw is still energy, as in the continuum case.

If H does not depend on time, the solution to equation 4.27 is:

| B(1)) = e Y™ | 1(0)) (4.28)
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so that: .
U(t,0) = e iHY/R (4.29)
This expression can be understood easier in terms of its Taylor expansion:
—iHt/h _ 1 _ 1 _ 1 . 24 ...
e =1 th 2!h2H Ht + (4.30)

4.2.3 Unitarity

Quantum states are normalized. Mathematically this means that (¥ | ¥) = 1.
Physically this means that if a given quantum system is in state | ¥) then the
probability of finding this system in state | ¥) is 1.

Quantum evolution needs to preserve this condition, i.e., if a state vector
evolves, then its length must not change. It should remain 1: (¥U' | U¥) =
(¥ | UTU | ¥) = 1 This implies that operators describing quantum evolution
must satisfy this condition: U'U = 1 Such operators are called unitary.

There is a geometric picture which conveys the same. Quantum states are
described by normalized vectors in Hilbert space, i.e., they are points on a
sphere of radius 1. A quantum evolution moves those points on the sphere, i.e.,
it rotates them. The condition UTU = 1 is a Hilbert space equivalent of matrix
orthogonality, i.e., it says that U is a “rotation” matrix.

Equation U (t,0) = e~ *#%/" gays that matrix H is one of the the generators
of group of unitary matrices U.

Unitary matrices form a group, which can be parametrized, e.g., by giving
“angles” of rotations. Such parametrization is smooth, which means that unitary
matrices form a manifold. A manifold, which is at the same time a group, is
called a Lie group. So unitary matrices form a Lie group. The generators of a
Lie group are in fact “vectors” that are tangent to the Lie group at some point.
Such vectors form what is called a Lie algebra.

In summary:

e Evolution of a quantum state in Hilbert space is accomplished by a linear
unitary operator. Such operators form a Lie group.

e An infinitesimal evolution of a quantum state in Hilbert space is accom-
plished by a generator of the unitary group. That generator is called a
Hamiltonian matrix. Hamiltonian matrices belong to the Lie algebra of
the Lie group of unitary transformations.

These statements aren’t really as profound as they may appear to be. All
they express is the fact that (¥ | ¥) is a probability that a quantum particle
that is in state ¥ can be found in that state, and that probability is, of course,
1. And, that, as we evolve the system, its quantum state changes to some other
quantum state, but the same tautology still applies to it.

Quantum mechanics would become much more interesting if some other,
possibly non-probabilistic interpretation could be given to ¥. We would no
longer be restricted to a sphere of radius 1 then, and evolution operators would
no longer have to be unitary.
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Quantum mechanical equations of motion are quite unsatisfactory for
another reason. In both the wave and in the discrete Schrodinger equa-
tions we have time, t, as the major player. In the wave equation we
also have the guiding vector, @, which describes points in a continuous
3-dimensional space. Yet both time and space are macroscopic concepts.
You have to use classical measuring rods and clocks, the way it’s done in
Relativity classes, to define them. But there are no clocks and measur-
ing rods in the quantum domain. So the Schrédinger equation is flawed
from the very beginning because it mixes macroscopic and microscopic
concepts, or, to put it in other words, it describes the evolution of a mi-
croscopic system from a macroscopic point of view, where time and space
are well defined notions.

Little wonder then that the resulting picture tends to hark back to the
macroscopic observer all the time. One could well say that quantum me-
chanics describes interactions of microscopic systems with a macroscopic
world, rather than the microscopic systems on their own. This may be
the root of various conceptual difficulties in quantum mechanics itself, as
well as the root of sickly divergencies in quantum field theory.

Is a description of quantum systems, which does not rely on macro-
scopic variables, at all possible? The answer is yes. There is an example
of a theory, which does not introduce the concepts of space and time at
the microscopic level at all. Through various manipulations the theory
then demonstrates how space and time arise in the thermodynamic limit
from quantum mechanical interactions.

The theory of “Spin Networks” was originally conceived by Roger Pen-
rose and an introductory paper about it published in “Quantum Theory
and Beyond” published by Ted Bastin as far back as 1971 [5]. The theory
progressed a little since then, though not by much. Some very interesting
spin network results were shown recently for the Chern-Simons Theory (I
wish I could find a reference to this paper...).

What is so interesting about Quantum Computing is that here we
don’t use time and space in describing and discussing quantum circuits
either. Instead the workings of the circuits are derived from mutual cou-
plings between qubits and from sequential ordering of the circuits.

Perhaps one day we will arrive at a new perspective from which we
will view quantum circuits as fundamental and the Schrodinger equation
as a derived semi-macroscopic expression.

4.2.4 Schrodinger and Hamilton-Jacobi Equations

Schrédinger equations, both the wave and discrete versions, operate on complex
valued functions of time and space. Yet we are perhaps justifiably reluctant
to use such functions in context of physics, where all measurable quantities are
real. In classical physics complex valued functions are used as auxiliary devices
in the theory of vibrating systems, and it is always possible to drop them in
favour of real-valued functions only. Is this possible in quantum mechanics too?

The Schrodinger wave equation can be thought of as two coupled equations

for real-valued functions. And when you do this then quite unexpected picture
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emerges.
Recall the Schrodinger wave equation:

ov R _,
ih— = ——V*¥ U
ih 5 2mV +V
Since ¥ is a complex valued function, we can always replace it with the polar
form .
T = ReiS/M (4.31)

where R and S are two real-valued functions. Substituting this polar form in
the Schrédinger equation yields a complex differential equation, which can be
readily split into real and imaginary parts. This results in two coupled equations,
which no longer involve any complex numbers or complex valued functions:

as (VvS)? W V2R
E_‘_ om +V—% R =0 (4‘32)
2
—aaRt +V~<R2—Vms ) = 0 (4.33)

The top equation looks exactly like a classical Hamilton-Jacobi equation where
apart from the normal potential V' we have an additional term:

- (4.34)

This term is called a quantum potential to distinguish it from the normal classical
potential V.

The quantum Hamilton-Jacobi equation can be solved for a family of tra-
jectories, satisfying

m— =-VV - VQ (4.35)

Of course, in order to solve this equation, we need to solve a normal Schrédinger
equation first, so that we can find R, and from R also ().

If you carry out this procedure for a double-slit experiment, you end up with
a family of trajectories which get extremely close to each other within the slits
themselves, but then fan out. The trajectories are not straight lines. They are
kind of wiggly and when they eventually hit the screen they get again closer
to each other in places where we expect the interference fringes to emerge, and
they get sparse in the troughs of the interference pattern.

This picture provides a classical interpretation of the Schrédinger equation,
which is consistent with all that we know about quantum mechanics. Even very
small differences in positions that a classical particle can assume within the slot
result in widely different locations when the particle hits the detector.

The quantum potential () has some very unusual properties. To begin with
it does not diminish with distance. It can be thought of as a non-local field,
which the particle uses to sniff the whole universe as it moves from the source to
the detector. In particular using this field the particle is aware of the presence
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of the other slot, and conditions therein, when it traverses through its own slot.
The presence of the other slot affects the particle’s future trajectory so that
eventually the interference pattern emerges, when a sufficiently large statistical
ensemble of particles is emitted by the source.

This is the essence of the deBroglie-Schrédinger-Bohm interpretation of
quantum mechanics. The quantum potential field Q was called a pilot wave
by deBroglie. Later Bohm called it an information field.

This is a very interesting picture and it is a pity that very few physicists
know about it. This often leads to incorrect statements along the lines that “a
classical interpretation of quantum mechanics is not possible”. Von Neumann
even proved some “theorems” to this effect. His “theorems” were later shown
by Bell to have been based on incorrect assumptions about classical physics.

As you have just seen, it is possible and even straightforward to concoct a
classical interpretation of quantum mechanics. Whether it is a correct interpre-
tation is another matter altogether, and from my own remarks in the previous
section, you can probably guess that I expect quantum world to be much weirder
than this classical picture. Because this interpretation is based on classical no-
tions of space and time and because it derives entirely from the Schrédinger
wave equation, it suffers from the same sin of mixing macroscopic notions of
space and time with the microscopic world of quantum physics, where these
notions become quite questionable.

But there is a great value in the deBroglie-Schrédinger-Bohm interpretation.
The value is in the observation that the quantum potential (), which is essential
in this picture, is a non-local entity. This comes out even more profoundly,
when similar manipulations are applied to many-body quantum systems. The
non-locality, the entanglement of all quantum components are the most striking
and unusual features of quantum physics. It is here that quantum physics differs
from classical physics most.

4.3 Two-state Systems

In this section we are going to have a close look at a qubit and its dynamics. This
time we have enough quantum mechanics background to do it in detail. Towards
the end of this section, you will learn that although qubits can be implemented
in various types of quantum hardware, e.g., they can be associated with electron
spin, or with photon polarization, or with selected energy levels of electrons in
an atom, they are all subjected to identical dynamics. This dynamics derives
from there being just two states between which the qubit can switch.

4.3.1 The Ammonia Maser: a Quantum NOT Gate

Our first qubit example is an ammonia molecule, NH3. The molecule looks like
a little pyramid with a triangular base, formed by hydrogen atoms and with the
nitrogen atom at the apex. There is an electric dipole moment associated with
this molecule, which points along the direction that connects the apex of the
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Figure 4.6: An ammonia molecule NH; in two possible states: | ) and | d).

pyramid with the center of its base. If you place the molecule in an electric field,
the torque will align its dipole with the direction of the field. The molecule can
now exist in two forms. The atom of nitrogen can be either above the plane
of carbon atoms, or below. In other words, the pyramid can stand on its base
or it can be upside down. Such two different arrangements of atoms are called
isomers. In this case, the isomers of the molecule of ammonia are so similar,
that you can see the difference between them only in the presence of an electric
field. Figure 4.6 illustrates these two possible arrangements.

We are going to associate two different quantum states with these two con-
figurations. If the atom of nitrogen is above the hydrogen plane, we're going
to call this configuration up or | u) using the Dirac notation. If the atom of
nitrogen is below the plane, we're going to call this configuration down or | d).

The two quantum states, | u) and | d) form a basis of a 2-dimensional Hilbert
space. What you're going to see in the following subsection is that these two
states do not form a good basis for a qubit, because the molecule fluctuates
between them all the time. Even if no forces are applied to it. The fluctuations
derive from the fact that there is a small possibility of quantum tunneling from
the up to the down position, across a potential barrier formed by the base of
three hydrogen atoms. And the thing about quantum systems is that if they
can tunnel, they will.

A molecule of ammonia has other degrees of freedom too. It can rotate about
various axes, it can move in various directions, its atoms can vibrate around the
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positions of equilibrium. So the picture we’re presenting here, in which we ignore
all the other possible motions, is highly idealized. Nevertheless, the transition
between | u) and | d) in ammonia molecules can be easily observed and separated
from other transitions. Also a device can be built, which relies on this transition
alone to emit coherent microwave radiation. This device is called an ammonia
maser.

‘What makes a good qubit?

What should be the Hamiltonian for this system? Let us start with a represen-
tation of a general vector describing the state of ammonia molecule in the | )
and | d) basis:

| ) = Cu|u)+Cald) (4.36)

Then let us start from a very simple diagonal Hamiltonian which looks like this:

E, 0
H = ( 0 E, ) (4.37)
Substituting this into the Schrédinger equation yields
L d o Cy(t) E, 0 Cu(t)
h— = . 4.
(o )= (% 2 ) (&6 (4.38)
This equation yields two independent ordinary differential equations:
d E,
EC’U(t) = —szu(t) (4.39)
d Eq
3 Calt) = —i55Ca(t) (4.40)

with the following solutions

Cut) = Cy(0)e Eut/h (4.41)
Ca(t) = Cy4(0)e iFat/h (4.42)

If we now set C(0) = 1 and Cy4(0) = 0 we see that our molecule just
stays in the | u) state and there is this quantum vibration with frequency E, /k
associated with it.

Similarly, if we set C,(0) = 0 and C4(0) = 1 the molecule stays in the | d)
state and there is the quantum vibration with frequency E;/h associated with
this state.

What is this “quantum vibration”? What vibrates, or rotates, is the phase
of the qubit, even though the qubit itself just stays put in either the up or the
down state. This vibration is related to the energy of the state, through the
Planck-Einstein relation £ = fiw. So the symbols E, and E; we used in the
Hamiltonian stand for energies of states | u) and | d).
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But if there is no electric field in the picture, then there is nothing physi-
cal to diffrentiate between | u) and | d) and therefore the two phase rotation
frequencies and their corresponding energies should be identical, which yields

E,=FE; =FE, (4.43)

If there was nothing else in the Hamiltonian, this system would make a nice
qubit. You will see further down, how to use vibrating electric fields to flip the
qubit from the up to the down configuration.

But, as we said, there is a small possibility that the molecule can tunnel
between the two configurations. This possibility is described by adding two off-
diagonal terms to our Hamiltonian. Because the two configurations are identical,
the terms that describe tunneling from up to down and from down to up should
be identical. And so our Hamiltonian assumes a new form:

H= ( Fo ;;0 ) (4.44)

and the Schrodinger equation for the system now looks as follows:
L d [ Cyu(t) E, A Cu(t)
el = . 44
ma(@@) (A Eq Ca(t) (4.45)

ih%Cu(t) = EyCu(t) + AC4(t)

or

BSCalt) = ACL) + EoCalt)

These equations are no longer independent.

There is a standard method to solve such equations and it goes like this:
first you diagonalize the matrix on the right. Having done this you end up with
independent equations, which can be solved very easily. Then you switch back
to the original basis from the eigen-basis and write down the solution. The
eigenvalues of the Hamiltonian correspond to energies associated with eigen-
states. This is true for all other so called quantum observables of quantum
mechanics. Various physics quantities such as momentum, angular momentum,
charge, can be associated with matrices, like the Hamiltonian matrix, and the
values of the quantities that can be observed in experiments, correspond to the
eigenvalues of the matrices.

But here it is instructive to solve these equations without the eigen-machinery,
especially since the equations are very simple. If we multiply both equations by
1/4/2 and add them we get

m% (Cu +Cq) /N2 = (Eo + A) (Cy + Cq) /V2 (4.46)

And if we again multiply both equations by 1/4/2 and subtract the second
equation from the first one, we end up with

m% (C = Ca) JVB = (Eo — A) (Cu — Ca) /Y2 (4.47)
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These are two independent equations for two functions of time. The first
function is Cy(t) = (Cu(t) + C4(t)) /v/2 and the second function is C_(t) =
(Cu(t) — C4(t)) /v/2. The solutions to these equations can now be readily writ-
ten:

Cy(t) C (0)e (Bt A)t/n (4.48)
(t) = C_(0)e {Eo—A)/h (4.49)

Q

The original amplitudes C,(t) and C4(t) can be expressed in terms of C4(t)
and C_(t) as follows:

1

Cu(t) = ﬁ(CJr(t)JrC—(t))

- %(c+(o)e—i<E°+A>t/ﬁ+c_(o)e—ﬂEo—A)t/ﬁ) (4.50)
Calt) = (€= C-(1)

- %(c+(o)e*i<Eo+A>t/ﬁ—c_(o)e*“EO*A)t/h) (4.51)

(4.52)

Suppose that at ¢ = 0 C,(0) = 1 and C4(0) = 0. This means that at ¢ = 0
C,(0) = 1/y/2 and C_(0) = 1/v/2 too. The solution for C,,(t) then becomes

Cult) = %e—iEot/h (e—iAt/h+eiAt/h)
= e iEot/h ng %
and
Calt) = %e—iEot/ﬁ (e—iAt/h _ eiAt/h)
. At
_ i —iBot/h s Al
1€ Sin h

The probabilities of finding our molecule of ammonia in the up or in the down
states are given by C,C;; and CqC} respectively. These are:

P,(t) = 0052% (4.53)
A
Pit) = sinQ% (4.54)

First observe that P,(t) + P4(t) = 1, i.e., the molecule is certain to be found
either in the up or in the down state at any time. But if the molecule starts
in the up state the probability of its staying there will decay with time like
cos? (At/h), until at time ¢t = wh/(2A) it becomes zero. At the same time
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the probability of the molecule being found in the down state will grow like
sin? (At/h), until at time t = 7wh/(2A) it becomes one.

The molecule is going to fluctuate between the up and down configurations.
Even though there is no force present that would keep flipping it between these
two isomers. Because of this states | u) and | d) are not good candidates for a
qubit.

But what can be said about quantum states that correspond to amplitudes
C4+ and C_. Can vectors be found in Hilbert space, which these amplitudes
would correspond to? In order to answer this question we should retrace what
we did when we added and subtracted amplitudes C, and Cy using vector
notation.

And so our initial vector had the form:

| ¥) =Cy | u)+Cq | d) (4.55)
where C,C;; + CqC] = 1. Now let us introduce a new pair of vectors:

1

+) = 7§(IU>+|d>) (4.56)
1

=) = 7§(| u)— | d)) (4.57)

These relationships can be inverted to obtain:

1

lu) = 7 (IH+1-) (4.58)
1

|d) = 7 (I+H=1-) (4.59)

Substituting the latter two equations into Equation 4.55 yields

1
ﬁ(l +)=1-)

(Cu=Ca) | =)

o) = (I H)+1-)+Ca

1 1
E(Cu+cd)|+>+ﬁ

and so we discover that our amplitudes Cy and C_ correspond to vectors | +)
and | —).
Invoking once more our expressions for Cy and C_:

1
Cy——=
V2

Ci(t) = Cy(0)e Pt/
C_(t) — C_(O)e—z'(Eo—A)t/h

we find that if the molecule of ammonia has been placed in state | +), whose
energy is Eop + A, initially, it will stay in this state and its phase is going to
rotate with frequency (Eo + A) /h. If the molecule has been placed in state | —),
whose energy is Ey — A, initially, it will stay in this state and its phase is going
to rotate with frequency (Eq — A) /A.



70 CHAPTER 4. A BRIEF REHASH OF QUANTUM MECHANICS

These two states, | +) and | —) are good candidates for a qubit. We can
attempt to carry out computations using these states. States | +) and | —)
are eigenstates of Hamiltonian 4.44. The two corresponding values of energy,
Ey+ A and Ey — A are the eigenvalues of the Hamiltonian. In basis {| +),| —)}
Hamiltonian 4.44 assumes the following form:

([ Es+A 0
H_< 0 EO_A) (4.60)

In the next section we are going to perform our first quantum computation.
We are going to force the change from | +) to | —) thus implementing a quantum
NOT gate.

Ammonia molecule in a maser cavity

Consider now a Hamiltonian for an NH3 molecule in an electric field £ aligned
with the direction of the molecule’s dipole moment p. The Hamiltonian is going
to look much the same as before, but this time we add p€ to the energy in the
up configuration and subtract it from the energy in the down configuration:

_ Eo+p& A
po (P 4 ) o

The resulting equations of motion for amplitudes C, and Cy now assume the
following form:

ih%Cu(t) = (Bo+ E) Cult) + ACa(2) (4.62)

NECalt) = ACL(D)+ (o — 4€) Calt) (4.63)

Let us rewrite these equations in terms of C;. and C_. To do this we proceed
as in the previous section.

ind (Cy+Cy) /V2 (Eo 4 A) (Cy + Ca) /V2 4 € (Cy — Ca) JV2

dt
m% (Cu—Ca) V2 = (Ep—A)(Cy—Ca)/V2+ puE (Cu+Ca) /V2

which yields
ih%0+ = E,Cy+péC_, whereEy =Ej+ A (4.64)
ih%C’_ = E_C_+pfCy, whereE_ =FE;—A (4.65)

Now substitute:

Cilt) = p(t)e E+t/n (4.66)
C_(t) = ~y_(t)e B-t/n (4.67)
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which should result in
(7+E+ + zh%) e WD = By e BHR n miE-t/R
(’YE + lh%) eiiE_t/h = E_fy_efiE—t/h + Hg’7+€7iE+t/h

These equations can be further simplified by performing the following opera-
tions:

iEyt/h iE_t/h

1. multiply the first equation by e and the second one by e

2. subtract the E, v, term from both sides of the first equation and E_~_
from both sides of the second equation

3. replace (B — E_) /h with wo = 24/h

which finally yields:

d .

ih% = p&y_ewot (4.68)
d~v_ 3

ih% = p&y,e ot (4.69)

These equations look just about as nasty as what we started with and to make
things worse there is now the harmonic term, e*#°* to boot. But this harmonic
term is going to be our salvation.

Observe that so far we haven'’t specified how £ depends on time, so now we
fill this gap. £ represents a harmonic wave described by

E(t) = 28 coswt = & (™! + e~™1) (4.70)

Now let us substitute this into our equations for v; and v_

. d’7+ _ i(wtwo)t —i(w—wo)t
i e pEoy— (e +e )
- d’yf _ i(w—wo)t —i(w+wo)t
zh—dt = uEov+ (e +e )

Our problem now can be split into two distinct cases. The first one, which
is very easy, is transitions at resonance, i.e., when w & wg. The second one,
somewhat harder describes a situation, when we’re away from the resonance.

Transitions at resonance

In the vicinity of the resonance we make the following two approximations

1. When w = wyp, the term with w + wy & 2wy is going to oscillate rapidly.
The rapid oscillations are going to blur into zero, if our system’s inertia
will not let it follow the oscillations. So we are going to drop this term
altogether.
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2. At the same time e¥i(@w—wo)t ry gFi(wo—wo)t — ]
As the result our equations simplify dramatically:

d’)q_ —7;
o N -

- s

%

These two equations are now very easy to solve. Take % of both sides:

Ay —i o dy o\’
@ - E’““%W—_<T) T+
v —ioLdyy o (pEo)’
o W&)W—‘(T) 7-

These are two independent harmonic oscillators, which admit the following so-
lution:

v+(t) = acos (M_}fo) t + bsin (N_’?) t (4.71)

e (B e () am

The reason why the solution for v_ is a little different than the solution for -y
is that once we decide on a form for 4 then ~_ is automatically given by:

72
—
5
~
I

= —— 4.
/,Lgo dt ( 73)
Now let us remind you that
v = Cpe iB+t/h (4.74)
v~ = C_e iEB-t/n (4.75)
hence

Pi(t) = |C+(t) = [+ @) (4.76)

P_(t) = [C-(t)P = hr-@))? (4.77)

Suppose that for t = 0 7+ = 1 and v— = 0, i.e., the molecule is in the higher
energy state | +). This implies that @ = 1 and b = 0, and

cos (“—}f") ¢ (4.78)

v = —isin(%&’> (4.79)

T+
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The corresponding probabilities are now going to be:

cos? <HTSO> t (4.80)
sin” (”—}‘?‘)) t (4.81)

;U
=
I

N
—~~
N2

I

The probability of finding the molecule in state | +) falls down like cos? and
becomes 0 at t = wh/ (2u&p). On the other hand the probability of finding the
molecule in state | —) grows like sin? and becomes 1 at t = wh/ (2u)-

Consequently all we need to do in order to switch the molecule from the
| +) state to the | —) state is to irradiate it with a harmonic electric wave of
amplitude &, the direction of the field parallel to the direction of the dipole,
and frequency wy = 2A for wh/ (2u&) seconds!

It is also easy to see that if the molecule starts in the | —) state then the
same operation will switch it to the | +) state.

The maser cavity as a NOT gate

If the molecule of NH3 is used to encode a qubit, e.g., | +) = 1 and | =) =
0 (remember that these are stationary states outside the cavity, so this is a
good encoding) then the microwave cavity with an electric field oscillating with
frequency wy = 24 becomes a NOT gate for this one qubit register. The negation
operation takes exactly 2;—20 seconds to accomplish.

There are two ways to implement this gate. One would be to use a beam of
moving ammonia molecules. We could use a variety of techniques to put some
of the molecules in the | +) state and then filter away molecules in other states.
Then we would send the | +) beam through the cavity, in which the field would
vibrate continuously. We would have to ensure that the dimensions of the cavity
and the speed of the molecules in the beam are such that the molecules spend
exactly mh/ (2u€y) seconds in the cavity as they pass through it.

The other way would be to bring the radiation pulse to a stationary molecule,
which could be trapped in laser tweezers or simply put together with an Avo-
gadro number of other ammonia molecules in a small vial.

The latter is a more common approach in quantum computing.

In classical computing logical gates are physical devices that are affixed to a
silicon wafer. Data, in the form of electron pulses, moves through the gates as
it is processed. In quantum computing data is loaded into a fixed register and
gates are then brought to the register in the form of electro-magnetic radiation
pulses of various polarization, duration, amplitude and frequency.

This different way of doing computation is also more flexible from the pro-
gramming point of view. Every quantum computing program can be compiled
all the way down to an optimized hardware level, since hardware in this case is
simply a series of EM pulses. The generation and shaping of the pulses can be
controlled by a classical computer.
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Transitions off resonance

In order to analyze the behaviour of the system away from the resonance, we
have to change our approximations. Let us return to the equations

; d’)’_ — i(w—wo)t —i(w+wo)t
ih % - 1E0 Y+ (e +e )
Sdyy i(wtwo)t —i(w—wo)t
zh—dt = p&oy- (e +e )

Assume that & is small and that ¢ is small too. In this case the time is too
short and the field is too weak to flip the molecule. We still assume that the
term e~ @two)t ogcillates so fast that it averages to zero, so that the effective
equations of motion are:

dy_ ;
ih — £ i(w—wo)t
? dr Heoy+-€
L dyy —i(w—
— Eov_ i(w—wo)t
¢ az keoy-€
Assume now that initially
1+ = 1
- <1

Substituting this into the first equation above yields an approximate solution
for v_:

Ldyo
zhw = u&oe

(w—wo)t
= dvy. = /;,—?ei(“’*“"’)tdt

— /,l,_go 1 ei(w—wo)t
ih i(w — wo)

= V- = h(wuifowo) (1 — ei(”_”O)t)

= + const

Transition probability during this time is given by

2 _ péo 2 _i(w—wo)t L i(w—wo)t
h-I" = (h(w—wo)) (1-etereor) (1-e )

pE ?

0 i(w— —ilw—

Y e 9 _ i(w—wo)t __ i(w—wo)t
(ﬁ(w — wo)) ( € € )

= 2 (muigo))z (1 —cos(w—wp)t)

W — Wy

Now we are going to use the following trigonometric identity:

cos2a = cos? a — sin® «
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2@ 2 &
= COS(x = COS™ — — sIn” —
2 2
5 QU Lo o . o . «
= 1—cosa:cosz—+sm2——cos2—+sm2—:2sm2—
2 2 2 2 2

So that the solution can be now written in the following form:

s 2uE \? . 5 (w—wo)t
= | +——— ) sin®* ———
A{w — wo) 2
<,u80t) % sin? ((w — wp) £/2)
h (w — wo) /2)”
If we were to treat this expression as a function of w and fix ¢, its shape would be

bell-like with half-width of the order of 7. We can therefore write the following
restriction:

I7-|

w—wo S/t
or
f=fo o 1
Jfo T 2tfo
Now assume that the length of the pulse ¢ ~ 1 ms. The resonance frequency for
the ammonia molecule is fo = 24 GHz. The above condition then yields:

f—=f _ 1
fo 2x1073sx 24 x109s 1

~0.02x 10 % ~2x 1078

In order to get a significant transition probability the frequency in the maser
cavity must be within two parts per 100 million off the resonance frequency.

4.3.2 General Solution for a 2-State System

In previous sections we had a look at a specific very simple 2-state system.
But it turns out that our system is quite representative. The basic reason for
this is that there aren’t that many ways in a 2-dimensional Hilbert space to do
things differently. So all 2-state quantum system are quite similar. Once you’ve
studied one qubit in depth, you’ve studied them all.

In order to see this more clearly we’re going to find a general solution to the
Schrédinger equation

d
ih | ) = H | ¥) (4.82)

with a general 2 x 2 Hamiltonian

Hyy Hips
H =
< Hy; H )

To find the solution we are going to seek such vectors | ¥) that

H|U)=E|T) (4.83)
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For such vectors the matrix equation (4.82) simplifies to two identical inde-
pendent equations for the vector components, so that a simple solution can be

written: '
| (1)) =| To)e  EH/E

In general there will be 2 such directions in the Hilbert space, | 1) and | ¥,).
They are called eigenvectors of H. They may be associated with two different
values of E: E; and E,. These are called eigenvalues of H. Eigenvectors of H
form a basis in the Hilbert space, so all other solutions of equation (4.82) can
be expressed in terms of linear combinations of the eigenvectors of H.

In general eigenvalues of H are complex numbers, but if H is Hermitian,
ie., H' = H, then its eigenvalues are guaranteed to be real.

Equation (4.83) has a nontrivial solution if

Hy, —FE Hy
det ( Hy Hy - FE )
(Hiy1 — E)(H22 — E) — Hi2Hx
= E? — (Hyy + Hy) E + Hy1Hoy — Hi2Hoy
=0

det (H — E1)

The determinant A = b2 — 4ac of this quadratic (az? + bz + ¢ = 0) equation in
Eis
A = (Hn+ H22)2 — 4 (Hy1Ho2 — Hi2H»)
= H} +2Hy Hoy + H3, — 4Hy1 Hop + 4Hi2Hay
= H}, —2Hi1H + H3y + 4H12Hx
= (Hu— Hz2)2 +4H 2 Hyy

And now the solution (z+ = %) is

Hyi + Hypp £ \/(Hn — Hyy)? + 4HyyHyy
2

Hyi1 + Hao n \/(Hn — Hy,)?
2 4

Ey =

+ HypHo

And we can use symbols | +) and | —) for the corresponding eigenvectors. We
will not attempt to find them explicitly. It is usually easier to find them for
specific systems as required.

Observe that we can easily extract a solution for the ammonia molecule from
the above. Substitute

Hyy = Hy=E
Hi; = Hny=4

then
Ei=FEy+VvVA2=F;+ A (4.84)



4.3. TWO-STATE SYSTEMS 7

4.3.3 Spin % System

Photons are not the only quantum particles that can be polarized. Almost all
other particles can be polarized too, but in most cases their polarization is quite
peculiar. We refer to it by the name of spin. Spin in quantum mechanics can
be either an integer multiple of &, i.e., 0, A, 2k, and such particles are called
bosons or it can be £h/2, £3h/2, £5k/2 and so on, and such particles are
called fermions. In particular electrons, neutrinos, muons, protons, neutrons,
and quarks are all fermions, whereas photons, mezons, gravitons (if they exist),
alpha particles and Cooper pairs are bosons.

In this section we're going to have a look at Fermions, because they’re very
good candidates for qubits. Simple fermions like an electron or a proton, can
have their spin up +%/2 or down —A/2. Unlike the Ammonia molecule we
studied above, once you put a fermion in an up or a down state, they tend to
stay there, unless you do something special to them and flip the spin. The spin
of a Fermion cannot be rotated like an arrow in classical physics, because it is
not an arrow. But a fermion can be put in a superposition of up and down
states. A Hilbert space that describes spin states of a single Fermion is a 2x2
Hilbert space, for which we have just found a general solution. The reason
why up and down spin states are stable is because they are, as you will see
later, eigenstates of the spin Hamiltonian, unlike the up and down states of the
Ammonia molecule.

Most fermions, though not all, carry electric charge. The ones that do are
electron, muon, proton, and quarks. The ones that don’t are neutrinos and
neutrons. All charged fermions have a magnetic momentum associated with
their charge and with their spin, g, which couples to an external magnetic field
B the same way classical magnetic momentum does, which yields the following
expression for energy of such a particle in the magnetic field

E=-p-B (4.85)

Because in quantum mechanics spin, and therefore also magnetic momentum,
are always parallel to the direction of the magnetic field, we can write this
expression in a scalar form:

E=—-uB (4.86)

Consider a charged spin-1/2 particle in a static magnetic field, which points
in the z direction, so that it only has a z component B,. The particle can have
two energy states: —uB, for the magnetic moment parallel to the direction
of the magnetic field and puB, for the magnetic moment anti-parallel to the

1 > for the former

direction of the magnetic field. Using a vector notation ( 0

and ( (1) ) for the latter we can write the Hamiltonian matrix for this system

quite readily as

H=—p ( é _01 ) B. (4.87)
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But there is nothing special about the z direction, which is a matter of our
convention. If we rotate a system of coordinates, so that the magnetic field
acquires both B, and B, coordinates, the energy of the spin particle in the
system is still going to be the same:

By =+, /B2 + B2+ B2 (4.88)

What should the Hamiltonian matrix look like in this case? We can answer this
question by making comparisons with our general solution for 2-dimensional
quantum systems.

1. First observe that the energy is split equally around 0. This implies that
7H11;H22 = 0, hence Hll = —H22

2. This leaves:

Hll - H22

1 + HyyHy = p? (B2 + B; + B?) (4.89)

3.If B = B.e, then Hy; = —uB, = —Hy,, hence (Hyy — Hyy)* /4 =
4p?B2? /4 = ;2 B2 and this implies that in this case HisHa; = 0, therefore
Hi5 and Hs; cannot have terms in B,.

4. Since the B, terms live entirely in Hy; and Hys we must have HisHoy =
u* (B2 + B?)

5. We also postulate that B, and B, appear in Hip and Hs; linearly.
6. The solution is Hiy = p (B, FiBy) and Hy; = Hyy = p (B, £iBy)

The resulting Hamiltonian for a charge fermion in a magnetic field looks as

follows:
— B. B, — Z'By
H=—p ( B, + 1B, -B, ) (4.90)

H:—,u((é _OI)BZ+(? é)Bw-i-((; Bi)By) (4.91)

The matrices multiplying B,, B, and B, are called Pauli matrices:

o (03) wm(07) es(3 %) o

So that:

or

H=-u(e,B,+o0,B,+0,B,)=—uo-B (4.93)

where o is a “vector” whose z, y, and z components are the corresponding Pauli
matrices.
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Pauli matrices have the following properties:

ol = 0'12/ =o2=1 (4.94)
0y 0y = —0Oy-0,=il0, (4.95)
0y 0, = —0, 0,=10, (4.96)
0. 0, = —0,-0,=i0y (4.97)
(4.98)

Observe that if you make the following identification:
t=—io, Jj=—ioy k=—io, (4.99)

then

7 = jP=k’=-1 (4.100)
ij = —ji=k jk=—-kj=1 ki=—ik=3j (4.101)
ijk = -1 (4.102)

The field of numbers spanned by (1,4, 7, k) is called the field of gquaternions. So
Pauli matrices combined with an identity matrix (and from this point onwards
whenever we say “Pauli matrices” we will include the identity matrix in them)
are isomorphic with quaternions.

You can build various interesting groups of complex 2 x 2 matrices out of
Pauli matrices. But what groups are there to be built?

GL(2,C) Thisis a general group of 2x 2 matrices with complex coefficients. You
can build that group if you multiply Pauli matrices by complex coefficients.

U(2) These are unitary 2 x 2 matrices. They also have complex coefficients so
we have that U(2) C GL(2,C). For every element U € U(2) of this group
the following holds:

v-Uut =1 (4.103)
detU (detU)" = 1 (4.104)
detU = €, ¢ecR (4.105)

SU(2) These are unitary 2 x 2 matrices, whose determinant is 1. So for these
matrices we have ¢ = 0 and SU(2) C U(2) C GL(2,C). It can be shown
that SU(2) is the unit sphere in the quaternions, i.e.,

SU@2)={a+bi+cj+dk:abcdeRa®+b>+c*+d> =1} (4.106)

SL(2,C) These are 2 x 2 matrices with complex coefficients and with deter-
minant 1. Consequently, SU(2) C SL(2,C), but U(2) is not a subset of
SL(2,C). SL(2,C) maps onto the Lorentz group. The mapping is very
faithful: in more precise terms SL(2,C) is a double cover of the connected
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Lorentz group. You can see this quite easily as follows. Consider a 2 x 2
complex matrix
X =tl4+z0, +yo,+ 20, (4.107)

where (t,z,y, z) are spacetime coordinates of an event. It is easy to show
that
det X =% — 22 —y? = 22 (4.108)

Now take any other matrix L € SL(2,C) and perform the following simi-
larity operation on X:
X'=L-X- Lt (4.109)

Taking determinants of both sides we get:
det X' = det X (4.110)

So this operation leaves the Lorentz invariant intact, and, therefore, is a
Lorentz transformation.

SL(2,C) is a very simple and a very basic group.

The fact that such a basic group is so closely related to the struc-
ture of spacetime, can only serve as a challenge to our under-
standing of physics. Is this a coincidence or a clue that we have
still not fully understood? [4]

Because Pauli matrices are Hermitian

every 2 X 2 Hamiltonian can be expressed as a linear combination of
real numbers multiplying Pauli matrices.

This implies that whatever we have learnt about specific 2 x 2 systems so far
maps directly onto fermions and other 2 x 2 systems as well. For example,
consider again the NH; molecule and its Hamiltonian in the (| +),| —)) basis,
describing interaction of the molecule with an electric field &£:

. E0+A /.Lg
H_< e EO_A> (4.111)

We can always shift our energy scale so that Ey = 0 then
H=Ac,+ péo, (4.112)

We can now translate the results of our Ammonia maser model to the world of,
say, nuclear spins. In order to flip a spin pointing in the z direction, we need
to pass the nucleus through a cavity with an oscillating magnetic field aligned
in the x direction. The physics is somewhat different here than it was for the
Ammonia molecule, because there the field had to be polarized in the same
direction as the molecular dipole. But the equations are the same, even if their
physical meaning differs somewhat.
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Quaternions were invented by Rowan Hamilton in 1843. Hamilton,
as you see, was only a step away from having invented Special Relativity
and spin % systems. Alas, it is easy to see things like this in retrospect.
To know that this direction was worth pursuing at the time, Hamilton
would have to know about Michelson-Morley experiment of 1887 and
about Stern-Gerlach experiments of the early 1920s. And even then he
would have to make the connection.

The concept of electron spin was introduced by Samuel Abraham
Goudsmit and George Eugene Uhlenbeck, two graduate students at the

University of Leiden in Netherlands, in 1925.

4.3.4 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance is a very mature and precise technique for di-
rect manipulation and detection of nuclear spin states using radiowaves. The
technique was developed primary for chemical applications. Using NMR it is
possible to infer the structure of a molecule. But NMR is also used in medicine
and in material science to image internal structure of tissues and solids.

As we have already remarked in the introductory chapter, NMR experiments
involve a very large number of molecules. The Avogadro number is 6 x 1023
of molecules per mole. A mole of an ideal gas occupies 22.4 litres, which is
22400 cm®. So for an ideal gas we have about 2.7 x 10'® molecules per cm?3.
An NMR sample tube usually contains a magnetically active chemical diluted
in a magnetically inactive solvent. This dilution is important, because it breaks
molecule-molecule interaction, which would affect the readout. So the resulting
number of molecules of interest per cm? is likely to be less than the Avogadro
number. But it is still going to be a number well above a 100 million. For
concentrations less than 100 million per sample, the signal is usually too weak
to detect.

A typical molecule used in an NMR measurement would comprise a number
of protons, all of which are magnetically active and produce an NMR signal
at about 500 MHz in a magnetic field of about 12T. Frequencies of different
nuclei in a molecule usually differ by between a few kHz to a few hundred
kHz depending on the position within the molecule. These differences are called
chemical shifts and are caused by the presence of local magnetic fields generated
by electron shells within the molecule. The fields vary from place to place, which
how we can say something about the structure of a molecule by looking at its
NMR spectrum.

In most quantum computing experiments active nuclei other than protons
are used. This is because 2C, 1°F, N and 3!P yield spectral lines, which can
be easier separated.

The heart of an NMR is a superconducting magnet, which generates a very
uniform magnetic field in the z direction within a rather small region of about
lem?®. Our sample must fit within this space to ensure that all molecules are
placed within the field of the same direction and strength. The uniformity of
the field can be ensured to within 1 part per billion. Helmholtz coils are used
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to generate small oscillating magnetic fields in the  and y directions, which, as
by now you know, can flip the spins between the up and down configurations.
The fields can be pulsed very rapidly. But to ensure the homogeneity of this
radio frequency field is extremely difficult, because the Helmholtz coils are much
smaller than the superconducting coils that generate the background field. The
same Helmoltz coils are also used to pick up radio frequency fields generated by
precessing nuclei.

The computation usually begins with a waiting period of a few minutes, to
let molecules thermalize. Radio frequency pulses of various frequencies polar-
izations and duration are then applied under the control of a normal computer
(e.g., a PC). Immediately after the sequence of pulses has been applied, the
high power pulse amplifiers are switched off, and a highly sensitive pre-amplifier
is turn on, so that the final state of the spins can be measured. The mea-
sured signal is then run through Fast Fourier Transform to obtain a frequency
spectrum.

Single spin dynamics in an NMR experiment

Although we have, by now, a good idea about how spins are flipped, let us
consider the problem of spin interaction with a magnetic field given by

B = Bye, + B (e, coswt + e, coswt) (4.113)

where e,, €,, and e, are unit vectors pointing in the z, y, and z directions. The
Hamiltonian matrix for this system looks as follows:

H = — (0B coswt + oy By sinwt + o, By) (4.114)
The resonance frequency corresponds to the spin flip and is equal to
wo = 2By /R (4.115)

Also, we usually sweep Byu/h into a phenomenological coefficient g and drop
the minus sign, because the sign depends on the charge anyway, so that the
Hamiltonian becomes:

H/h= %az + g (o, coswt + oy sinwt) (4.116)

The Schrodinger equation of motion for this system is
d
i | €)= H | ¥(t)/h = (%a +g(oscoswt+ oy sinwt)) | T (1))

(4.117)
Now substitute the following solution

| B(B)) = et =/2 | (2)) (4.118)
This yields the following:
i (‘%/ [0(0)) +e 122 | ¢(t>>) = He ™77 (1)
(4.119)
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Multiplying both sides from the left by e®t@=/? and moving the first term to
the right hand side yields

d i i z
i | 6(t) = (eio-/2Hemiwto/2 - 222 | g(t) (4.120)

This equation can be rewritten making use of the following identities:

eiwazt/2aze—iw0’zt/2 = o, (4121)
eiwot2g emiwost/2 — G cogut — oy sinwt (4.122)
et gmiwast/2 oy coswt + o, sinwt (4.123)

which you are going to prove laboriously in the exercise below. Making use of
these yields:

.d wo — w
i 1000 = (2520 +ga.) | 60) (1124)
EXERCISE: Prove these identities.
Hints:
1. First prove that '
e'*”* =1cosa +io,sina (4.125)

This follows from the fact that o2 = 1 and from the Taylor expansion
of et =,

2. Use the above expression from both sides of o, and then use the

identities
O, 0y = —0; -0, =10y
Oy-0, = —0, Oy=10,
3. Recall that
sin2a¢ = 2sinacosa
2 .2
cos2a = cos"a—sin"«

4. Repeat the procedure for oy and o, in the middle.
The solution to equation (4.124) is
| 6(1)) = eil(omIo=/2Ha72)t | 4(0)) (4.126)

Looking at this solution we can infer some modes of behaviour for the spin. For
w =& wg the term proportional to o, in the exponens vanishes. What we are
then left with is a rotation of the spin about the x axis, which after a while
results in spin flip. On the other hand, far from the resonance, the first term in
the exponens is dominant, because g is very small. In this case the behaviour
of the spin is dominated by the background magnetic field.
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What do we mean by “the spin rotates”? We said all along that a spin
does not rotate. That all it can do is to flip from up to down and vice
versa. But spin can also exist in a superposition of up and down and on
top of that it can have a phase. This we illustrate graphically by drawing
an arrow, which represents a spin, inside a sphere. The tilt of the arrow
away from the vertical axis (the lattitude) depends on the proportion of
up to down. The longitude corresponds to the spin’s phase. This picture
is called a Bloch sphere representation of a spin.

There is an operator, which is defined as follows:

R(n,0) = e ™7/% = cos gl —isin gn o (4.127)

The effect of applying this operator to the state that is represented by
some Bloch vector v, i.e., a vector with its beginning in the centre of the
Bloch sphere and its sharp end on the sphere’s surface, is to rotate it by
an angle 8 about the direction of the unit vector n.

So this rotation does not take place in a real physical space. It is
a rotation on the surface of the Bloch sphere. But it has some relation
to rotations in the real physical space in the sense that it affects the
proportion of up and down in the state of a spin.

Equation (4.127) is known as the Hamilton quaternion formula. It has
this nice property that if we have two rotations described by R; and R
then their composition is simply R; - Rz. Although Hamilton discovered
this formula independently and was the first to publish it, it was already
known to Gauss, who discovered it in 1819, though never published, and
even to Euler who discovered its simplified form in 1776.

There are various ways to show that it indeed corresponds to rotations.
A nice and very readable discussion of this formula, as well as a more
general presentation of spin properties can be found in [76].

Comparing equations (4.127) and (4.126) shows that our solution to
the NMR equation represents a single spin rotation about the axis

2
e.+—2-e,

by an angle

n=_—_—f0c " (4.128)
1+ (ﬁ&)
9=t (%)2 +g2 (4.129)

4.3.5 A Classical Picture of Spin 1/2

A naive classical model of electron is a rotating ball of charge held together by
Poincare braces. The braces are essential in order to hold the charge together
and also in order to account for the Einstein relation E = mc?. Without the
braces we would only have E = %mc? You can evaluate magnetic moment that
such an object should have and you’ll find that it should be

4

5 (4.130)

H=-
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where ¢, is an elementary charge, m is the mass of the ball, and L is it internal
angular momentum or spin.

A less naive analysis, which involves special relativistic effects, shows that
this relation should really be:

Qe
p=-— L (4.131)
This is a relatively new result, and for a very long time physicists believed that
this relation can be obtained from quantum mechanics only [88]. You will even
find this statement in Feynman[35].

An even less naive model is that of a charged rotating black hole. Here we
have to roll out the whole heavy machinery of General Relativity and analyze
the so-called Kerr-Newman solution. For a specific case of the so called extremal
black hole, which spins so fast that its horizon vanishes, the same “quantum”
relation between the angular momentum and the magnetic moment of the black
hole is obtained [76]. In view of the later result, which shows that this should
be the case also in special relativity, this shouldn’t be surprising. It shows a
certain consistency of the classical relativistic model of an electron.

Yet, neither of these models, regardless of the degree of naivety, can account
for the peculiar features of spin-1/2. Neither, in particular, can explain why it
is so impossible to capture an electron or any other fermion in a state, which
would be between :l:%h. Classically, of course, all directions should be allowed.

The right way to attack this problem, again, is to look at the quantum
mechanical equations that describe spin particles and attempt to restructure
them into a Hamilton-Jacobi form, so that classical inferences can be made.

The starting point can be the non-relativistic Pauli equation, which looks as

follows:

oA 4 K2 . 2
ih === (V—ig A’ ¥+ V¥ +u(o-B) ¥ (4.132)

where A is the magnetic potential, V' is the electric potential, and ¥ is a two
component spinor function. Working with this equation leads to the Bohm,
Schiller and Tiomno model, in which the particle is thought of as a rigid body
rotating around an axis in the direction of the spin. This picture works quite
well: we do get very rapid separation of particle beams in the Stern-Gerlach
experiment, and a very rapid flip of the spin onto the direction of the magnetic
field. But this model gets into serious difficulties when it is extended to a
many-body system.

A better approach, which can be extended to a many-body system without
difficulties, is to use the real spin equation, i.e., the Dirac equation, of which
the Pauli equation is a non-relativistic approximation. The picture that emerges
then is very different. In the Dirac equation based Hamilton-Jacobi theory the
magnetic moment attributed to the spin derives from a circulating movement of
a point particle and not from a rotation of an extended object. In other words,
it is not an intrinsic localized property of the particle, but instead a property
of the general motion of the particle through space as determined by the Dirac
based Hamilton-Jacobi equation [14].
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This harks back to the old idea of zitterbewegung, which was popular in the
1930s. The velocity eigenvalues in the Dirac equation are always +c. So people
hypothesized that electrons must move along some zig-zagging trajectories with
speed of light. The zig-zagging itself would be too fast to see, and the average
trajectory would then be sub-luminal.

Derivation of classical relativistic equations of motion for spinning particles
also has a zitterbewegung term, which can whack a spinning particle around its
average trajectory. These derivations by Mathisson [74] and Lubariski [72] go
back to 1930s. Later in early fifties Papapetrou [83] derived similar equations of
motion with zitterbewegung terms for spinning particles in General Relativity.

4.3.6 Polarization of the Photon

And what about the photon? What does Schridinger equation for photons look
like? The energy-momentum relation for photons is not E = p?/(2m) because
photons are massless particles, which move with the speed of light. The relation
is E? — p?c®* = 0 instead.

Recall that photons don’t have an electric charge, so they are not sub-
ject to any potentials other than gravitational potential. But to describe
interaction of photons with gravity we would have to reach for the Gen-
eral Theory of Relativity, which is quite outside the scope of this lecture.
Within the simple quantum mechanics of quantum computing, that is of
concern to us here, photons don’t interact with potentials.

We can try Schrodinger’s trick on this relation, and this yields the following
equation for the photon wavefunction ¥:

» 0 2 22
Dividing this by A%c? and moving the laplacian to the left hand side yields:
1 62
- - = 4.1
VI - s ¥ =0 (4.133)

But this is a normal wave equation and /i has cancelled out!

We know that photons have polarization, therefore we would expect ¥ to be
a composite object, which is why we used a bold font for it. Classical electro-
dynamics delivers two equations that look like the Schrodinger photon equation
(4.133):

5 16
1 2
V2B - 6—2%3 - 0 (4.135)

where E is an electric field vector and B is a magnetic field vector. These
equations describe propagation of electromagnetic waves in vacuum. Vectors
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FE and B are always perpendicular to the direction of wave propagation and
to each other and describe polarization of the wave. The energy density of the
field is proportional to E2. It is therefore quite natural to think of the electric
field vector as the Schrodinger wave function of the photon, and its square as
probability density.

But this Schriodinger picture still needs to be supplemented with Planck-
Einstein-deBroglie relations which bind the wave frequency and length to the
energy and momentum of photons:

E = ho (4.136)
p = hk (4.137)

where E is the energy (not the length of the E vector, mind you!) and p is
the momentum of the photon. The frequency and the wave number of a photon
combine into the speed of light:

-z 4.1
c= - (4.138)

Photon polarization can be linear, circular and elliptical. We can use symbols
| z) and | y) to describe linearly polarized photons in the x or y directions. By
combining states | ) and | y) it is easy to obtain circularly polarized photons:

1

1B = (0 +ily) (4.130)
') = %uw—uy» (4.140)

These simple equations can be inverted so that linear polarization states can be
expressed in terms of circular polarization states:

1
|z) = 7 (I )+ | L)) (4.141)
ly) = 7 (I )= L)) (4.142)

It is often more convenient to reason in terms of circular polarization, because
it does not favour any direction perpendicular to the direction of motion.

Using Schrédinger equation for photons, i.e., the Maxwell wave equation, we
can easily find transition amplitudes between various polarization states. For
example assume that we have two polarizers, and we pass photon beam through
the first, which polarizes light in the 2’ direction and then through the second,
which polarizes light in the z direction. What is the probability amplitude
(z | ') that describes this experiment?

Before light was filtered through the first polarizer the photon wave function
was:

E=F,e, + Ey:ey/

From Maxwell theory we know that the first polarizer lets E,:e,; component of
the beam only and filters off the other component. Now we need to express this
component in terms of e, and e, of the second polarizer (see Figure 4.7).
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> T

Figure 4.7: Rotating a system of reference

In the system or reference associated with the second polarizer:
ey =epe; +eyYey = cosbe, +sinfey

consequently
Eg e, = Ey (cosbe, + sinfey)
The x component is the only one that will pass through the second polarizer:
E,: cosbe,.

Because the intensity of the beam incident on the second polarizer is pro-
portional to:

2
Lincident < Ew'

and the intensity of the transmitted beam is:
Tiransmitted o Ei: cos® 0

the attenuation is cos? 6.
This relation translates into:

| ') = cos | z) + sinf | y)
So that the probability amplitude for the transition is
(x| 2"y = cos@(z | z) +sinb(z | y) = cosb
because (z | y) = 0. The probability of the transition is then

lz | 2")|° = cos®6
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4.4 The Berry Phase

In this section we’re going to have a look at a very peculiar quantum mechanical
effect, which has been discovered only in 1983, even though it is quite elementary
and, as you will see, does not involve much heavy mathematics to describe it.
The reason it took so long to discover is because people didn’t look in the right
direction.

Imagine the following situation. A quantum system is moved adiabatically
along a closed trajectory. Our task is to describe the change to the system at the
point where the trajectory closes. At first glance we would expect that system
to evolve back onto its original state since the change has been adiabatic and we
end up back at the point of origin. But it turns out that it is not so. In general
the phase of the system is going to change due to the excursion in a special way.

This has certain implications for quantum computing. One can think, for
example, about a quantum computing gate, which would be based on moving
a qubit around in a special way, rather than irradiating the qubit with a pulse.
In practice moving qubits is just too hard, so we end up moving the universe
around them instead, and this translates back into irradiating the qubit with a
pulse. But this time the pulse is going to be more complex than the pulse we’ve
seen in sections that talked about the ammonia molecule.

For the time being though, let us assume that we’re going to move the qubit,
or some other quantum system, for our discussion is going to be fairly general,
around a closed trajectory.

4.4.1 Moving a Qubit in a Circle

As we move the system, the Hamiltonian changes along the trajectory, and the
state of the system changes in sympathy with the Hamiltonian. The equation
of motion that describes this excursion is:

S () = H(r(0) | 9(0) (4.143)

where H is the Hamiltonian and » is a variable that describes the motion. You
can think of it for the time being as a guiding vector, but it can be any set
of parameters that are used inside the Hamiltonian, so the excursion does not
have to occur in the normal 3-dimensional geometric space. It can take place in
some other parameter space.

If the motion is adiabatic, then we can also assume that eigenvectors of the
Hamiltonian evolve smothly from one position to another one as follows:

H(r(t)) | n(r(t))) = En(r(?)) | n(r(t))) (4.144)
If a system starts in an eigenstate we can try the following solution

| B(t)) = e /M S BN ginnl) | (p(1))) (4.145)
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In other words, the system is going to remain in the eigenstate, although
the eigenstate itself will change, and on top of all that the system is going to
accumulate a dynamic and geometrical phase change.

Substituting this solution into the Schrodinger equation yields an equation
for v, (t). But first, before we do this, a few simple evaluations:

die—(i/n) Jy En(r(t'))dt’ _ _%En (r(t))e_(i/ﬁ) Jo En(r(t")dt’
t

d ; Adya(t)

2 eirn(t) — —’Yn ivn ()

at© Tar ¢

d dr(t)

= In(r@®) =| Va(r@) =
And now let’s plug all this into our Schrédinger equation

nS ) = Earo) | 20) - n 0 | g

+ihe /M) Jo En(r(E))At givn(®) | \pp(p(2)))
= E.(r(t) [ ¥(1)

In order for this equation to be satisfied, we must make the following vanish:

dr(t)
dt

Because the two exponenses reside also inside | ¥(t)), we can cancel them out
and obtain:

dr(t)
dt

(4.146)

~ D) | 1)y 4 e 0I5 En D 20 0) | (1))

dyn(t) . dr(t)
o | @) =] Valr))— (4.147)
Now we multiply both sides from the left by (n(r(¢)) | to get:
dyn(t) . dr(t)
g = Hn(r®) | Valr®) = (4.148)
and this is our equation for v, (t).
The solution to this equation is:
1(C) = i / (n(r) | Vn(r)) dr (4.149)
c

where C' is a curve traced by R(t). Observe that 7, depends on the curve itself,
not on how slowly or how quickly it is traced by »(t).

It is easy to see that the integral is purely imaginary, so that v, (t) is real.
This follows from the fact that (n | n) = 1:

0 = V{n|n)
= (Vn|n)+{(n|Vn)
= (n|Vn)"+(n|Vn)
= 2Re(n| Vn)
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We are now going to rewrite our solution further. First let us replace the
curve integral over C' with a surface integral making use of the Stokes theorem,
and making use of the fact that ours is a closed curve, which encloses a surface,
ie, C=98:

]f (n|Vn)dr:/Vx (n | Vn) - d°S (4.150)
as S

Now notice that
V x(n|Vn)=(Vn| x| Vn)

This is because V x Vn = 0. Furthermore we can decompose | Vn) into the
basis states, which yields:

2 (99) —z/ > (Vn|m)x (m|Vn)-d’S (4.151)

m;én

We can transform this solution even further by evaluating (m | Vn). We begin
by taking a gradient of our adiabatic equation:

V{H |n)=E,|n)} (4.152)
which yields
(VH) |n)+ H|Vn)=(VE,) |n)+ E, | Vn) (4.153)
Now we multiply both sides from the left by (m |:
(m|VH |n)y+{(m|H|Vn)=VE,(m|n)+ E,(m|Vn) (4.154)

The term (m | H | Vn) translates into E,, (m | Vn), and the term VE,(m | n)
vanishes, which leaves us with:

(m|VH |n)=(E, — Ep) (m| Vn) (4.155)
" (m | VH | n)
m n
Substituting this into equation (4.151) yields
H H .
2(8S) —z/z (n | VH |m)x(m|VH[n) pg (4.157)
= (E,, — Ep)?

This is the celebrated Berry phase equation, named after M. V. Berry from the
H. H. Wills Physics Laboratory of the University of Bristol, who derived it in
1983 [12].

Equation (4.157) represents a rather fundamental observation. It is therefore
amazing that it took until 1983 to derive it, sic! This also shows that there
may be always something interesting left to discover even in disciplines as well
established as Quantum Mechanics.
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4.4.2 Berry Phase in the Vicinity of a Degeneracy

A look at equation (4.157) shows that we are going to see problems if surface S
crosses through a point in the Hamiltonian parameter space (parametrized by
r) where a degeneracy occurs, i.e., where two or more different states have the
same eigen-energy. But the integral in (4.157) does not depend on the choice
of the surface, so it may be possible to deform the surface so as to stay away
from the degeneracy. A real problem will occur only if the edge of the surface
crosses the degeneracy, or if the degeneracy forms along an infinite line piercing
the surface so that no deformation of the surface can take us around it.

If the surface in question is close to the degeneracy point though, then the
states which become degenerate at the point dominate the integral.

Let us assume that the degeneracy occurs at r = r*, and let us assume, for
simplicity, that just two states become degenerate at #*. A small distance away
from r* the energies of the two states are going to be different, so let us call the
one with the higher energy | +) and the one with the lower energy | —).

The Berry phase for the | +) state is then

o (8S) = i /S V. (r)-d2S (4.158)

where up to O(r2):

Vi) = HOIVHE) | =) x (<) | VHE) [+0) 00
(Ey(r) — E_(r))
It is easy to see that
V_(r) = =Vi(r) (4.160)
1-(8S) = —74(8S) (4.161)

We can always change the coordinates parametrizing the Hamiltonian so
that * = 0 and we can always scale the energy so that Ei(r*) = 0 too.

This being the case, and staying with 7 sufficiently close to 0 so that nonlin-
ear terms in 7 can be neglected the two-state Hamiltonian can be parametrized
as follows:

1
H(r) = 5 (z0; +yo, +202) (4.162)

where 0, 0y, and o, are Pauli matrices. The two eigenvalues that correspond
to this Hamiltonian are:

Ei(r)= i% 22 +y? 422 = :I:%r (4.163)
Ei(r)—E_(r)=r (4.164)

The Hamiltonian eigenvectors | +) and | —) are not in general the eigenvectors

of 0., ie., (3) and () in the basis in which Pauli matrices look the way they

normally look. The latter are Hamiltonian eigenvectors only if r = re,, where
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e, is a unit vector pointing in the z direction. Otherwise the Hamiltonian eigen-
vectors will be rotated away from () and (9) by some unitary transformation

b ()
o <o)

The gradient of Hamiltonian (4.162) is simply:

1.
VH ( ) 5% (4.165)

which yields

Vi = GOIEIE) 01740
(UM 1umQ) x (U ) ¢ 1Um )
N 472
() 1Umaum | () > () U neuw) | ()
N 472

The degeneracy itself is an isolated point # = 0 at which z, y, and z vanish.
Degeneracies such as this one are said to have codimension 3.

Let us assume, for simplicity, that » = re,. In this case U =1, | +) = ((1))7
| =) = () and vector V' simply becomes:

(Floy| ) =lo: [+ =(F]o: | )=lay|+)

vi = P =0
T S EAE YT ETCTATE I
v - <+|0z|—><—|Uy|+)4;2<+|0y|—)<—|0z|+>
_ it I = EDE =)
4r2
_ )
= 30

This result is easy to generalize to any possible angle between r and e, by
expressing it in vector notation:

T
\'4 =i— 4.1
L) =i (4.166)
The corresponding Berry phase is now:

1
v+ (8S) ﬂ@[ﬂ% -d*$s (4.167)
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Because the integral in equation (4.167) simply represents the solid angle Q(S)
that the surface defined by 9S subtends with respect to the degeneracy point,
we can go this one step further and say that

7+(99) = :FéQ(S), (4.168)

which is really a very elegant result.

4.4.3 Special Case: Spin 1/2 in a Magnetic Field

The spin 1/2 case corresponds exactly to the degeneracy case discussed in the
previous section with r standing for magnetic field B. Berry phase for spin 1/2
particles is therefore given by

1 [ B .
711/2(65)=¢§/S§-d25 (4.169)

We can use this equation in order to answer the question: what is Berry phase
for rotating spin 1/2 immersed in a homogeneous magnetic field by 360°? Tt is
actually easier to do it the other way round, i.e., to rotate the magnetic field
around the spin. The contour 85 can be imagined as a circle of radius B, the
centre point of which is coincident with B = 0, and with a centrifugal vector B
attached to every point on the circle. The interior of the circle is not suitable
for surface S, because it passes through B = 0. But a half-hemisphere, which
rests on the circle is just fine. We can then imagine that field B pierces the
hemisphere radially and that its normal component has length B everywhere
on this surface, including the circle at its base. The flux of —B/(2B?) through
this surface is then
B 4rnB?

5gi g =T (4.170)
And so the Berry phase is —m and the result of rotating the field around the
spin 1/2 particle is to multiply the state of the particle by

e =e i = -1 (4.171)

This is actually nothing new: rotating a spin 1/2 particle by 360° results in
reversing the sign of its quantum state. One has to make two full rotations of a
spin 1/2 particle in order to bring it back to the original state.

This fact can be derived in various ways. For example we could use the
part of SL(2,C) that corresponds to rotations and rotate a spinor by 360°, or
we could use the Hamilton quaternion formula, and these two approaches are
basically the same. But here we have demonstrated this by using the Schrédinger
equation and abstaining from the hocus pocus of group representation theory.
We showed that this special feature of spin 1/2 follows from the dynamics of
quantum mechanics.
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a b

Figure 4.8: A double scattering into a nearby final state

4.5 Multiparticle Systems

Our introduction to Quantum Mechanics has been concerned with single qubits
so far. Yet, for any non-trivial computation we need to have lots of them. A
single qubit does not computer make. In this section we are going to look at
multi-qubit systems. You will learn in the process some quite amazing facts
about n-body Quantum Mechanics, about non-locality of Quantum Mechanics,
about the kind of interactions that do not exist in classical mechanics at all, and
about teleportation too. On the way we are also going to have a second look
at the Nuclear Magnetic Resonance, and discuss spin-spin coupling, thermal
equilibrium, magnetization readout, and decoherence.

4.5.1 Double Scattering Experiments

Consider the following scattering experiment. We have two particles, which
originate at some points a and b. As long as we can distinguish these particles
we are going to refer to them as “particle a” and “particle b” too. The particles
move towards each other and then they interact within a circled region shown in
Figure 4.8. From this point onwards they move towards their new destinations
labeled 1 and 2 in Figure 4.8.

What is a probability amplitude that describes such a scattering event?
Suppose probability amplitudes that particle a goes to 1 and that b goes to 2
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are:
(1]a), and (2]b)

The amplitude of both these events happening together is a product of ampli-
tudes for separate processes:
(1| a)(2]|b) (4.172)

so that the resulting probability is a product of probabilities corresponding to
the processes:

(L a)2 B = (1| a)* (2| ) = |as* |ba)” (4.173)

This is very much as you would expect probabilities to behave. The logical AND
operation translates into a product of probabilities.

Similarly, a probability amplitude that particle a goes to 1 and that at the
same time particle b goes to 2 is:

(2] a)(1]b) (4.174)
and the resulting probability is:
(2 a) (1| B = |az” |ba]? (4.175)

If there is a single large counter at 1 and 2, which does not resolve between
the two locations, then the probability that the counter is going to register two
particles is going to be a sum of both possible processes, i.e., that particle a goes
to 1 and particle b goes to 2 — this is the first process — and then that particle
a goes to 2 and particle b goes to 1 — this is the second process:

Py = a1 |* |ba]” + |as|* Ba]” (4.176)

If the two locations 1 and 2 are very close together, and if the interacting region
is very small, then the amplitudes a; and a2 are bound to be very close too.
Similarly for the amplitudes b; and ba:

al xR ar N a and by ~ by~ b (4.177)
Probability P, then becomes:
Py =2|a)’ b (4.178)

But if both particles are identical Bose particles then this is not what hap-
pens. Instead the amplitude for the process turns out to be:

(a2 ]6) + (2 a)(1]d) (4.179)
and the corresponding probability is:

Py = |aibs + ashy|” =~ [2ab|” = 4|a|” b (4.180)
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The probability of finding two identical bosons in an identical final state is twice
as large as would be the case for non-identical particles. Bose particles like each
other. They tend to clump and behave in an identical manner. This carries to
macroscopic systems, for example superfluids, superconductors, and lasers all
derive their properties from this Bose particles’ affinity for each other.

On the other hand, if the particles are Fermions then the amplitude is:

(1] a)2 | B) — (2| a)(1 | B) (4.181)
And the corresponding probability is:
P5 = |aby — ashy|” =~ |ab —ab]> =0 (4.182)

The probability of finding two identical fermions in an identical final state is. ..
zero! Fermi particles try to stay away from each other. No two Fermi particles
can occupy the same state. This leads to the Pauli exclusion principle, and
ultimately to the “granularity” of what we call “matter” (as opposed to “fields”,
which do not have this granular feel in thermodynamic limit).

The multiplication of amplitudes for a two-particle system, and their addi-
tion or subtraction (as shown above) leads to the following general description
of multiplarticle states in quantum mechanics.

Individually each particle is described by a vector in Hilbert space H. If we
have two particles, we have two Hilbert spaces, which are formally placed next
to each other. Such formal placement, if it obeys additionally rules of linearity
for everyone of its components, is called a tensor product and is denoted by ®:

| a)1 € Hp
| b>2 € Ho
| a)1® | b>2 € Hi®Ha

If two particles are in such a state they can be easily separated, conceptually
and physically. But only particles of different types can be in such states. As
we have seen in the example with identical Bose and Fermi particles, we can
have more entangled bi-partite states, for example:

| U12)
| ®12)

| a)1® | b)2+ | D)1® | a)2
| a)1® | b)2— | D)1® | a)2

Particles in these states cannot be easily separated. If you do something to
one, it affects the other one and vice versa. Even if the particles are separated
by a large physical distance. This has recently been confirmed for distances
stretching over some 20 km or more.

Then when you take the actual amplitudes for multi-particle states, you end
up with products of amplitudes, which then turn into products of probabilities,
unless interference effects affect the outcome. So here, again, we see how the
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probability interpretation of quantum mechanics implies the use of tensor prod-
ucts for multi-particle states. If we could drop the probability interpretation,
we could drop both the unitarity and the tensor product together with it.

If you have to do a lot of computations with multiparticle systems tensor
notation becomes very tedious and so physicists often resort to the following
shortcuts:

| @12) = [a)i|b)at|b)1]a)a= |ab)+ |ba)
| @12) [a)i | b)a— [ )1 | a)2 = |ab)—|ba)

In summary, they tend to drop the ® sign (very often), and they tend to lump
multiple kets into a single ket (often enough). But you should remember that
what hides behind this frivolity is a good old-fashioned tensor product.

The realization that identical particles should be treated differently
from non-identical particles goes back to Gibbs, who realized that the
phase space volume for N identical particles is N! smaller than what
one would have thought it to be if each particle was distinguishable from
others. This helped him to calculate entropy of a mixture of two gases of
the same kind correctly.

In quantum mechanics particle identity leads to even more profound
consequences. One can show in various ways that in three and more
dimensions two distinct types of particles must exist, and these indeed
correspond to bosons and fermions, for whom we must either symmetrize
or anti-symmetrize their respective bi-partite wave functions. This, in
turn, translates into a special type of repulsion for fermions or attraction
for bosons. The fermionic repulsion is the force that supports degenerate
matter against gravitational collapse in white dwarfs and in neutron stars.
The bosonic attraction is what produces Bose condensates: a very special
state of matter, in which light can be slowed down to a crawl.

The separation of quantum particles into bosons and fermions can
be related to how multi-particle amplitudes are affected by performing
permutations on identical particles. But in two dimensions something
very strange happens and this division of all particles into fermions and
bosons breaks down. It turns out that we cannot use permutations in this
case. Instead we have to use the so called braids. This derives from the
fact that in two dimensions it is not enough to specify the initial and final
configurations for a system of N particles to completely characterize the
system. It is also necessary to specify how the different particle trajectories
wind or braid around each other, as the system evolves [58]. Such particles
in the 2-dimensional world, which are neither fermions nor bosons, are
called anyons. Anyons were considered a mere mathematical curiosity
until Laughlin showed in 1983 that the Fractional Quantum Hall Effect,
observed in quantum sheets immersed in very high magnetic fields and
cooled to nearly absolute zero, implied that conductivity in these materials
was due to anyons [65].
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4.5.2 The Computational Basis

Suppose we have a molecule with some 'H, 3C, °F, and 5N nuclei. Everyone
of these nuclei is magnetically active and has spin 1/2. Everyone of these is
also going to have some chemical shift associated with it so that its resonant
frequency is going to be different from other atoms in the molecule. This way
we can talk to each of them on a separate channel without having other nuclei
listen to the messages. The spin of each nucleus can be up or down and we can
associate | 1) with up and | 0) with down. A particular state of nuclear spins in
the molecule can then be, for example,

|0)a® | 1)e® | 1)F® | O)n

Because every nucleus here is different, we don’t have to symmetrize or anti-
symmetrize this state.

We can establish a convention for our particular quantum register associated
with this molecule, which says that we always stick to the order shown above,
so that we don’t have to write the H, C, F, and N subscripts all the time:

|0)n@ [ De® [ Hr@ [ O)n =[0)@ | he | H@ | 0)

Furthermore, we can switch to the flippant notation used by the physicists and
drop the ® sign:
[0) [1)[1)|0) =| 0110)

The latter looks already quite like a content of a classical 4-bit register. And
this is what it is, the difference being that here we are working with a quantum
4-qubit register.

It’s quantumness becomes apparent when you consider the following manip-
ulation. Recall that it took 7h/(2uy) seconds to flip the ammonia molecule
from the | +) to the | —) state or from the | —) to the | +) state. We have also
seen that an identical Hamiltonian:

H= A0, + ufo,

was responsible for flipping spins, where this time g and £ would relate to
magnetic moment and magnetic field. Now, if we were to halve the duration of
the pulse to wh/(4u&), we would put the spin of the nucleus in a superposition
of up and down:

1) = = (1+ 1) = == (| )+ 0)

V2 V2
Suppose that we put our quantum register in a state
10) 10)10)0)

first, and then rotate each qubit half-way.
How to do the former? The way would be to leave the register immersed in a
strong magnetic field, but otherwise isolated from the rest of the universe. The
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register should be also cooled to as close to absolute zero as possible. Eventually
through spontanteous emmission all qubits, which can still do this, will emmit
a photon, and flip to a lower energy state.

After the half way rotation the resulting state of the register will be:

1 1 1 1
75 10+ 11) ZZ (10+ 1) Z= (104 1) Z5 (10)+ 1)

This can be rewritten in the following way:
Z=(10101010+10)010) 1)
F10)[0)[1)[0)+[0)[0) | 1) [ 1) +...
+11)[1) 1) 1))

1
= — (] 0000)+ | 0001)+ | 0010)+ | 0011) + ...+ | 1111))

V2!

1
= ﬁq 0)+ | 1)+ |2)+...+|15))

where we have used the bold decimal notation 1 through 15 to abbreviate
binary qubit representations of the quantum states of the register. We have also
interpreted qubit positions in the four-qubit sequence in such a way that the
rightmost qubit corresponds to the oth binary position (i.e., 2° = 00015 = 14¢)
and the leftmost qubit corresponds to the ard (i.e., 22 = 10005 = 81¢) binary
position.

As you see, by rotating all spins half-way we have filled the register with a
superposition of all integer numbers from 0 through 15. This cannot be done in
a classical computer, where only one number can reside in a register at a time.
The power of quantum computing derives from this ability to cram all n-bit
integer numbers into a single quantum register and then process all of them
simultaneously.

Almost every quantum algorithms we are going to study in this course is
going to begin with this trick.

We can now think of this object,

1
|¥)=—= (|0)+ | 1)+ |2)+...+|15)) (4.183)
V2
as a vector in a new 16-dimensional Hilbert space with | 0), | 1), ..., and | 15)

the basis vectors of this new Hilbert space. This basis is called the computational
basis, because it corresponds to integers. Coefficients 1/ \/54 are probability
amplitudes, (0 | ¥), (1 | ¥), ..., (15 | ¥). In other words, if our register is in
state | ¥) then the probability of finding it in, e.g., | 7) upon a measurement is
(1/\/54)2 = 1/16. and the probability of finding it in, e.g., | 11) is the same.
It is generally the case that a tensor product of Hilbert spaces is a Hilbert
space, with a scalar product extended to the new Hilbert space in the most
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natural way. If (a; | b1) and (a2 | ba) are scalar products in H; and Hs
respectively then a scalar product in H; ® Ho is

(araz | biba) = (a1 | br){az | ba) (4.184)

4.5.3 Dynamics of Multiparticle Systems

Because multiparticle states are still vectors in a Hilbert space, even though
this Hilbert space is now composed of multiple smaller Hilbert spaces, the basic
Schrédinger equation we derived in the section about Quantum Evolution, still
applies to them. The difference is that when we write

m% | B(t)) = H | B(2)) (4.185)

where | ¥(t)) is defined as in, e.g., equation (4.183), the Hamiltonian matrix is
16 x 16 instead of 2 x 2, and the coefficients of | ¥(t)), let us call them Cy(t),
C1(t), ..., C15(t), correspond to projections of | ¥(¢)) on multiparticle basis
states, e.g., | 0)® | 1)@ | 0)® | 1) =| 5).

Suppose that the rightmost qubit in the 4-qubit register would evolve in
separation from other qubits according to some 1-qubit Hamiltonian Hg, then
the next qubit would evolve in separation from other qubits according to an-
other 1-qubit Hamiltonian H, and for the remaining two qubits we would have
Hamiltonians H5 and H3. Suppose that when you combine all 4 qubits into a
4-qubit register, they still evolve separately, i.e., there is no dynamic coupling
between them. What is the Hamiltonian H for this 4-qubit register going to
look like?

Recall that the physical meaning of H is energy. If there is no interaction
between qubits, then the energy of a 4-qubit register is going to be the sum of
energies of individual qubits, in other words:

H=Hy+H,+H,+ Hj (4.186)

The problem with this equation though is that we have four 2 x 2 matrices on
the right hand side and one 16 x 16 matrix on the left hand side. The reason
for this disparity is an intuitive and notational shortcut. What we really mean
is:

H = 191319H+1019H; ®1
+ 13H®131+H33111 (4.187)

The tensor notation applied to operators has the following meaning. If
U=U33U,80U; ®Ug, where U is a 16 x 16 operator and U; are 2 x 2
operators, and if | g) =| ¢3)® | ¢2)® | ¢1)® | go), where | g) is a vector in a

16-dimensional Hilbert space, and | g;) are vectors in four 2-dimensional Hilbert
spaces, then

Ulgq) = UsU0U10Ug | 3)® | 2)® | 1)® | q0)
Us | 3)@Usz | q2) QU1 | 1) @Uyg | qo)
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Every matrix element for U can be evaluated as follows:

Upg = (d'|U]q)

= (3060190 |Us @U@ Uy @ Uy | g3¢29190)
(65 1 Uz | ¢s)(a2 | U2 | g2)
(g1 | U1 | a1){g0 | Uo | qo0)

For practice let us evaluate Hy 15 for Hamiltonian given by equation (4.187):

H;1o = (7T|H|12)

(0111 | H3; + Ho + H, + H, | 1100)

= (O] Hs [ DA [1(L[0)(1]0)+(0[1)(1 | Hy [ 1)(1]0)(1]0)
O DA | Hy [0)(1]0) + (0 [ 1)(1 | 1)(1[0)(1 | Ho | 0)

=0

From this we can already see that a lot of entries in this matrix are going to
be zero. Only entries for which there are at least three digits identical in the
corresponding slots in the bra and ket vectors are going to deliver any non-zero
results. For example (0001 | and | 0000) may yield a non-zero result when
bracketing Ho as may also (1010 | and | 1011). But the same pairs will yield
zero when bracketing any other H;»o, because of the orthogonality of the bra
and ket states for the 0" qubit.

Let us now assume for simplicity that Hamiltonians H; are diagonal in their
respective computational bases, so that

H;|L;) = Eiy|L) (4.189)
It is easy to see that in this case all non-diagonal terms in H will vanish.

But for every diagonal term we are going to end up with some combination of
Esy + B>y + E14+ + Eg+. For example:

Hz;7; = (0111 | H3 + Hy + Hy + H, | 0111)
= B3+ Esy + Eiy + Eoy

and

HlOlO = <1010|H3+H2—|—H1+H0|1010)
= E31 +FEs + Eiq + Eo-

Because every qubit here can have two different energy levels and we have four

different qubits, we have altogether 2* = 16 different combinations in which

these energies can add, which corresponds to 16 diagonal terms of matrix H.
Does this mean that by merely placing all four qubits in a single ensemble we

are going to observe (126) = 120 different transitions lines, whereas previously
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we could see only 4 transitions: E;; — E;_? The answer is that no, we are
not going to see any more transitions now, and this is because not all levels in
a Hamiltonian can be stridden by a transision. Whether a given transition is
possible or not possible depends also on selection rules. In our case the selection
rules simply state that transitions correspond to a flip of a qubit within the 4-
qubit register. So there will be single photon transitions between adjacent even
and odd states such as | 1) —| 0) and | 7) —| 6), which correspond to the
flip of the zeroth qubit. There will be also single photon transitions between
state pairs such as | 15) —| 13) and | 7) —| 5), which correspond to the flip
of the first qubit. And then we’re going to have two-photon transitions such
as | 7) —| 4), which correspond to the simultaneous flip of the zeroth and first
qubits.

As is the case with vector tensor products, physicists have the tendency to
drop the ® sign, when taking a tensor product of operators too. We shall follow
this tradition reserving the ® sign for situations when the tensor character of
the product needs to be emphasized.

4.5.4 Spin-Spin Couplings in NMR

Consider again a molecule which contains some combination of magnetically
active nuclei of 'H, 13C, '9F and '5N. All these nuclei have spin 1/2. Apart
from interacting with their environment, i.e., the background magnetic field, the
pulse field, and the electron shell screening, the spins also interact with each
other. The spin-spin coupling can be direct, through interaction of magnetic
dipoles associated with the spins, or indirect, through the electron cloud. The
direct dipolar coupling of two spins is described by the following Hamiltonian:
H giroct = % (61-02—301-noy-n) (4.190)
where « is a coupling constant (which contains the Planck constant A, contri-
butions from magnetic moments of participating spins, and various other coeffi-
cients), r is the distance between the spins, o; is the “vector” of Pauli matrices
acting on spin 4, and n is the unit length vector in the direction of the line that
joins the two nuclei.
The meaning of the notation used above is as follows. The symbol &1 - o2
really means
0,0, +toyQ0y+0,Q0;

and the symbol &1 - n o5 - 1 means
(gang +oyny +0.n;) @ (Osng +oyny +0,n7)

In a low-viscosity solution the molecule keeps tumbling quite fast all the
time. In the process the coupling term averages away. This can be seen by
integrating H gjrect for vector n running over the whole sphere.

The electron cloud mediated coupling is described by a Hamiltonian term,
which looks as follows:

H yediated = hwi2o1 - 02 (4.191)
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This term is often rewritten using o4 and o_ matrices, which are defined as
follows:

o = o,+io0y (4.192)
o_ = 0,—i0y (4.193)

Observe that:
(s +ioy) @ (oy —ioy)
=0;,Q0, —10,; 0y +1i0,Q0, +0, 0y

(0 —ioy) @ (0, +i0y)

=0, 00; +10, 0y — 10,0, +0, 0y

hence
oL Qo_+o0_Q0o4
=2(0, @0, +to,Q@0)
therefore
Hediated = hwiz(0, @0, +to,@0,+0,00,)
= hwipo,Qo, + % (crQ@o_+o0_®@04)

When mediated couplings are weak and when the resonance frequencies of
interacting nuclei are well separated then the term proportional to oy ® _ +
o_ ® o averages away and we are left with

H nediated = w120, @ 0, (4.194)

which does not go away.

This H ediated term makes quantum computing possible, because without
it we wouldn’t be able to couple qubits into two qubit gates. The part of the
solution of the two spin Schrodinger equation that is due to this term:

d
iha|\ll)12:...+hw12a'z®0'z|‘I’)12+-‘-

looks as follows: .
| ()12 = e 120797 | §(0))19

There is, in other words, a separate frequency associated with this coupling.
Signals of this frequency sent to the molecule are received by the coupling part
of the molecule, which then evolves according to the strength, polarization, and
duration of the pulse.

Of course, if you don’t send any signals to the molecule, the coupling part
still contributes to its evolution in the way shown above.

We are going to see an example of this in the next section.
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4.5.5 The Controlled NoT Gate

The controlled NOT gate is a gate that acts on two qubits.
called a control qubit, and the second qubit is the data qubit. If the control
qubit is | 0) then the data qubit is left alone. If the control qubit is | 1) the data
qubit is flipped. The gate, for which we are going to use the & symbol, can be

therefore described by the following table:

Its corresponding matrix @;; in the computational basis is thus:

Doo
Do1
Doz
Dos
D10
D11
D12
D13
D20
D21

Ll

L1411

(0] ]0)
(0f®]1)
(0]o]2)=
0]@]3)=
(1[®]0)
tle1)=
1lel2)
1lo]3)=
(2[®]0)
2le|1)=
2le]2)=
2e]3)=
Ble]0)=
@leo|1)=
@lel2)=
Ble|3)=

=1
=0
=0
=0
=0

The first qubit is
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In summary:

O = O
OO O
_= O O

@ = (4.195)

S oo

010

Now we have to figure out how to implement this gate in, e.g., NMR. Recall
the formula:

€% =1cos¢ +io,sing (4.196)
For ¢ = m/4 we have sin § = cos | = 1/\/5, so that
. 1
e rmt = — (140, 4.197
7 ( ) (4.197)
There is a similar formula for e/?=®7:¢ namely
€7:97:9 = 1 ®1cos¢ +io, @ o, sing (4.198)

which for ¢ = 7/4 becomes

. 1
ezo-;@azﬂ'/4 — E (1 R1+i0,® g-z) (4199)

For e %7:™/* we just change the sign in front of i on the right hand side. Now
we can easily see that:

—io, T 1 .
e/t 0) = ﬁu—mm
—io,m/4 1 .
e "L = E(IH)ID
and
. , 1
e i/ @ eioeT/A | 00y = 5(1=9)(1 1) | 00) = —i | 00)
. , 1
efzo'z‘rr/4 ® efzvzw/él | 01> — 5(]_ _ 'l)(l + Z) | 01> :l 01>
. , 1
e/ @ emio=T/ | 0) = 5 (1+3)(1-14)]10) =[10)
. , 1
eTim/ @ eTiosT/A 1]y = A+ +i)[11) =i|11)
Similarly
. 1
el=@7T/4 1 00) = 71 +i) 1 00)
. 1
=@/ 1) = 5(1 — i) | 01)
. 1
=@/ 10) = 5(1 — i) | 10)
. 1
=@/ 1) = ﬁ(l +1) | 11)



4.5. MULTIPARTICLE SYSTEMS 107

Now, let us combine ei@=®7:7/4 and ¢ i@:7/4 @ —io=7/4;

io -8 /tg=io.n/i g c—iosn/1| 0p) = %(1+i)(—i)|00):%(1—i)|00>
giosomen/eminan/l g (s /A 01) = —Zo(1=i)(1) [01) = —=(1=4) | 01
gie-omen/ieminaall s/ 1) = So(1=i)(1) [ 10) = —=(1=i) | 10
i 00 -n/dg=io.n/t g o=ioen/4| 17) = %(1+i)(i)|11)=—%(1—i) |11)

7
OK, let us now multiply all the four equations from the left by 1/v/2 (1+1) and
let us switch to the computational basis to get:

1 . . )
_(1 + i)ezaz®0’z7r/4e*'tﬂz7r/4 ® 6710'27['/4 | O> — | 0>
V2
1 . . )
_(1 +i)ezaz®az7r/4€7'taz7r/4 ®e—w,7r/4 | 1> — | 1>
V2
1 . . )
_(1 + i)ewz®az7r/4efwz7r/4 ® e—w,w/4 | 2> — | 2>
V2
1 . . )
—(1 _+_i)ewz®az7r/4efwz7r/4 ®67w,7r/4 13) = —|3)
V2
The corresponding matrix is
100 O
010 O
0 01 O
0 0 0 -1

This is the controlled-o . gate. If the first (control) qubit is | 0) the gate doesn’t
do anything to the second (data) qubit. But if the first qubit is | 1) then o, is
applied to the data qubit.

There is a transformation called a Hadamard gate. This transformation is
defined as follows:

H-= % (o +02) (4.200)
Do not mistake the Hadamard transformation for the Hamiltonian, even though
we have used the same symbol here for both. It is unfortunate that there are
only so many letters in the alphabet. In Quantum Computing we don’t really
make much use of a Hamiltonian at all, therefore this usually doesn’t lead to
confusion. Anyhow, it is easy to check that:

H H=1
H.o. H=0,
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This means that if we place a Hadamard gate on the data line both before
and after the controlled-o, gate, then the combined effect will be a controlled-
o, gate. And, when you look at the o, matrix, you realize quickly that it is
a NOT matrix. And so with the help of two Hadamard gates bracketing our
controlled-o, gate we have constructed a controlled-NOT gate.

Now, how to construct a Hadamard gate? This is a much easier gate to
construct, because it is a single qubit gate, which does not involve any couplings.
This gate is in fact equivalent to rotating a qubit half-way, and we already know
how to do this. The Hadamard gate matrix looks as follows:

H = \/% ( — ) (4.201)

This implies that it acts in the following way on | 0) and | 1):

1

H{0) = —=(10+]1)
1

HI1) = (0~

But this is not the only way to implement a controlled-NOT gate NMR. You
will find the following alternative prescription in [67]:

@lo2 = efi(ﬂ/él)a;l)ei(7r/4)agl)ei(7r/4)a§1)

o im/0)e ) Li(r/1)e P —i(r/1)e P ee? —i(r/1)e (4.202)

where superscripts (1) and (2) mean that the operator acts on spin 1 or spin 2.

EXERCISE
Prove that this is indeed a controlled-NOT gate. Which is the control
qubit, and which is the data qubit?

The crucial feature of this expression is again the coupling term e~/ @

Observe that in both prescriptions for the controlled-NOT gate the coupling
term, and, in case of the first prescription also the non-coupled terms, represent
free evolution of the system according to a free NMR Hamiltonian. This is
what the system does anyway when you don’t treat it with RF pulses. The
trick therefore will be how to stop this free evolution of the molecule when you
don’t want any couplings and when you don’t want any controlled-NOT gates.

We are going to discuss procedures for doing just this in the next section.

The moral of this section is that the spin-spin coupling in the NMR Hamil-
tonian is crucial in delivering a controlled-NOT gate. You will learn later that
this is one of the fundamental gates for quantum computation and, in partic-
ular, that ell multi-input quantum gates can be built from this gate and from
other single qubit gates. We can therefore make an even stronger statement:
the spin-spin coupling in the NMR Hamiltonian makes quantum computation
possible.
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4.5.6 Halting and Reversing Time

A free Hamiltonian for a molecule suspended in a strong vertical magnetic field
and in absence of radiation pulses comprises two terms:

1 ) ) .
H= 13 ol + 3 hoyol 0 o0 (4.203)
i i<j
The solution to the corresponding Schrédinger equation is
| w(t) = [[ et 2 [T et e | w(0)) (4.204)
i i<j

You can see that normally all spins in a molecule are coupled with each other.
Moreover you can also see that the whole system is going to evolve in some way,
even if it is left to itself. The coupling terms will make every spin pair evolve in
a way that is used in the controlled-NOT gate. So if we tried to use this system
without doing anything special to it, we would end up having controlled-NOT
gates all over the place, with everything coupled and we would have individual
spins evolving too. But no controlled computation could be carried out.

The way to resolve this problem is to develop a procedure that stops time
for all couplings and for all individual spins in the molecule. Then if we need
a selected coupling for a controlled-NOT gate, or if we want to push a given
spin forward in time by just about that much, we can release just the coupling
or just the spin, so that the required free evolution for them takes place for a
precisely determined amount of time. Then we stop time for the coupling and
for the spin again and perform whatever other operations are required to finish
the controlled-NOT gate.

The key to the time reversal procedure is the observation that Pauli matri-
ces anticommute with each other and that they all square to one. Hence, for
example,

0,0,+0,0,=0 | -0,
0,0,0,+0,=0 |—o0,
0,00, = —0,

And the same also holds for a tensor product of two o, matrices:
0;2)0'9) ® 022)0';2) = —09) ® 09)

And since e
el7: 970 = 1@ 1cosd +iol) @ P sin ¢

it is easy to see that
o@D ir0rP652) _ —iePea®s
and similarly, though with slightly less fuss:

a.mew'zd)a.w — e—zazd)
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So by bracketing the free evolution term with the NOT gate, because this is what
o, is, we can reverse the time flow both for a single spin and for couplings.

And how do we go about halting time? It’s easy. We let it go for a little
while forward, then we make it go backward for the same amount of time. For
a selected coupling between spins 1 and 2 this could look as follows:

ez’wlgAtagl)@)a’g)e—iwlgAta(zl)@)a’(zz)
i (1) (@) i 1) (@
— 0';2)6 w12 Atey Qo 0_;2)6 wi2Atey Qo
Operators of the form e*4 and e*® do not commute in general. This is easy
W . which i
to understand, when you recall that e*4 represents a unitary operator, which is

a rotation in Hilbert space. And rotations do not commute in general, not even
in R®. In general

[e*4, e8] = ab[A, B] + higher order terms

But it is quite easy to see that if A is any n X n complex matrix and a,b € R
then [4]:

e(a—i—b)A — aAebA — ebAeaA

e
This implies that matrices of the form e?:¢ with various values and signs of
¢ commute, and therefore we can cancel a given coupling globally, rather than
locally, i.e., all we need to make sure of is that we reverse time for the coupling for
exactly half of the total time used by a computational procedure, to eliminate
its effect. Elimination of a coupling between spins 1 and 2 occurs when we
reverse time flow for just one of the spins. If we reverse time flow for both spins
at the same time, then the coupling will keep evolving forward in time.
The procedure to stop all couplings in a molecule would therefore be to

1. divide the whole computation time into an even number of short intervals
of length At,

2. come up with a scheme to reverse time for each spin in selected intervals
in such a way that every coupling is going to move forward and backward
for the same number of intervals

Consider a simple case of two spins, whose resonance frequencies are w; and ws.
The time halting scheme for the two spin coupling can be described in terms of
the following table:

At At
w1 — —
o)) — —

where — signifies that time flows forward for this spin and in this time interval
and < signifies that time flows backward for this spin and in this time interval.
Here we have just two spins and one coupling. The first spin moves forward all
the time, but the second spin moves forward in the first interval and backward



4.5. MULTIPARTICLE SYSTEMS 111

in the second interval and therefore the coupling between them moves forward
in the first interval and backward in the second interval.

Now consider a case of 4 spins. The corresponding table that describes a
decoupling for this system is:

wi | > =2 2 =
wr | & o~
wy | &~ o~ =
wi | =&~ o

The trick is to ensure that any two rows must disagree in exactly half of the
entries.

This table can be converted into an appropriate sequence of pulses by sending
a brief o, pulse to a given spin just before and after its corresponding ¢+ time
segment. But observe that some economies are possible. For example if for a
given spin two reversed time segments are adjacent, there is no need to send
two o, pulses to the spin between the segments, because o0, = 1.

The resulting sequence of &, pulses sent to various spins at various fre-
quencies constitutes a kind of music. You can associate a pitch with every
frequency, and you can associate bars with time segments and bar lines
with borders between the time segments. The duration of the o, notes
should be very short, so we can think of them as semiquavers played at
the beginning and end of each sequence of bars representing time reversal.

The result of playing this music is that the evolution of all mediated
spin-spin couplings in the system stops. But looking at the tables you can
see that the first spin continues to evolve, although evolution is stopped
for all other spins, because, like the couplings, they are all pushed forward
for half the time, and then pushed backward for half the time too.

You will see below that just a small change in our procedure is going
to stop not only the evolution of the couplings but also the evolution of
all individual spins, including the first one too.

The tables shown above can be converted to matrices by replacing — with
+1 and + with —1. The first table for a two spin system would then look like

this:
1 1
1 -1

and the second table, which describes decoupling for a system of four spins
would look like this:

1 1 1 1
1 1 -1 -1
1 -1 -1 1

1 -1 1 -1

The first matrix, the 2 x 2 one, looks like the Hadamard matrix we have en-
countered in the previous section. It turns out that n x n Hadamard matrices
will do the job here for a system of n spins, and they’ll do it very efficiently too.
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The definition of a Hadamard matrix of order n is that it is an n x n matrix
with entries £1, such that

HH" =1 (4.205)

The rows of a Hadamard matrix are pair-wise orthogonal, therefore any two
rows agree in exactly half of the entries, which is what is required to stop time
for all couplings in a system of n spins. Columns of a Hadamard matrix are
pair-wise orthogonal too.

Permutations or negations of rows or columns in Hadamard matrices leave
the orthogonality condition unchanged. We can therefore transform Hadamard
matrices into each other by these means. Hadamard matrices, which look like
the ones above, i.e., with their first row and first column all comprising +1 are
said to be normalized.

In order to stop the evolution of all couplings and all spins at the same time,
we need to do the following. First let us construct an oversized normalized
Hadamard matrix for a system of n + 2 spins, where n is an even number. Then
we are simply going to remove the top row, which contains +1 terms only, and
the next row below it, so that what’s left is a matrix n X (n + 2), in which
all rows sum up to zeros. This matrix stops not only all couplings, but also
evolution of all individual spins in the system. The evolution table for a system
of two spins would then look like the bottom half of the table we have originally
used for a 4 spin system:

At At At At
w | = = o« =
R e S e

Observe that this time every spin evolves forward for half the time, and then
backward for half the time too, and... on top of this, the coupling itself also
evolves forward for half the time and then backward for half the time.

To activate just a particular coupling without allowing other couplings or
any individual spins to evolve, all we need to do is to make rows corresponding
to spins, which need to be coupled, identical. For example, the following table
implements a re-coupling between spins 3 and 4, out of 9, with all other couplings
disabled and with all spins, including spins 3 and 4 halted in their evolution too:

At At At At At At At At At At At At
T e e e
R S = e T e e e S e S
e I e TR R e SRR S T S R S
R T I T e R e S R
R T e e T e e e
R e T e
A I T e e T S S
e T I I e e T e e S S
Wy | = o = o = o = =
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4.5.7 The Feynman Quantum Computer

In this section we are going to look at a specific example of a multi-qubit system,
so that you can go through the process of deriving a Hamiltonian for such a
system, then solving the equations of motion and making some observations
about the evolution of the computer.

Feynman computer discussed here uses a 3 qubit program counter register
and a 1 qubit data register, on which we perform a simple computation. As the
computation proceeds we keep looking at the counter every now and then to
assess whether the computation has completed. But we don’t look at the data
register itself, since this would destroy the computation. We look at the data
register only when the counter register tells us that it is now safe to do so.

The computation we are going to perform comprises two steps. a /= gate
is applied at each step, so that the final computation delivers /=/= = —, i.e.,
the logical NOT gate.

The /- gate

The logical NOT gate can be described by the following simple matrix:

=0, = ( (1) (1] ) (4.206)

The way it acts on the two basis states of a qubit are:

ﬁ|0>=<(1)(1))<(1))=<(1)):|1> (4.207)
S (83)(1) - ()
(4.209)

The square root of NOT is a gate such that the square of its matrix is equal
to the matrix of the NOT gate.
The following satisfies this requirement:

1 ein/4 e—i7r/4
Vo= 7 ( e—im/t  gim/4 ) (4.210)

Because e/™/* = .- (1 +1) and e~i"/* = % (1 — i) this can be also written as

1140 1
\/:'_§<1—i 1+7:) (4.211)

It is easy to show that /= is unitary and that \/=/= = —.

1 €i7r/4 e—i7r/4 1 ei7r/4 e—ifr/4
\/:\/: = ﬁ(e—iw/4 eim/4 E e—im/4  in/4
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_ 1 ei7r/2 +e—i7r/2 el +€0
= 3 0 + 0 e—im/2 4 gin/2
_ 1/ 2cos% 2 _ (01
92 2 2cosy /) \ 1 0
Similarly:
b 1 ei7r/4 e—i7r/4 1 e—i7r/4 eiﬂ'/4
\/:\/: - _2 ( e—z'7r/4 ei7r/4 E ei7r/4 e—iﬂ/4
3 1 0+ 0 eim/2 | g—in/2 (10
T2\ emim/2 pgin/2 el + ¢l “\L0 1

In summary /= is unitary and it squares to —.
What is the result of this operator acting on | 0) and | 1)?

1 ei7r/4 e—iﬂ'/4 1
V=10) = 7 ( e—im/t  gin/4 ) ( 0 )
1 ei7r/4 1 i —im
= ﬁ(e—”/“ ) Zﬁ(e 10y +e /4|1>)

and similarly:
1

V=11) 7

In a Feynman computer the gates are entangled with counter qubits, so that
by looking at the counter qubit we can tell if a given operation has completed.
In order to implement a — circuit using two /= gates we will need 3 counter
qubits and one state qubit. When the /= gate acts on the whole system it
leaves counter qubits alone and rotates the state qubit only:

(e_i”/4 | 0) + /4 | 1>)

V1 =10101®+v— (4.212)
The full circuit of Feynman computer implements
VoV

The /7, can be represented in a matrix form. In order to do that we need
to enumerate states of the 4-qubit system. For example:

| 0000) = |0)
|0001) = |1)
|0010) = |2)
|0011) = |3)
|0100) = |4)
|0101) = |5)
|0110) = |6)
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o111y = |7)
|1000) = |8)
|1001) = |9)
|1010) = |10)
|1011) = |11)
|1100) = |12)
|1101) = |13)
|1110) = |14)
|1111) = |15)

It is easy to see what the /=, matrix is going to look like in this basis. The
matrix will be 16 x 16. It will comprise diagonal blocks 2 x 2, which correspond
to the normal 2 2 version of /. For example, consider terms v/—,[8, 8] (where
indexes run from 0 through 15), /=,[8,9], v—,[9, 8], and /—,[9,9]. Column 8
of /=, represents the result of acting with matrix 1/=,[n,m] on vector

0
0

1 + 8t location
0

0

again the location is measured from 0 through 15. This is vector | 8) =| 1000).
Acting with /=, on this vector yields:

Va8 = V=4]1000)=1®1®1® /= |1000)
= |100)® v/~ 0)
1 . .
— = | in/4 —im/4
|100)®\/§(e 10) +e |1>)

e+ 1 1000) + &=/* | 1001)) = % (/4 1 8) + e/ | )

Sl

and similarly

Vau |9) = V/=4]1001) = 100) @ % (e—i’f/‘1 | 0) + ™/t | 1))
— % (e—iw/4 | 8) +ei7r/4 | 9))

Because the 8" column of matrix /=, is the result of this matrix acting on
vector | 8) and the 9*® column of this matrix is the result of it acting on vector
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| 9) we have found that in the vicinity of [8,8] the matrix has the form:

1 . ei7;'/4 e—i.7r/4

\/5 . efi7r/4 ez'7r/4

But this is our original v/—, and, since this computation can be applied in the
same manner to all other vectors we arrive at the following form of matrix /—,:

(4.213)

OOOOOOOﬁ
OOOOOOﬁO
OOOOO}OO
OOOO}OOO

OOOﬁOOOO
OO%OOOOO
OFOOOOOO
}OOOOOOO

where 0 is a 2 X 2 zero matrix.

The Hamiltonian

The operator /=, defines the behaviour of the /= gate as applied to the state
qubit and to the counter qubits. But this is not the Hamiltonian matrix, which
we could plug into the Schrodinger equation in order to simulate the behaviour
of the whole system.

There are various ways in which gates such as this one can be implemented.
Feynman’s prescription is based on his model of spin waves propagating in a
1-D chain of molecules. The resulting Hamiltonian is given by the following

formula:
k—1

H = Z ci+1a,-M,~+1 + (c,-+1a,-M,-+1)t (4214)
i=0
Here M ; is the i*? gate, ¢; is a “creation” operator that promotes a qubit from
| 0) to | 1) in the i*? location, and a; is the annihilation operator that demotes
a qubit in the i*® location from | 1) to | 0)
The creation and annihilation operators are defined operationally as follows:

cl0)y = |1) (4.215)
cll) = 0 (4.216)
al0) = 0 (4.217)
all) = |0) (4.218)

0 is the zero vector. It is obtained by taking any vector, e.g., | 0) and multiplying
it by zero:
0=0]0) (4.219)
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But 0 | 1) = 0 too. Using matrix notation:

00 1 0

c|0>:<10)<0):<1>z|1> (4.220)
00 0 0

CI1>=<10)<1):<0>=0 (4.221)
01 1 0

a|0>—<00)<0)—<0>_0 (4.222)
01 0 1

an = (00)(0)=(D)=0  um

The operators ¢; and a; are defined as follows:

a = a®l1®131 (4.224)

a = 1@a®1®1 (4.225)

a = 1®1®a®l (4.226)

co = ¢c®1R11 (4.227)

cg = 1e®1®1 (4.228)

cc = 1®1®c®1 (4.229)

The last qubit is reserved for the computation itself.
What does the Hamiltonian matrix in our basis | 0),...,| 15) look like? For
our 2-gate computer the Hamiltonian is given by:

H = ciaoy—y + (clao\/:4)1 + crar/—y + (62a1\/:4)’r (4.230)

We could evaluate the Hamiltonian matrix by applying this Hamiltonian la-
boriously to all vectors in our basis, but it is easy to see that most of those
applications will result in zeros. Consider the first term:

cragy/—y | zyzs)

This will generate a 0 vector whenever there is | 0) in the 0" position or | 1) in
the 15 position. The only vectors that will survive the slaughter will therefore
be:

11000) = |8)
| 1001) | 9)
11010) = |10)
|1011) = |11)

In turn
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will generate a 0 vector whenever there is | 1) in the 2"d position or | 0) in the
15 position. The only vectors that are going to survive this bloodbath will be:

|0100) = |4)
|0101) = |5)
|1100) = |12)
|1101) = |13)

The effect of the other part of the Hamiltonian:

(Clao\/:ui)f + (02(11 \/:4)T

will be to add symmetric but complex-conjugated terms under the diagonal,
so we don’t have to worry about those. In summary, instead of evaluating the
effect of e;agy/—, and of caa1+/—, on 16 vectors we only need to do that for 8
vectors. But we can save work even here. Consider the application of ¢1aqv/—,
to | 100)® | s), i.e., to either | 8) or to | 9):

crap\/—4 | 100)® | 8) = crap | 100) @ /= | 8)
=a|l)@c|0)@|0)®@v=]s)=[0)]1)]0)vV=]s)
=1010) ® V= | 5)

Now if we substitute either | 0) or | 1) in place of | s) we will place a small 2 x 2
v/~ matrix in the location given by

columns | 1000) = | 8)
| 1001) = 9)

rows | 0100) =| 4)

| 0101) =| 5)

The other two vectors, which the first term in the Hamiltonian acts on (without
destroying them) are | 10) and | 11):

cragy/ =4 | 101)@ | 5) =] 011) ® /= | 5)

This therefore will place the 2 X 2 y/= matrix in the following location:

columns | 1010) = | 10)
| 1011) =] 11)
rows | 0110) = | 6)
|0111) = 7)

Repeating the same reasoning with the terms that survive esaq+/—, yields:

cea1yv/—, | 010)® | s) = |001) ® /= | s)
caar/—, | 110)® | s) | 101) @ /= | 8)
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The resulting 2 x 2 /= matrices will therefore be placed in

columns | 0100) =| 4)

| 0101) = 5)

rows | 0010) =| 2)

| 0011) = 3)

and

columns | 1100) = | 12)

| 1101) = | 13)

TOwSs | 1010) =| 10)

| 1011) =| 11)

00 0 0 0 O 0 O
0y~ 0 0 0 0 O
0 0/~ 0 0 0O
0 0 y= 0 0

o o o o (4.231)
0 =0
0 o
0

All we need to do now in order to finish the Hamiltonian matrix is to fill the
lower part of the matrix with the transposed and complex-conjucated mirror of
the upper part:

ﬁo o o

(4.232)

OOOOOﬁOO
—

OOOOO%OO

o}‘oo
—
cooococo oo

OO?‘OOO o o

oo oo o0 oCQC
OO}OOOOO
—

The unitary evolution operator

With the Hamiltonian (4.232) in place we can write the Schrdodinger equation
for the system:
d
iha | O(t)) = H | () (4.233)

With the initial condition
| %(0)) = | 1000)
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or
| ¥(0)) = 1001)

We should then let the computer evolve according to the Schrédinger equation
until it reaches state

1 001)® | 5

The computer is constructed in such a way that when the counter qubits become
| 001) the | s) qubit is guaranteed to become the inverse of whatever it was set
to at the beginning. In other words, the computation will yield a — gate. This
is accomplished by linking together two /= gates and coupling them to counter
qubits. Because the Hamiltonian does not depend on time. We can solve the
Schrédinger equation analytically. The solution is simply given by:

| ¥ (1)) = e " | ¥(0)) (4.234)
How to evaluate e~ “H*/% though? The most straightforward way is to use the
expansion:
2?2 2zt
T __ _ - JE—
e=ltotrgt gyt (4.235)
In our case this will become:
e=iHtn _ _ il g iHH + iiHHH + iHHHH +... (4.236)
B h 21h2 3!h3 41 T

Because t can be anything, whereas H is fixed, it may be convenient to take
t/h out of it and simply evaluate:

: 1 1 1
e #H —Uy=1-iH — sHH +igHHH + THHHH + ... (4.237)

then
e iHUM = g/t (4.238)

Because H is a 16 x 16 matrix, but with a clear 2 x 2 blocking structure, we
can keep those blocks and the final result for Uy is again a 16 x 16 matrix with
a clear 2 x 2 blocking structure. Matrix Ug looks as follows:

1 0 0 0O 0 0 0 0
0 B D 0 G 0 0 0
o -Dt A 0 D 0 0 0
0 0 0 B 0 D G o
0 G -Df o B 0 0 0 (4.239)
0 o o -D' o A D o
0 0 0 G 0 -D' B o
0 0 0 0O 0 0 0 1
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where
A = cosv21
B = % (cos V2 + 1) 1
G = % (cos 2— 1) o,

—isiny/2
D 7 V=

And how does this come about? Well, in order to see this, we would have to

multiply the Hamiltonian laboriously great many times, perform the additions

in the exponential expansion, keep all computations on the analytical level and

then observe what every term in the matrix converges to. This is a job for a

symbolic manipulation system.

Having done all that how do we then raise U to the power of ¢/h, where
t/h can be any positive real number? At this stage we have to bite the bullet
and diagonalize matrix Uy, because an operation such as U f)/ h acquires its very
meaning this way. This operation will yield 16 eigenvalues, Ag through A5, and
16 eigenvectors, | vg) through | vyz). Our initial value vector | ¥(0)) can be
written in term of the eigenvectors as:

15
| 2(0) =) | vi)(vi | T(0)) (4.240)
=0

When the operator U, f)/ " acts on the eigenvectors it stretches them by )\2/ h, SO

that
15 15
| () = U™ S Toiur | 20)) = YA Jwi)(vi | 2(0)  (4.241)
i=0 =0

In order to interpret the solution in physical terms, i.e., in terms of our vectors
| 0) through | 15) we will have to write | ¥(¢)) in terms of these vectors. This
can be done simply by writing the eigenvectors in terms of | 0) through | 15):

| (t))

15
SN v (v; | 2 (0)
=0

15 15
= Yo" <Z | )k | >> (v; | T(0)) (4.242)
i=0 k=0

But for integer values of ¢// you can simply apply U t/h-times to vector | ¥(0))
and. .. you'll be done!

The Evolution of the Feynman Computer

The file that contains the simulator lives in the directory
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/afs/ovpit.indiana.edu/common/mathematica/quantum_computing/unix/nbooks3
file
feynman.nb

In order to gain access to this directory you must have a valid AFS token in our
AFS cell.
Here is an example of how I go about running it. My machine is

beige.ucs.indiana.edu

and I don’t have Mathematica installed on it. But Mathematica is installed on
the Nations and on the Ships clusters, and both mount AFS. So I am going to
run Mathematica on one of the Ships clusters machines, called barruc, and put
a display window on my X11 server that runs on beige.

I use slogin to connect to barruc from beige. This sets up my DISPLAY
variable on barruc, which points to a fake X11 display called barruc:10.0 on
that machine. That display in fact corresponds to a socket ssh-201214-agent,
which lives in /tmp/ssh-gustav. Whatever falls into that socket is encrypted
and sent to the slogin process that runs on beige. The process then unpacks
the data and displays them on my X11 display.

If you don’t use slogin then you may have to use xauth on barruc and on
your own workstation to set up an appropriate entry in the .Xauthority file
on barruc, and then point DISPLAY to your workstation.

There is one more thing that you have to do before you start Mathematica.
You need to load Mathematica fonts into your X11 server that runs on your
workstation:

beige $ xset +fp /afs/ovpit.indiana.edu/common/mathematica/Fonts/X
beige $ xset fp rehash
beige $

Now, on barruc I start Mathematica thusly:

barruc 29% /usr/afsws/bin/klog gustav
Password:
barruc 30% /usr/local/bin/mathematica &

and after a rather long wait the Mathematica windows pop up on my display.
The wait is long if the Ships cluster NFS server is busy, if the network is busy
(either in the Ships laboratory or between Franklin Hall and the Ships laboratory
or both), if barruc itself is busy, or if beige is busy. All these things add up.

Now I load the notebook by pulling the File menu and selecting Open. A
window pops up, which asks about the File name. Here I simply type the full
path name of the file (with /afs/ovpit... at the front), press OK, and the
simulator gets loaded.

The notebook contains a lot of stuff, which must be evaluated in order to
put Mathematica’s kernel in the right state for computations. To evaluate the
whole book select
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Kernel
-> Evaluation
-> Evaluate Notebook

This brings up a window, which asks you if you want to automatically evaluate
all the initialization cells in this notebook, to which you should answer Yes.
You should see Mathematica running through the lot at a fairly reasonable
pace. Wait until the evaluation is finished. You will see Mathematica adding
tags to all the statements that will have been evaluated and to all the answers as
well. The window will assume a title Running. . ./afs/ovpit.indiana.edu...
and may flicker and scroll many times. When the notebook gets processed to
the end you will see various plots appear in it.

The first section of the notebook that is of interest to us is “Running the
Quantum Computer for a Fixed Length of Time”. In this section the computer,
as defined by the unitary operator Uy, is first run for /A = 0.5, and this is
what comes out:

UY®|1000) = —0.119878]|0011)
+0.229681(1 — 4) | 0100)
—0.229681(1 + 7) | 0101)
+0.880122 | 1000)

You can see that this is a very short time and the computer barely started
evolving. We’re still very close to the initial condition | 1000). But if we extend
the running time to ¢// = 2 the probability of obtaining the right outcome of a
measurement and thus completing the computation becomes very high:

U2 |1000) = —0.975682]|0011)
+0.10892(1 — i) | 0100)
—0.10892(1 + 4) | 0101)
+0.0243184 | 1000)

The simulator described in the notebook does more than just solve the
Schrédinger equation. It can also simulate the measurement process. As the
computer evolves, every now and then we are going to look at the cursor qubits
in order to find out if the computation has completed. This process throws
the whole state of the computer into a state compatible with the read-out of
the cursor. The evolution then commences from that state. But what is the
read-out state of the cursor? In order to select one of several possible outcomes
we need to apply a probabilistic selection to the Schréodinger wave function, a
selection weighted by the function itself.

In summary, this is what the simulator does:

1. It evolves an initial condition for one time step of length t/h =1

2. It looks at the counter qubits, thus performing a measurement. The result
of this measurement is probabilistic, but the probabilities themselves are
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derived from the quantum state of the computer reached as the result
of the evolution. The measurement projects the state reached by the
computer onto a state compatible with the result of the measurement.

3. The evolution now commences from the state reached and continues for
another time step.

The computation keeps going until it is completed, i.e., until the cursor qubits
are found in | 001).

Here is an example.

At time 0 the state of the system is

t=0, | T(0)) = | 1000)

We start the computer and look at the cursor qubits when t/h = 1. Now the
state of the system is:

t/h=1, | (1)) = —0.422028 |0011)
+(0.349228 — 0.349228i) | 0100)
—(0.349228 + 0.349228) | 0101)
+0.577972 | 1000)

When we perform the measurement the cursor is found in state
| 010)
The measurements projects | ¥(1)) onto

| ¥'(1)) = (0.5—0.5i) | 0100)
—(0.5 + 0.5i) | 0101)

This state now becomes an initial condition for an unobserved evolution of the
Feynman computer between t/h =1 and t/h = 2. When we reach t/h = 2 the
computer finds itself in the following state:

t/h=2,|T(2) = —0.698456|0011)
+(0.0779718 — 0.07797184) | 0100)
—(0.0779718 + 0.07797184) | 0101)
—0.698456 | 1000)

Again we perform the measurement and find that the cursor is in state
| 100)
which projects | ¥(2)) onto

| ¥'(2)) = —|1000)
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t/h | ¥ (t)) observation | ¥'(t))
—0.422028 | 0011)

. +(0.349228 — 0.3492284) | 0100) 010 (0.5 — 0.50) | 0100)
—(0.349228 + 0.3492281) | 0101) —(0.5 + 0.54) | 0101)
+0.577972 | 1000)

0.698456 | 0011)
+(0.079718 — 0.0797184) | 0100)

2 —(0.079718 + 0.0797184) | 0101) | 100) — | 1000)

—0.698456 | 1000)
—0.422028 | 0011)

; —(0.349228 — 0.3492284) | 0100) 010 (=0.5 + 0.54) | 0100)
+(0.349228 + 0.3492284) | 0101) +(0.5+0.50) | 0101)
—0.577972 | 1000)

0.698456 | 0011)
—(0.0779718 — 0.07797184) | 0100)
Y1 1 0.0779718 4 0.07797184) | 0101) | 100) | 1000)
+0.698456 | 1000)
—0.422028 | 0011)

; +(0.349228 — 0.3492284) | 0100) 016 (0.5 — 0.50) | 0100)
—(0.349228 + 0.3492284) | 0101) —(0.5 4 0.50) | 0101)
+0.577972 | 1000)

0.698456 | 0011)
+(0.0779718 — 0.07797184) | 0100)
6| _(0.0779718 + 0.07797184) | 0101) | 001) — | 0011)
—0.698456 | 1000)

Table 4.1: The evolution of the Feynman computer. Measurements are made
every At/h=1.
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Figure 4.9: The evolution of the Feynman computer. Measurements are made
every At/h=1.

Bummer! We shouldn’t have looked, because this observation moved the com-
puter back to the beginning.

Eventually, after 4 more steps we find the cursor in | 001) and the state qubit
is now | 1), so the computation is completed. See table 4.1.

Figure 4.9 shows this evolution of the Feynman computer.

Figure 4.10 show the same evolution, but this time it also shows the results
of the measurements.

4.5.8 Nonlocality and Teleportation

An astute observer should have noticed something unusual and profound about
the measurements we made in the Feynman computer model: observing the
counter register affected the content of the data register. Would this still happen
if the data register and the counter register were separated by a very large
distance? Would it happen instantaneously? Since the notion of simultaneity
depends on a system of reference, in whose system of reference would this happen
simultaneously? Would this not happen simultaneously in another system of
reference?
The answers to this questions are:

1. Yes, the data register will get affected by a measurement made on the
counter register regardless of how far away they are — as long as they
remain entangled.
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Figure 4.10: The evolution of the Feynman computer with the results of the
measurements shown. As before the measurements are made every At/h = 1.

2. As far as we know and as far as we were able to determine this experimen-
tally, this will happen instantaneously — with the correction that the mea-
surement, process itself is not instantaneous — it has a sub-Planck structure
[106].

3. We don’t know what this process is going to look like when analyzed
from various systems of reference. This would be a very difficult thing to
test experimentally, because there is no transfer of retrievable information
associated with this process. There is definitely a clash here between
quantum mechanics and special relativity. One can show that special
relativistic behaviour is restored in thermodynamic limit, but it seems to
be violated in quantum regime [14].

Should we bring ether back? I have met some distinguished physicists,
who believe so, sic! And they even admitted this in public! But another
possibility is that for entangled quantum systems a wormhole forms, which
transmits some information between the components.

At the end of the day, we don’t really know what a quantum particle is.
We only know what it looks like, when it interacts with a macroscopic
system. And attempts to visualize a quantum particle on the basis of
equations of quantum mechanics invariably yield a non-local object [14],
whose interaction with a macroscopic observer is point-like.
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Figure 4.11: A decaying atom of Cesium emits two correlated photons, whose
polarisation is then measured by Alice on the left and by Bob on the right.

Two and Three Photons: Bell’s Inequality

Consider an experiment sketched in figure 4.11

We have an atom of Cesium in a laboratory somewhere in France (Earth),
which decays and emits two entangled, or correlated photons, which rush in
opposite directions. One photon speeds away towards Maxwell mountain on
Venus, where Alice waits with a measuring apparatus. The other photon speeds
away towards Olympus Mons on Mars, where Bob waits for it with his measuring
device.

The two photons are correlated. If Alice and Bob measure linear polariza-
tions of their respective photons then the basis on the Alice’s side is:

| z)a, | y)a (4.243)

and the basis on the Bob’s side is
| z)s,|y)B (4.244)
The combined basis for the bi-partite system is therefore:
| zazp),| 2ayB),| yazs),| yays) (4.245)

and a general state of the bi-partite system can be described in the following
way:

| O) =Yy 05 | TaTB) + Voays | zayB) + Vyazs | yarp) + Uy ays | y?yB> )
4.246

Now, if Alice measures her photon, and finds that it has passed through a
vertical polarizer, then the state of the bipartite system filters into

Uyaep | YaZB) + Vy,yp | YayB) (4.247)

multiplied by a scaling factor.
If now Bob makes a measurement the bi-partite system will go either into:

| yazg) (4.248)

or into
| yays) (4.249)
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In other words, Alice affects the result of Bob’s measurement by her own mea-
surement, and vice versa. The full state of the original bi-partite system can be
ascertained only if repetitive measurements (so that probability distributions
can be obtained) are made both by Alice and Bob.

This point can be made even more succinctly if we have a closer look at
the photons that are emitted by the cesium atom. The photons are circularly
polarized, one left and the other one right, and moving in the opposite directions,
so that, in effect, the process conserves both the momentum and the angular
momentum of the cesium atom. The combined state of both photons is (up to
a scaling factor):

| ¥) (o) +ily))@(lz)—ily))
= [o)@|z)+ily)e|z) —i|n)e | y)+ |y |y)

Now, remember that photons are Bose particles, therefore a state describing
two photons has to be described by a symmetric tensor. This means that we
have to add to the above another bi-partite state for which the values of states
in which both particles are found are swapped over:

D)@ |2) +iln)e |y) —i|ye|e)+ [y |y)

If you add these two together what’s left is:
1
U)=—(z)0|2)+ |y)® ) 4.250
%)= 2 (0o |2+ 9o ) (4.250)

where the proportionality coefficient has been set so that [(¥ | ®)|” = 1.

This state has a very interesting property. If Alice measures that her photon
is polarized vertically, she projects it onto | y)® | y), so Bob is guaranteed to
find that his photon is vertically polarized too. If Alice finds that her photon is
polarized horizontally, she projects it onto | 2)® | ) and Bob is now guaranteed
to find his photon in horizontal polarization too.

If Bob and Alice could find that in this process their photons are differently
polarized, e.g., Alice would find hers in | ) and Bob would find his in | y), then
a certain amount of twist in the electromagnetic field would be associated with
this pair of photons. That twist would imply that a certain amount of spin must
have leaked from the cesium atom. But if the total angular momentum of the
cesium atom did not change as both photons were emitted, this would imply
that angular momentum is not conserved in this process.

But what if Bob’s polarizer is set at a different angle? In that case his basis
is | ') and | ¢').

Recall figure 4.7, page 88, in section 4.3.6. In that section we demonstrated
that | ) and | y) for photons transform the same way e, and e, do, i.e.,

| 2"y = cosf|x)+sinf |y)
| y") —sin@ | z) + cosb | y)
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and inversely:

|z) = cosf|z')—sind|y')
|y) = sinf|z") +cosf|y')

Dropping those pesky ® symbols and substituting the latter in equation (4.250)
yields:

7y = J%<|x>|x>+|y>|y>>
1

= 7 (| ) (cos@ | 2"y —sinB | y')) + | y) (sinb | ') + cosb | y')))

- %(cos(ﬂx)|x')—sin0|x)|y')+sin0|y)\x')+cos0\y)|y'))
Even though this state does not look very symmetric, it is still the same sym-
metric state described by equation (4.250), but this time we use different basis
vectors for Alice and for Bob, so the symmetry of the state is no longer ap-
parent. In order to figure out if a given bi-partite state is indeed symmetric or
not, you should write it using the same basis for both particles. This is only
possible if these are identical particles, of course. But it is only for identical
particles that we need to worry about our bi-partite states being symmetric or
anti-symmetric.

Looking at this state we can now read that

P, = % cos> 9
Py = % sin? 6
P, = % sin? 6
B, = % cos? 0

and Pzzl -+ chy’ + Pyz’ —+ Pyy/ =1.
Now assume that there are 3 similarly correlated photons and three observers
with 3 polarizers. The state of the photons is given by:

| ¥) = \% (lza) [zB) | zo)+ | ya) ys) [ yo)) (4.251)

where the 4 p,c and y4, p,c directions are the same for all three observers. To
construct a state like this we would have to find a process that emits 3 photons
and for which the total angular momentum of the emitter is preserved. But this
wouldn’t be quite enough, because for three photons you could have some twist
carried away by photons A and B, which would then be balanced by photon C.
So to realize a state such as this one physically isn’t going to be easy. But this
is a Gedankenexperiment.
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Quantum mechanics tells us that Alice, Bob and Cecilia (we can place Ce-
cilia conveniently on the Moon) will affect each other’s measurements, even if
the corresponding measurement events are space-like separated. On the other
hand Special Theory of Relativity says that no interaction mediated by material
particles can be transmitted faster than the speed of light!. So according to the
Special Theory of Relativity if the measurement events are space-like separated,
the measurements should be indpendent of each other. In this case the following
probability argument would apply:

Posys = Praysaoc + Praysye
Pzayc = PzAwByc + PyAszc
Prays + Popye = Poaysre + (Poaysye T Prazsyo) + Pyazsye
= Praypec + Praye + Pyazsye
> Ppye (4.252)

This is called a Bell inequality[7]. But for the tri-partite state given by equation
(4.251) we have:

P:cAyB + Pwsyc - PwAyc
1 1 1 ..
= 5 Sin2 (03 — 9,4) + 5 Sin2 (60 — 63) — § Sinz (60 — GA)
20 (4.253)

If you choose 84 = 0 and then plot the left hand side in function of #p and 6¢
you will find some points on the graph for which the left hand side of equation
(4.253) is less than zero, sic! This is shown in figures 4.12 and 4.13.

If you don’t trust figures, substitute z = 15° and y = 30°, then:

sin? 15° + sin? 15° — sin? 30° = —0.116

This is indeed what the Aspect, Dalibard and Roger experiment demon-
strated in 1982 using a system of two correlated photons. But for two photons
the situation is more complex, because if you have three polarizers and two pho-
tons only, then you cannot write the inequality (4.252). This is because either
Alice or Bob will have to measure the same photon twice, in which case two out
of the three measurements cannot be independent, even according to classical
physics.

But in February this year Pan, Bouwmeester, Daniell, Weinfurter, and
Zeilinger reported an observation of quantum non-locality in a three-photon
experiment [82] which is more similar to the one discussed here.?

Tripartite entangled states such as the one given by equation (4.251) are
called Greenberger-Horne-Zeilinger states, or GHZ (pronounced gee-aich-
zee not giga-hertz) states for short. A state like this indicates that the

IThis is not quite correct: Special Theory of Relativity allows for the existence of Tachyons
— particles moving always with the speed greater than the speed of light.

2According to John Preskill[87] a good reference on Bell inequalities is a book by Asher
Peres, “Quantum Theory: Concepts and Methods”, chapter 6 [86].
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0.5 * (sin(x) * sin(x) + sin(y - x) * sin(y - x) - sin(y) * sin(y)) ——

Figure 4.12: Py ,yp + Popyo — Paaye for 04 =0
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0.5 * (sin(x) * sin(x) + sin(y - x) * sin(y - X) - sin(y) *sin(y)) <0 ——
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three photons in question are in a quantum superposition of the state
| za) | zB) | z¢) (all three are horizontally polarized) and | ya) | yB) | yo)
(all three are vertically polarized) with none of the photons having a well
defined state on its own [82].

Consider first using circular polarizers to measure photons A and B,
and a linear polarizer rotated by 45° with respect to the original polarizer
at the source of the three photons. The representation of the GHZ state
in this new basis is:

1¥) = 3(I1RaIDz Yo+ | Dal Rp|a)c +

NO| =

| R)al Bz |y)o+ | Dal La | y)e)  (4.254)

An interesting feature of this expression is that the measurements de-
scribed by it are highly randomized. Photon A exhibits left or right po-
larization with the same probability of 50%. On the other hand, given
any two specific measurements on photons A and B the state of photon
C' can be predicted with certainty.

Similar expressions can be constructed by cyclic permutations, one in
which photons A and C' are polarized circularly and photon B is polarized
linearly and another one in which photons B and C' are polarized circularly
and photon A is polarized linearly.

If the detected polarization is due to some internal local property
that the photon carries with it, it should be possible to assign a simple
label number to this property. Let these labels be called X for linear
polarization and Y for circular polarization. Let us now assume that we
can make the following assignments:

polarization | label
| =" X=1
ly") =-1
| R) Y=1
| L) Y=-1

This seems to work quite well for predictions associated with state (4.254),
where the outcome of each possible measurement yields

|Rya | Ly |2')e — Ya¥YpXec=1x-1x1=-1
| LYa |R)p |2 — YaVpXe=-1x1x1=-1
|R)A|R)B|Y)e — YaVpXo=1x1x-1=-1
|D)a | Le|y)e — YaVpXo=-1x-1x-1=-1

By cyclic permutations this will hold also for YA XpYc and XaYpYc. We
thus arrive at the following rule:

YaYeXc =YaXBYo = XaYeYe = -1 (4.255)
Multiplying all three equations yields:
YaYpXcYaXpYoXaYsYo = XaXpXc = —1° = -1 (4.256)

because
YZ=Yi=YZ=1 (4.257)
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What this means is that if we were to replace circular polarizers for pho-
tons A and B with linear polarizers and thus measured all three photons
versus linear polarizers, all at the same 45° angle to the original direc-
tion at the source, we should detect only the combinations for which the
product of the X labels is —1, i.e.,

|2")al2")s |

|2")aly)s |2

C

!
C

|yYal2')s | 2')e

)
)
")
ly)a ) |y)

c

This is a prediction that derives from the assumption that the mea-
sured photon polarization is due to the photon carrying a labeled property
with it before it arrives at the polarizer, which then affects the polarization
detected.

The quantum prediction however is different. Rewriting the GHZ state
in the | '), | ') basis yields:

) = 1(Iac’>,4|ac’>B|cc’>c+lcv’>AIy’>BI:'/>c+

2
[9)ala)e | V)t 1y)aly)e|a')e) (4258)

According to quantum mechanics the product of X labels for all possible
outcomes of this experiment is going to be +1, not —1. Not a single
possibility predicted by the “classical” reasoning outlined above is also
predicted by quantum theory.

The beauty of this approach is that a measurement performed on a
GHZ state clearly demonstrates the discrepancy between a theory based
on a local hidden variable model, and quantum mechanics, without re-
sorting to statistical inequalities, which may be quite difficult to detect
experimentally. Instead the conflict arises for quite definite predictions
and can be exhibited by a single measurement.

The measurement performed by Pan, Bouwmeester, Daniell, Wein-
furter and Zeilinger [82] demonstrated the correctness of the quantum
prediction using 200 fs pulses of ultraviolet light (A = 394nm), which
generated pairs of polarization entangled photons. These were then pro-
cessed further so as to create a tri-partite GHZ state while dropping the
forth photon. Two years earlier, in 1998, Laflamme, Knill, Zurek, Catasti
and Mariappan performed an NMR experiment which demonstrated GHZ
entanglement too [62].

Teleporting a Qubit

Consider a qubit in an | 1), | y1) basis

W =alo)+olm=( 5 ) (4250)

where | z1) and | y1) don’t have to correspond to polarization directions any
more. They can be spin variables, for example. But | ) and | y) are easier to
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write and also to read than |1) and ||} (why? because our eyes and brains are
used to z and y more than to 1 and |), so I'll just use this.

In order to transmit this qubit to another location we need to entangle it
first with a bi-partite state, for example:

| ) = % (I 22) | us)— | w2 | 3)) (4.260)

Although this state is antisymmetric, it is possible to realize it using bosons.
For example, if we have two photons of different colour, they are distinguishable,
and therefore they can exist in non-symmetric or anti-symmetric states as well
as in symmetric ones.

How does one entangle a qubit? One puts it sufficiently close to the other
qubits so that a tri-partite state forms:

| Do) = %(a|$1>+b|y1>)®(|w2>|y3>—|y2>|w3>)
= % (lz) | @2) [ ys)— | 1) [ y2) | @3)) (4.261)
+% (ly1) [ 2) | ya)— [ 91) | y2) | w3)) (4.262)

Once the tri-partite state has been formed Alice can stay home with particles
1, 2, their dog and their children, and Bob is sent away to Australia with
particle 3. All three particles must be kept in a very, very deep freezer so that
the entanglement is maintained. This is the really difficult bit in this whole
business — the algebra itself is quite trivial.

In order to transmit the state of particle 1 to Bob Alice needs to measure
her remaining two particles against the so called Bell operator basis introduced
by Braunstein, Mann and Revzen [19]:

) = () )= ) [ ) (4.263)
7)) [+ ) | ) (4.264)
99 = S5 [aa)= 30} [ 0) (4.265)
[97) = (o) [+ ) | a) (4.266)

(4.267)

In order to see what this measurement will do to our tri-partite state (4.262)
we need to evaluate the following products:

(T4 | T @ d)
(VB | ¥ ® @)
(VO | ¥ @ ®)
(VP | T @ @)
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This is actually less tedious than it seems at first glance, because once you write
it all down on paper you can see very easily which terms become zeros and which
survive:

(W4T ed) = %(<x1|<yz|—<y1|<xz )

7N

% (| z1) | 22) [ y3)— | 1) | y2) | z3))
D) L) )= L) L) x3>>)

= —5 | z3) — 5 | y3) (4.268)

(TP | Vo) = %(<x1|<y2|+<y1|<x2|>

(7 (| 21) | 22) [ ys)— | 21) | 40} | w5))
+\’}<|y1>|m2>|y3> |y1>|y2>|w3>>)

= 2l g ) (4.269)

(¥ | Ve d) = % (@1 | (@2 |~ | (w2 )

/N

% (| 21) | 22) | ys)— | @1) | o) | @3))
+% (yn) | @) | ysh— o) | o) | x3>>)

= et (4:270)
(WP | Tod) = %(<$1|<$2|+<yl|<y2|)
(7 () 22} | ya)— | 1) | 92} | 2s))

#0122 L= L) L) 7))

a b
D) | ys) — 3 | z3) (4.271)
In summary:

REX) (4.272)
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=5 (1 (3 ) () s () «en ()
L (5 L)) (51) ()

+|m1:0><(1’ é)-(i)ﬂwf’)(? o )(Z)) (4.273)

The result we have obtained is as follows: when Alice performs her measurement,

the tri-partite system ends up in one of the four states, projected onto | ¥4),
or | ¥B) or | ¥C), or | ¥P). This puts Bob’s particle correspondingly into

. -1 0 a -1 0 a
oneofthefollowmgstates.( 0 _1>-<b),or< 0 1)-(b>,or

01 a 0 -1 a . . a
(1 0 ) b>’0r<1 0 -(b).Thematmcesthatmulhply(b

all square to 1 with the exception of the last one, which squares to —1. All

that Bob needs to do in order to put his particle in the state ( z ) is to apply

the corresponding matrix (or the corresponding unitary transformation) to his
particle. But how is he to know which is the corresponding matrix? Well, Alice
has to tell him, i.e., Alice must call him using some conventional information
transfer mechanism and tell him which of the four Bell operator vectors she
ended up projecting her two particles on. Alice does not know this in advance.
She has to perform a measurement to find out.

What is the experimental status of quantum teleportation? Can this really
be done?

It has been done. Perhaps the first ones to demonstrate quantum telepor-
tation were Bouwmeester, Pan, Mattle, Eibl, Weinfurter and Zeilinger [16] in
December 1997.

In order to demonstrate quantum teleportation entangled states must
be produced on demand. The group that performed the first telepor-
tation experiment [16] is the same group that demonstrated quantum
non-locality using the tri-partite Greenberger-Horne-Zeilinger state some
2 years later [82]. They are located at the University of Innsbruck in
Austria.

In order to teleport a qubit we need to generate a maximally entangled
bi-partite state first. Then we must additionally entangle the bi-partite
state with the qubit to be teleported. Finally, we must come up with a
procedure that identifies clearly all four Bell states for the quantum system
held by Alice. But pairs of entangled photons can be easily produced and
they can be just as easily projected onto two of the four Bell states.

Pairs of entangled photons are generated inside a nonlinear crystal,
where an incoming pump photon can decay spontaneously into two pho-
tons. If these are to correspond to particles 2 and 3, the resulting state
is:

|v) = % (22 | yha— | )2 | 2)2) (4.274)
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To project photons 1 and 2 onto a Bell state they have to be made in-
distinguishable. This is accomplished by superposing the two photons at
a beam splitter. Then when they are both either reflected or transmit-
ted the corresponding amplitudes for these two processes must be added.
Unitarity implies that the reflection amplitude obtains an additional mi-
nus sign. If an antisymmetric state is fed into the system constructive
interference results. The projection of the (1,2) pair onto a Bell state is
thus accomplished by placing detectors in each of the outputs of the beam
splitter and registering simultaneous detections.

Photons 1 and the photon that ultimately splits into 2 and 3 are
generated by using a pulsed pump beam. They are then sent through
narrow-bandwith filters, which produce coherence time much longer than
the pump pulse length. This is based on AEA¢ = h.

The pulses used in the experiment had duration of 200fs, and they
occurred at a frequency of 76 MHz. Photon wavelength was 788 nm with
4nm bandwidth, which resulted in a coherence time of 520 fs.

In their experiment Bowmeester, Pan, Mattle, Eibl, Weinfurter and Zeilinger
teleported a polarization state of a photon, but they did not perform the final
rotation of the other photon, which would really put it in the full teleported
state. In fact their procedure destroyed the teleported state so that it could not
emerge as a freely propagating state for further examination and exploitation
[20]. In short, their teleportation wasn’t complete.

Then in 1998 Nielsen, Knill and LaFlamme [81] demonstrated a complete
quantum teleportation using nuclear magnetic resonance. In fact they imple-
mented the complete Brassard Teleportation Circuit, which we are going to
discuss in the next section, in NMR. Teleportation was accomplished over inter-
atomic distances. In the process a quantum state was transferred from a carbon
nucleus to a hydrogen nucleus in molecules of trichloroethylene.

A molecule of trichloroethylene, C C1H C Cl,, comprises two atoms of
carbon mutually connected by a strong double bond. One carbon atom,
let’s call it carbon-1, is then saturated with hydrogen and chlorine, and
the other carbon atom, let’s call it carbon-2, is saturated with two chlorine
atoms. Hydrogen, 'H, and chlorine, *3Cl, are both magnetically active.
But carbon '2C is not. For NMR experiments such as the one described
by Nielsen, Knill, and LaFlamme, a **C isotope is used in place of 2C.
13C is magnetically active.

The NMR demonstration of teleportation transferred a spin state from
the carbon-2 nucleus to the hydrogen nucleus. The carbon-1 nucleus was
used as an intermediary (the ancilla). The state was teleported over a
distance of only a few A.

The unitary operations described in the next section (The Brassard
Teleportation Circuit) were implemented using non-selective radio fre-
quency pulses tuned to the Larmor frequencies of the nuclear spins, and
delays allowing entanglement to form through the interaction of neigh-
bouring nuclei.

The Bell basis measurement was based on a procedure originally sug-
gested by Brassard. A direct Bell basis measurement cannot be performed
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in NMR because here the measurement step extracts expectation values
of o, and oy for each spin averaged over the ensemble of molecules. In
other words, in NMR we measure a collective magnetization of the whole
ensemble.

Brassard’s suggestion was to rotate the state from the Bell basis into
the computational basis, | 00), | 01),| 10),| 11) first, and then to perform
a projective measurement in this basis.

Nielsen, Knill, and LaFlamme exploited the natural phase decoherence
occurring on the carbon nuclei to achieve an effect similar to a projective
measurement. The decoherence process is indistinguishable from measure-
ment. In fact this is what measurement really is. So, by allowing carbon
nuclei quantum states to decohere, they effectively used the environment
to perform the projective measurement for them. Then they performed
the final transformation in order to recreate the teleported qubit in its
new location.

The NMR spectrometer used in the experiment was Bruker DRX-500.
Larmor and coupling frequencies for the hydrogen and both carbon nuclei
were determined experimentally:

wa =~ 500.133491 MHz

wg, =~ 125.772580 MHz
wo, & wg, —911Hz
Juc;, = 201Hz

Joyo, &~ 103Hz

There are also some other couplings present in this molecule. These can
be effectively supressed by multiple refocusings.

An exhaustive discussion of how to implement selective coupling be-
tween NMR qubits can be found in [67].

Because paper is cheap, whereas lasers, NMR machines and optical benches
are expensive, I have found only these two papers that presented genuine exper-
imental results so far. But you will find great many theoretical papers outlining
various teleportation schemes in Physical Review A.

One of such schemes, which as I have remarked, has actually been imple-
mented by Nielsen, Knill, and LaFlamme in NMR, we are going to discuss in
the next section.

The Brassard Teleportation Circuit

Figure 4.14 shows a quantum circuit. This is our first non-trivial quantum
circuit, and we are going to analyze it in detail.

The circuit is relatively simple, comprising 3 qubit lines only. Each horizontal
line represents a qubit. The square boxes with various letters in them represent
single qubit gates, and the @ symbol with a wire sticking out of it vertically is
the controlled-NOT gate. The @ symbol indicates the data line and the other
end with a black dot on it indicates the control line. If the vertical line crosses
a horizontal line without a fat black dot on it, it means that the coupling
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N

C
C

Figure 4.14: The Brassard teleportation circuit.

represented by the vertical line skips over the qubit. Time runs from left to
right. But observe that time is not as strictly defined here as is the case in
classical physics or in traditional quantum mechanics. Rather what flows from
left to right is the order of events, each event being represented by an application
of a gate.

There is an unusual feature in this circuit, which is seldom found in other
circuits in this location, though most have it somewhere at the right end. The
top two lines end in black dots about half-way through the circuit. This place
indicates that a measurement is carried out here, or that the system is simply
allowed to decohere naturally, which, as far as the qubits are concerned, is the
same thing.

The circuit implements the process of teleportation. The top two lines rep-
resent Alice, and the bottom line represents Bob. You can see that we end up
moving the state | ¥) from the top line in the upper left corner of the circuit to
the bottom line in the lower right corner of the circuit.

If we were to map this circuit on the molecule of trichloroethylene used by
Nielsen, Knill and LaFlamme in their NMR teleportation experiment, then the
top line would correspond to the Carbon-2 nucleus, the one that’s connected to
two Chlorine atoms, the middle line would correspond to the Carbon-1 nucleus,
connected to a Chlorine and to a Hydrogen atom, and the bottom line would
correpond to the Hydrogen atom. Chlorine atoms, although magnetically active,
were not used in the computation, so they do not appear in the circuit.

All nuclei in the molecule of Trichloroethylene are coupled with each other.
Yet in the circuit below we see couplings appear in 5 selected locations only.
All the other couplings as well as these 5 couplings in places where they are not
needed are supressed by refocussing, or time halting, which we have discussed
in detail already.

The single qubit gates L, R, S, and T used in the circuit, and the two
qubit gate @ have the following matrix definitions in the computational basis

| q1)

| g2)
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o=(3)main=(?)

L = %(} _11) (4.275)

R = %(_11 }) (4.276)

s = (é (1)) (4.277)

T = (‘01 _Oz) (4.278)
1 000

P = 8 (1] 8 (1) (4.279)
0010

We can think of the gate L as implementing a 90° qubit rotation (in the Bloch
sphere) “to the left”, then the gate R implements a 90° rotation “to the right”.
It is easy to see that L - R = 1. Gates S and T represent a combination of
rotations about the z axis with a multiplication by a fixed global phase-shift:

i 0 ma €710
) = /4< 0 e—in/4 )
-1 0 ; edm/t 0
T = < 0 i ) = e’L’II'/4 ( 0 e*i37r/4 )

It is computationally convenient to write definitions of these gates in the
language of vectors rather than matrices:

S

Il
/N
[en)}
—

1

L0 = —(0+|1)
1
LI = 25 (-10+]1) (4.280)
RI0) = %um—m)
R|1) = %(|o>+|1>) (4.281)
S0y = i|o0)
S(1) = |1 (4.282)
TIo) = —|0)
T|1) = —i|1) (4.283)
©10)[0) = |0)]0)
o101 = |0)]1)
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@ 1)10) 1) 1)
o)1) = [1)]0) (4.284)
Inputs applied to the circuit are | 0) to the two bottom lines and an arbitrary
state | ¥) applied to the top line. This is the state which is going to be teleported
to the bottom line.
The first gate, L, converts the input | 0) to % (10)+ | 1)). After the gate
has been applied the states on the three lines of the circuit are:

| o)
1
V2
| 0)
The next step entangles the two bottom lines using the controlled-NOT gate.

Here we use a subscript ¢ to point to the control line and subscript d to point
to the data line.

(10)+ 1)

&= (| 0)ct | 1) | 0

%
:%(@|O>c|0>d+@|l>c|0>d)

1
V2

This is a new bi-partite state which now binds the two bottom lines together.
Their state is mazimally entangled. The state of the circuit at this stage is:

| )
1
7§(|0>|0>+|1)|1>)

The next operation entangles | ¥) with the middle qubit, which is already
entangled with the bottom qubit. We continue with our convention, where the
control qubit is marked with subscript ¢ and the data qubit is marked with
subscript d:

(10)c [ 0)a+ | L)e | 1)a) (4.285)

o \mc\/% (10)a [ 0)+ | 1)a | 1)
_ %@<a|o>c+b|1>ﬂ><| 0)a | 0)+ | 1)a | 1))
_ %(a@q 0)e | 0)a) | 0) + & (| 0)e | 1)a) | 1)

+0(@ (| De | 0)a) | 0) + @ (| 1)e [ 1)) | 1>))

_ %(aﬂ 0% | 0% | 0)+ | 0% | 1)g | 1))

(| De | Da [0+ [ 1)e | 0)a | 1>)) (4.286)
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Now all three lines are entangled and the computer is no longer in a state that
would let us isolate any of the lines.

The last operation before the measurement rotates the upper qubit “to the
right”. For ease of reading we mark the object qubit of this operation with
subscript R:

R (a(10)n 10/ 0)+ 00 | 1| 1)

+b(| Dk | 1) 100+ | x| 0)[ 1))
= 5 (s 100210) |0+ R 0)m | 1) 1)

+b(R| x| 1) [0+ R |z |0)]1))

va\"\Vz ¥
+bQLHOM+|nm|n|m+—%aom+|nm|m|n))

=—L<a(inom—|nm|m|m+—%GOM—|nm|n|n)

V2 V2
- %(a(| 0200)— | 1200)+ | 0r11)— | 1z11))
+5(] 0g10)+ | 1x10)+ | 0£01)+ | 1R01>)) (4.287)

At this stage we reach the measurement point. At this point the upper two
qubits are either measured or they are allowed to decohere naturally, as was the
case in the experiment with Trichloroethylene, with the result that they collapse
jointly onto one of the following states: | 00), | 01), | 10), or | 11).

This process forces the bottom qubit into a state that is commensurate with
whatever the upper qubits become and with the original quantum state of all
three qubits.

In order to see what happens next we need to carry out our analysis for all
possible outcomes of the measurement. This is going to be rather tedious, so
we shall pick up just one possible outcome and go ahead with anlysing what
happens in this case leaving the analysis of the remaining three channels to the
reader as an EXERCISE.

Suppose the upper two qubits decohere to | 01). This filters the state of the
system into a state proportional to (up to a new normalization constant):

a|011) +b | 010) (4.288)

Observe that every other outcome of the measurement on the upper two wires
will produce a similar result, i.e.,

a | something) + b | something different)

No possible measurement outcome results in information loss about either a or

b.
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The first operation on the right hand side applies & to the second and third
qubit. We continue with our convention of marking control and data qubits
with ¢ and d:

a|0)® (| 1)e | 1)a)+5]0) & (| 1 | 0)a)
= al0) | 1)e|0)a+b]0)[ 1) | 1)a (4.280)

Next we pass the upper line through the S gate, which in this case simply
multiplies | 0) by ¢, so that the state of the system becomes:

ia | 0Y 1) | 0)+db|0)[1)]1) (4.290)

The next operation is quite difficult to write down symbolically because it
couples the top and the bottom line of the circuit and it is the bottom line that
controls the gate. Again our subscript convention helps:

@ (ia|0)q 1) [ 0)c +1ib|0)a | 1) | 1)c)
=ia|0)q|1)|0)c+ib|1)q[1)] 1)

Now we apply the S gate to the top qubit and the T gate to the bottom one:

iaS | 0)s | )T | 0)p +ibS | 1)s | VT | )7
=iai | 0)s | 1)(=1) | O)r +ib(1) | 1)s | 1)(—d) | 1)
=a|0)[1)[0)+b[1)[1)]1)

And finally we apply a yet another upside controlled-NOT gate:

®(a]0)a|1)[0)c+b[L)all)|1)e)
=a|0>d|1>|0>c+b|0>d|1>|1>c

100 ( ;)

You may say that in this case all these operations merely brought us back to
where we were after we applied the controlled-NOT gate to the bottom two
lines after the mid-circuit measurement. But this is just fine in this case. You
should check yourself what is going to happen if states of the upper two qubits
measured in the mid-circuit end up in the three other combinations, i.e., | 00),
| 10) and | 11). The beauty of the Brassard circuit is that the same operations
will always untangle the state of the bottom qubit putting it eventually back in
| T) every time.

Also, observe that the state of the middle qubit does not change after the
measurement in the mid-circuit at all, so the qubit just stays as is, and the state
of the upper qubit ultimately does not change either. Since these two qubits
have already decohered, the bottom qubit ends up being forced into | ¥) at the
end of the computation.

This is why the Nielsen, Knill and LaFlamme experiment worked so nicely.
After the four initial gates the experimenters simply waited a little allowing the
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quantum spin state on the two carbon nuclei to collapse, or decohere. They
simply used the environment to carry out “the measurement”. Then they com-
pleted the computation by sending the remaining 6 gates to the molecule and,
pronto, the spin of the Hydrogen nucleus was forced into the | ¥) state.

What did Bohm think about all this?

People drilling Quantum Mechanics for meaning noticed fairly early that whereas
Quantum Mechanics was strange enough for a single quantum particle, it was
definitely way too strange for multiparticle systems. The famous paper by Ein-
stein, Podolsky and Rosen about the “EPR Paradox” [33] goes all the way back
to 1935. Tt took 29 years for Einstein and his colleague’s objections to be coined
into a mathematical form of Bell inequalities [7], and it took further 18 years
for Bell inequalities to be tested experimentally by Aspect, Dalibard and Roger
[1]. When it comes to things that are really profound progress tends to be slow.
Recall that the Berry’s paper about geometric phase shift was published in 1983
only.

The Schrédinger wave equation for two particles of identical mass looks as
follows:

2

ZhQ‘I’ (’l"l,’l"z,t) =

5 (V24+V3) + V[T (r,7a,1) (4.291)

“2m
The requirement that the wave function should be symmetric or anti-symmetric
if the particles are indistinguishable, is external to the Schrdodinger equation.
Function ¥ is a complex-valued function on the configuration space of two
particles. We can always rewrite this function in the polar representation:

v (Tl,’l"Q,t) = R(’f‘l,’l"g,t) eiS(rl,'rz,t)/h (4.292)

where R and S are two real functions on the configuration space. Upon such
substitution equation (4.291) splits naturally into two equations for S and P =
R? = 0*0:

oS 1 2 2 _
5 o [(VIS) +(V25) ] +V+Q=0 (4.293)
%_]; + Vi (PViS/m)+ Vs (PV2S/m)=0 (4.294)
where 2 (V2402 R
Q= _E_M (4.295)

2m R
Equation for S can be still interpreted as the Hamilton-Jacobi equation with
the momenta of the two particles given by:

P = V1S and Dy = VS (4.296)

The above implies that the two particles are “guided” by the quantum potential
Q@ in a correlated way. Quantum potential () does not necessarily fall with the



4.6. THE MEASUREMENT 147

distance between the two particles. The particles may therefore be strongly
coupled even at long distances. As was the case in the single particle example,
where the particle interacted mnon-locally with various distant obstacles, e.g.,
with the other slit in the double slit experiment, so here the particle interacts
non-locally with the other particle.

There are no retardation terms in the quantum potential ), so this non-local
interaction is instananeous. This should not be so surprising perhaps, because,
after all the Schrodinger equation is non-relativistic.

But one can carry out similar reasoning in context of the Dirac equation
and the non-locality will still be present. Yet, one can also demonstrate that
the form of the Quantum Potential that arises in the relativistic theory will not
allow signals to be transmitted faster than light.

Another important observation that can be made here is that the quantum
potential @@ depends on the quantum state of the whole system in a way that
cannot be described as interaction between the two particles. The system is
indivisible.

This indivisible entanglement and non-locality, in principle, applies to the
whole universe, and, in principle, it is impossible to disentangle one part of the
universe from another one. But it turns out that it is possible to obtain an ap-
proximate separation of an entangled quantum system into multiple portions,
which can be then considered in isolation from each other. This is what hap-
pens in typical laboratory situations, and in the thermodynamic limit, where
quantum potential becomes negligible [14].

4.6 The Measurement

So far we have not talked much about the measurement itself, although in
various places we have smuggled some ideas already, based on, should we say,
common knowledge about things quantum mechanical.

There exists a very elaborate theory of quantum measurement, which arose
in response to somewhat dogmatic role that the measurement played in early
quantum mechanics. Physicists are people, who, by and large, don’t like dogmas
and axioms. Physics theories always arise from observations of nature in the
first place, observations, which are then coded into mathematics. They are not
mathematical theories. There is always a place in physics for asking questions
and for trying to subvert even the most established theories. In fact most Nobel
prizes result from such subversive activities.

This is very different from mathematics, where all theories rest on the foun-
dations of axioms and primary notions, from which theorems and further defi-
nitions are then developed by logical reasoning.

In physics, and especially in quantum physics, logical reasoning may often
lead astray.

In the following few sections we will not present the whole theory of mea-
surement or even its small part. As has been the case in this course so far, we
will only discuss what is relevant to quantum computing.
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4.6.1 The Density Operator

In context of real life physics we cannot measure the wavefunction directly. The
only thing we can measure are the so called observables such as energy, spin,
momentum, charge, and these correspond to eigenvalues of various Hermitian
operators, and probability distributions. The shape and form of the wave func-
tion must then be inferred from the combination of theory and experimental
data.

In order to measure probability distributions we must work with a statistical
ensemble of quantum systems. We cannot collect probability distributions from
a single quantum system, because every time we probe it, the system collapses
to an eigenstate of whatever operation we use to do the probing.

An example of a statistical ensemble of quantum states is the collection of
molecules in a magnetically inactive suspension in an NMR experiment. When
the measurement is finally made, and we’ll explain down the road what is actu-
ally measured and how, we end up finding that a certain percentage of molecules
was in state | ¥1), then some other percentage was in state | ¥»), and yet some
other percentage may have been in state | ¥3) and so on. The percentages
measured are classical probabilities of finding a molecule in some such state.
The probabilities can be associated for example with intensity of spectral lines
that correspond to various energy levels, or with intensity of beams in a Stern-
Gerlach experiment, or with strength of magnetization of an NMR sample in
various directions.

Once the probabilities have been collected, we can assemble them in an
object called the density operator, the definition of which is as follows:

p= Zpi | Ui) (¥ | (4.297)

where p; is a probability of finding the quantum system in state | ¥;).
As the ensemble evolves unitarily in time thusly

| U(ta)) = Ulta, t1) | ¥(t1)) (4.298)

its corresponding density operator evolves too:

p(t2) = ZP:’ | (t2))(P(t2) |

ZPiU(t27t1) | T(t)) (T (tr) | U (t2, 1)

Utz t1)p(t1) U (t2, 1) (4.299)

A density operator does not define the wave function uniquely. In fact it
is possible, as you will see later, to write down and even measure a density
operator to which no single wave function corresponds. Such density operators
are said to described mized or impure states.
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Consider the following two vectors

@ = o i
= 20—y

Now consider a density operator that corresponds to these two vectors with
equal probability of 1/2 assigned to each state

p = ylaal+y |0
3 1
= 2o+ 100l

As you see the same density operator describes another statistical ensemble,
in which state | 0) appears with probability 3/4 and state | 1) appears with
probability 1/4.

EXERCISE Demonstrate this equality.

4.6.2 Projective Measurement

A quantum mechanical measurement can be thought of as a filtration process.
In the introductory section, in which we talked about probability amplitudes
you saw this filtration in action. We filtered light beams to produce beams with
specified polarization.

In the language of Hilbert space such a filtration process is described by a
projection operator P,, associated with some observable M and its eigenvalue
M, and eigenstate | ¥,,). The projection extracts the component of a quantum
state that points in the direction of | ¥,,):

Pp | U) =P ;| Vi) =om | ) (4.300)

After the measurement has been completed the system remains in state | ¥, ).
The probability of finding it there is 1 until the system evolves away from this
state by natural evolution, or by some other means.

The probability of finding | ¥) in | ¥,,) is

(| P |¥) = (¥]am]|¥m)
= Zaﬂq’i | o | ¥m)
i
= aam(Tm | Tp)
= 0;Qm = Pm
But also observe that

<"I’|P1an|‘I’>=<‘I’M|O‘:nam|‘1"m>=pm
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Hence
Pl =p,=P,P, (4.301)

Our projections, associated with eigenvectors of M are idempotent and Hermi-
tian.
Projections associated with eigenvectors of M are orthogonal and they add
up to 1:
Pin = 6”Pz and Z P, =1 (4302)
K3

Wrapping all the above we can described the state immediately after the
measurement as:

I

1
_Pm|"I">
Am

P | )
(U | Pr | ¥)

| Urm)

If | ¥;) are eigenstates of some operator M then an eigenvalue M; is asso-
ciated with every eigenvector. The average value of M on | ¥) is

(V| M|T) = <‘I’|ZMiai|‘I’i>

> | o ZMiai | ©;)

J
> W M (U | U,)
m
> pmMp,

m

This should be understood as follows: imagine that you have a statistical en-
semble of quantum systems, all in the same state | ¥). The density matrix of
this ensemble would be simply p =| ¥)(¥ |. Then if you perform a measurement
M on this ensemble, you’'ll get (M) as an answer.

4.6.3 Projective Measurements and the Density Operator

The relationships describing projective measurements can be translated into
the formalism of density operator — extending the usefulness of the description,
because this time we may apply it to a mixture of various quantum states
within our statistical ensemble. The complication is that in the density operator
formalism classical ensemble probabilities combine with quantum probabilities,
which may easily lead to confusion. Let us use greek indexes for the classical
probabilities then and latin indexes for the quantum ones, so that

PZZPM | )
"
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and

| ¥y) = Zam’ | ;)

where | ¥;) are the basis vectors of some observable Hermitian operator M.
How does measurement affect p?

PmPPIn = ZPqu | \I}H><‘I,N|P1n
"

Zpuaum | lI'M><\IJm | O‘Zm
"

= Zpupum | U} (T |
"

= Pm | Y (Y |

The result is not a dinkum density operator, because its trace isn’t 1, and, as you
will see in the next section, the trace of the density operator is always 1. How-
ever, P, pP‘;n /Pm is a fine density operator of the state that the measurement
has produced. You will see a nicer formula for this state further down.

Probabilities p,, can be extracted from p using the so called trace relation-
ships. These are beloved by quantum physicists, but they can look quite obscure
to the unaided eye. Yet, if you rewrite them in terms of index notation, which is
my preferred way of doing things, because I happen to have a General Relativity
background, they turn out to be rather trivial. This is one such relationship
that comes useful:

(U | PP |0) =Y ¥,PIP* U = tr;,, Y PIPH T, = tr (PfP | U)(T |)
ki &l

From this we get
Pum = (y | P;ran | @y) =tr (PIan | U ) (T, |) (4.303)

and now applying it to py,:

P = > Pubum = 3 putr (PP | 9,)(T, )
© ©
= tr (PIan Zpu | € ) (T, |>
w

= tr (PIan p)

We can now write the formula for the density operator of a state resulting from
a measurement as:

P,pPy,

| ) (¥ [= PrmpPr [P = —————
tr (PIanp)

(4.304)
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Recall that for projections associated with eigenvectors of a Hermitian op-
erator M we have PIan = P,,, so the relation above is also written as

Pm = tr (Pmp) (4305)
From this it follows that an expectation value of M on state p is given by:
(M) =tr (Mp) (4.306)

EXERCISE Prove this relationship attending to details.

4.6.4 Other Properties of the Density Operator

In this section we are going to summarize briefly the properties of the density
operator.

1. The density operator is Hermitian. This is easy to see from the basic
definition. For a pure state:

p =TT |

and this is clearly Hermitian. For a mixed state p is a sum of Hermitian
operators and so it is Hermitian.

2. Trace of p is 1. This is also easy to see from the basic definition:
trp = sz' =1
i

3. Density operator is positive. This means that for any state | ¢) in H the
following holds: (¢ | p | ¢) > 0. This is easy to see by direct evaluation:

Glele) = Yoplel BT 9)
Sopile | )

> 0

The inverse is also true, i.e., any operator that is Hermitian, has trace 1 and
is positive, is a density operator for some statistical ensemble of quantum states.

4.6.5 Density Operator of a Single Qubit: The Bloch Sphere

The most general Hermitian 2 x 2 matrix can be formed by multiplying matrices
from {1,0,,0,,0.} by real coefficients. Since every Pauli matrix o; is traceless,
all trace that a p has must come from 1, which we must multiply by 1/2 in order
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to get trp = 1. Consequently, the most general form of a density matrix for a
qubit is:

1
p = 5Q+r0, 140y +1:0:) (4.307)
1 L4r, 1p—iry
2 ( re +iry 1-—r, (4.308)

A positive definite operator must be Hermitian, which we have already ensured,
it must have a positive trace, which we have ensured too and it must have a
positive determinant: det p > 0, which, on evaluating the determinant from
equation (4.308) yields

l—rf—ri—rz >0

This implies that
ri + rfl + 7‘3 <1
There is a one-to-one correspondence here between the possible density matrices
of a single qubit and the points in the ball 0 < |r| < 1. This ball is called a
Bloch Sphere — though it is a ball, really, and not a sphere.
For points on the surface of the sphere the determinant of p vanishes. We

can always diagonalize p and then the determinant is py1p2s. For this to be
zero, one or the other must be zero. For the trace to be 1, one or the other must

be 1. In short
(10 or (00
P=\0 o P=\o0 1

In other words p =| 0')(0' | or p =| 1)(1' |. Remember that we may have
rotated our basis in order to diagonalize p so these states | 0') and | 1') may not
necessarily point up and down within the Bloch Sphere. But they all represent
the so called pure states, so that

p(n) =| ¥(n))(¥(n) |

where 1 is a unit length vector pointing in some direction within the Bloch
Sphere.

EXERCISE Using equation (4.308) show that
trp” = (1+ r?) /2

The result of this exercise gives us an easy criterion for distinguishing be-
tween pure and impure states. For pure states we have

=1 = trp’=1

For impure states

<l = trp’<l1
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EXERCISE Show that state
3 1
= - — | 1){1
p=510001+7 (1]

is impure.

We can now support our previous definition of pure and impure (or mized
states with mathematical rigour. A given state described by p is a mixture if
there is no such single state | ¢) that p =| ¢)(x |. This is equivalent to trp? < 1
and to r < 1.

Vector r can be given a nice physical meaning. Evaluate the expectation
value for the n - o operator, where n is a unit length vector pointing anywhere,

on p(r):
1 1
tr n~cr§(1+'r~cr) = 5tr(n~a'+n~crr~cr)

= ctr(n-or-
2r( or-o)
1
= itr Znirja,-aj
ij

= %tr <Z nm-l)
i
= Zniri =n-r
i

The vector r can therefore be thought of as an expectation value of spin polar-
ization, and it can be obtained by measuring n - o along each direction ez, e,
and e,.

4.6.6 Partial Trace

Consider a system that is a combination of two quantum systems mutually
entangled with each other. Let its density matrix be p4B, where AB is just
a mark and not an exponent. The density matrix for the subsystem A can
be obtained from the density matrix for the combined system by evaluating a
partial trace over the B component:

A

p" =trp (PAB)

The partial trace is defined as follows:

trp (| a1)(az | @ | b1)(b2 |) =] a1){az | tr (| b1)(ba |)

This definition stems from the following relationship, which describes two quan-
tum systems p and o. The systems combine into p ® o. Evaluating a partial
trace over the o component for this combined system yields pure p:

pl=trp(poeo)=ptro=p
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It is possible to present more involved arguments in favour of this constructions
even for systems that are maximally entangled. The argument demonstrates
that partial trace is a unique operation that gives rise to the correct description
of observable quantities for subsystems of a composite system.

The partial trace operation yields some very interesting results for maximally
entangled quantum states. Consider the following state:

1
V2

The density matrix for this state is

| ¥) = —=(100)+ | 11))
p= %(I 00){00 [ + [ 11){00 | + [ 00)(11 | + | 1T)(11 |)

A partial trace over the second qubit is evaluated by replacing | z)(y | for this
qubit with (z | y), and so

tr2p = (10O (0]0)+]1)(0 | (1]0)+ [0} ] (0] 1)+ 1)L | (1] 1))

| = D] =

1
= 5 (00O[+[1A]) =31
Observe that trp? = 1/2 < 1, which implies that this state is a mixture.

Even though the original two qubit state was pure, i.e., we knew everything
about it, after tracing away the second qubit we end up with a state about
which we do not have maximal knowledge.

The opposite is generally true too.

If you have a mixture, it is always possible to construct a higher
dimensional state comprising more qubits (or particles), which is
pure, and the partial trace of which returns the original mixture.
This procedure is called purification.

Coming back to our example, the property that a partial trace of a pure
maximally entangled state returns a mixture is one of the characteristics of
entanglement.

Consider the teleportation state of the Brassard circuit just before the
decoherence takes place. The state of the circuit is then given by

S (100)(@ 1 0) +5] 1)+ 01)(6] 0) +a | 1)
+110)(=a | 0) +5 | 1)+ | 11)(b | 0) = | 1)))

Everyone of the terms in the sum has 1/ 4th probability of occuring, there-
fore the density matrix for the system after the decoherence is

p = (I 00)(00 | (a | 0} +b | 1))(a™(0 [ +b7(1 )
+101){01 [ (6] 0) +a|1))(6(0 | +a™(1])
+110)(10 | (@] 0) = b [ 1))(a™(0 | —b"(1 )
+ 1AL (5] 0) —a [1))(5™(0 [ —a™(1 I))

1
4
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Tracing this over the first two qubits yields

p" = 2(@l0y+b 1)@ O]+ (1)
+(b]0) +a | D)E"(0 | +a*(1 ]
+(a]0) =B ] 1))(a"(0 | =b"(L ]
+(b]0) = a | 10| —a"(1]))

= 1(al + ) 100 | +al> + ) [ 1)(1 | )
= 1/2

We can see immediately that the state is not pure, but by now we should
expect it. However, we also see that the state has no dependence on the
state being teleported. It is blank. The information must be supplied by
conventional means in order to complete teleportation. There is no way
that teleportation can be used to transfer data faster than speed of light.

4.6.7 The NMR Measurement

The measurement in NMR is carried out by switching Helmholtz coils from the
emitter to the receiver mode and detecting the magnetization of the sample in
the e, x e, plane. The single qubit Hermitian operator that corresponds to this
magnetization is proportional to

o, +0y

On averaging this outcome over the whole statistical ensemble described by the
density operator p we get the expectation value:

(iog +0y) =tr (0 +0y)p)

The measurement is not instantaneous. As the measurement goes on the density
operator evolves in time, so that what is really observed is

tr ((‘” +oy) e—z’Ht/hpez'Ht/h)

In a multi-qubit molecule we can observe this separately for each qubit, as long
as these are sufficiently frequency shifted from each other. The Helmoltz coils
and electronics used in the measurement convert this observable into a voltage
signal, which, for a given kth spin, becomes

V(t) = Vo tr ((a;’“) + a'gk)) e*"Ht/hpe"Ht/h)

where V} is a constant dependent on the geometry and other electronic proper-

ties of the coils. This signal will oscillate with the resonance frequency of the

(k)
0

kth spin, wy ’. The apparatus will mix this signal with an oscillator locked at
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this frequency, and the result will be Fourier transformed to reveal peaks in the
vicinity of w(()k), but not the w((,k) itself.

This is a very subtle, non-invasive measurement, which is why NMR practi-
tioners were perhaps the first to observe decoherence. The magnetization signal
decays exponentially due to various factors, such as decoherence, inhomogeneity
of the magnetic field, thermalization of spins, and presence of spin-spin coupling,
which were supressed during the computation. The resulting density matrix for
a single qubit system in this context depends on time and this dependence can
be described phenomenologically as follows:

_{ (a—ap)e t/™ +aq bet/272
p= b*e /22 (ap —a)e /™ +1—aqq

where 77 is called a longitudinal and 7 a transverse relaxation rate.
Observe that for t = 0 we have

[ a b
P=\ b 1-a

which is a general form of the density matrix. For t — oo the density matrix

becomes
_ ap 0
P=\L 0 1-a

This vanishing of the off-diagonal terms implies the vanishing of superposition.

It is possible to calculate 7y and 75 theoretically, and it is also easy to measure
these two rates. These activities provided NMR practitioners with the first
glimpse of quantum decoherence. Because NMR is a technique used primarily
by chemists, and only more recently also by physicians and biologists, for a
long time physicists were not quite aware that their colleagues in the chemistry
departments actually observed the collapse of the wave function as it unfolded
in time. Some may have a problem with this even today.

Temporal and Spatial Averaging

When the computation is to begin the NMR sample is allowed to thermalize.
This results in its density operator becoming

e—H/KT

where k is the Boltzmann constant and T is temperature. This means that it
is going to be very difficult to force the whole sample into a pure state, so that
a well defined initial state can be provided for the computation, for example all
qubits in the whole ensemble being in state | 0).

As was the case with reversing and stopping time, there is a trick, which lets
us do this indirectly. The trick is in averaging results of runs with permuted
initial states.
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Consider an ensemble of two-qubit systems described by:
0
0 (4.310)

where a+b+c+d = 1. By sending various combinations of controlled-NOT gates
to the ensemble, it is possible to permute the populations so that the following
two states can be also generated for successive computation runs:

a 00 0
0 c 00

2= 10040 (4.311)
000 b
a 00 0
0d 0o

2= |00 b o (4.312)
000 ¢

(4.313)

Now let us perform an identical computation on each of these ensembles. Ev-
ery computation, however long, can be described in terms of a single unitary
operation U. The results of the computation on the ensembles will therefore
be:

Up, Ut

Up,U'

Up,U'

Let us now add all three results and see what comes out:
Up, Ut + Up,U + Up,U'
=U(p+p,+p3)U'

3a 0 0 0
B 0 btc+d 0O 0 ;
Ul 0 0 bte+d 0 U
0 0 0 b+c+d
3a 0 0 0
_ 0 1—a 0 0 t
=U 0 0 1—a 0 U
0 0 0 1—a
l—-a+4a—-1 0 0 0
_ 0 1—a 0 0 t
=U 0 0 1—-a 0 U
0 0 0 1—-a
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100 0 100 0
0000 0100

=U | (4a—1) 00 0 0 +(1-a) 00 10 Ut
0000 0001

=U ((4a — 1) ] 00)(00 | +(1 —a)1) U"

—~

Let us now evaluate an expectation value of, say, o,+0, on U (p; + p5 + p3) Ut

(0 +0,) = tr ((a‘w +0,) U ((4a —1) | 00)(00 | +(1 — a)1) Uf)

(4a — 1)tr ((am +o,)U | 00)(00 | Uf) +(1—a)tr (04 +0y)1)

(4a — 1)tr ((az +o,)U | 00)(00 | UT)

The second term in the sum above vanished, because o, and o, are traceless.

The result of our summation of results obtained for computations on three
different ensembles is as if the computation was performed on a pure state
| 00)¢00 |.

The individual computations U p; vt u pU fTandU psU t can be performed
one after another using the same apparatus, in which case the procedure will
be called temporal averaging or temporal labeling.

Alternatively the computations can be carried out at the same time on three
different systems, using three different, but identically prepared, samples.

Sometimes all three computations can be carried out on the same sample,
if it is immersed in a machine that can apply different static fields and differ-
ent signals to various parts of the same sample. This is really equivalent to
performing three computations using three different machines, even though we
have only one vial. The technique is then called spatial averaging or spatial
labeling.

Averaging, temporal or spatial, is right at the core of NMR quantum com-
putation, together with reversing and halting time (refocusing), because this is
the only way that a pseudo-pure state can be delivered as a start-up value.

This procedure is sensitive to temperature. It turns out that the total signal
that can be obtained this way decreases exponentially with the number of qubits.
This problem can be alleviated by cooling the sample. Yet, there is a limit on
the total number of qubits that even a super-cooled NMR computer can work
with effectively.

State Tomography

As the computation unfolds it is always possible to stop it briefly and measure
magnetization thus obtaining an insight into the state of the register during
computation. This will not ruin the register, because NMR measurement is so
non-invasive, and decoherence time is quite long.

We have already demonstrated that

n-o)y=n-r
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Substituting e;, e, and e, in place of n yields

(o) = tr(owp) =71, (4.314)
(oy) = tr(oyp)=ry (4.315)
() = tr(o.p)=r, (4.316)

Since p = % (1 + r - 7), measuring r,, ry, and r,, gives us p.
This procedure is called state tomography. State tomography provides us
with means to debug NMR programs.

4.7 Interaction with the Environment

In this section we are going to build on the partial trace formalism we intro-
duced in section 4.6.6, in order to describe behaviour of quantum systems, which
interact with the environment. We are in for two unpleasant surprises on this
occasion. The surprises are that

e Measurements performed on systems that interact with the environment
are not orthogonal projections.

e Evolution of systems that interact with the environment is not unitary.

Because every physical system interacts with the environment, one way or an-
other, the above means that the basic canons of quantum mechanics, i.e., unitary
evolution and orthogonal projective measurement, are, in a way, fiction. The in-
teraction that derails these idealizations doesn’t even have to result in exchange
of energy, momentum, or other observables with the environment. As you will
see, a quantum system, which is initially isolated and prepared in some nice
condition, very quickly develops quantum entanglements with the environment
and these sponge away quantum information from it. This results in the decay
of superposition into a mixture of basis states.

The observations we are going to make are profound, especially for quantum
computing and any experimental procedure that calls for very precise control of
a quantum system.

We will then make use of what we are going to learn about in this section,
when discussing error correction codes, whose purpose is to stabilize quantum
computers.

4.7.1 The Measurement

Suppose we have a quantum system described by p, which interacts with the
environment, described by p. Suppose that initially the system and the envi-
ronment are disentangled. The resulting density matrix for the combined system
is

PAE = PA® PE
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Measurements performed on the combined ensemble, that comprises our sys-
tem and the environment, are orthogonal projections corresponding to some
Hermitian operator, H, that represents an observable, e.g., energy, and can be
described by the family of projectors {P;} on H4 ® HE such that

ZPZ =1 and PzPJ = 6,]P,
i

The probability of obtaining a result E;, the ith eigenvalue of H, when per-
forming the measurement on the combined ensemble is

pi = tr (Pipap)

Immediately after the measurement the density operator of the combined system
is
Pip,pP!
tr (Pipap)
and it is going to evolve from this point on, according to whatever dynamics
the combined system is subjected to after the measurement.

Suppose that our observer has access to subsystem A only. What the ob-
server sees after the measurement is given by the partial trace over the environ-
ment variables:

! —
PAE =

trg (Pz' (P2 ® PE) PI)
trap (Pi(pa ® pE))
In order to see what exactly happens here let us evaluate

trppp =

pi = tr (Pipyp) = tratre (Pi (p4 ® pg))

The operator P; acts on H4 ®H g, which is dim H 4 x dim H g dimensional. The
operator itself can be represented by a (dim H 4 X dim Hg)X(dim H 4 X dim Hg)
matrix. But the matrix can be constructed in such a way that indexes pertain-
ing to system A and to the environment remain separated. Reserving Latin
indexes for system A and Greek indexes for the environment we can represent
P; by the following wvierbein?:

Plis

Then P; (p4 ® pg) would be represented by:
(& (4 (B)
ZPkQ 18P1m Pe
1

Taking the double trace results in saturating all indexes (this means summing
over them in the index notation parlance) in this expression so as to deliver a

3 Vierbein means four-legs in German. This word has been used traditionally to describe
repers in space-time, so its use here is not traditional. All I mean by it here is an object with
four indexes.
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scalar value:

tratrg (P (p4 ® pg))

= Z Z Plga lﬁpl(lf)pﬁi)

kl B

=22 Z Pidliabhe | Pik

E A
> (S rt |
l

=tr Z F(zz /’zn

where
F = Z @ P (4.317)

Matrix FU 2 represents an operator F'; = trg (P;pg) acting on H4.

Operators F'; describe measurements on the subsystem A coupled to some
environment E. They are numbered by index ¢, which runs through the number
of dimensions of H4 ® Hg. There are way too many of them to be mutually
orthogonal within H 4. Consequently measurements on A are NOT orthogonal
projections, sic! Because every quantum system is a subsystem of a larger
system, which is in turn a subsystem or a yet larger system ... this chain of
inclusions eventually ending with the Universe, no real-life measurement can
really be an orthogonal projection. One can at best strive to get as close to
this concept as possible experimentally by trying to isolate the system under
observation and/or by trying to perform operations on that system as quickly
as possible, so that the rest of the Universe doesn’t have enough time to affect
the outcome.

To derive a non-index expression for F';, let us assume that we have the
density operator for the environment in its diagonal form:

Pe= > pulm)ul

lmeHE

then acting with P; on it yields

Pipp= Y puPi|p)(nl
lw)eHE

Taking trace over the environment replaces | ) ... {u | with (u | p)...:

tre (Pipp) = Y pulp| Pi| p)
|[WYEHE
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This still leaves all the indexes that pertain to subsystem A, i.e., the Latin
indexes, unsaturated.

Although operators F; are not orthogonal to each other within H 4, their
other properties are quite the same as the properties of orthogonal projections.
And so

1. F; are Hermitian. This follows from the fact that both P; and py are
Hermitian:

. B . Ve N K
‘Fl(rln) = Z P mﬁpfxﬁ) = Z Pmﬂ lap(ﬂa) = (F,S,:g)
af af

2. F; are positive. This follows from the fact that P; is positive. For an
arbitrary vector | ¥) 4 € H4 we have:

AW | Fi| W) a= Y pua(@|(u|Pi|®)y|p)>0
W) eHE

3. All operators F'; sum up to 14. This follows from the fact that P; sum
up to 1ag =14 Q@ 1g:

> n

liyeHAOHE
= Z pup | Z P; | )
|w)eHE [iyeHA@HE
= Y pulpl1a@1p|p)
[WEHE
=14 Y pulplp
W) EHE
=1a Z pp=1al=14
lw)eHE

Unfortunately there is no simple expression for p', in terms of p, and F;.
The procedure displayed above can be reversed, i.e., given p, and a family
of F'; it is possible to coopt such pg and define such P; that

trap (Pi(pa © pg)) = tra (Fipa)

but neither pp nor P; are unique.

4.7.2 The Evolution

Let us assume for simplicity that at the beginning of the evolution the environ-
ment is in state | 0)g g(0 |. This implies, for example, a liquid helium bath, or
something similar.

Pae=Pa®|0)E £(0|
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The evolution of the combined system is unitary:

Uar (ps® |0 2(0 ) U,

What is this evolution going to look like if we ignore the environment. The
answer is given by tracing the environment away.

trg (UAE (P4® | 0)E E(0 ) ULE)

We can have a closer look at this expression by expanding the part of U 4 that
acts on the environment in the environment’s basis | u):

Uap |0)p = Y |m{u|Use|0)E
[W)EHE

We can now make use of this expression in rewriting U 45 | 0)g g(0 | U L B

Uae |0p 20 |Uly= 3 [ u{u|Uar|0)e (0| Ul | v)v]
|u),|lvYeEHE

Taking a trace over the environment, means replacing

L) (v ]
with
wlpw...=6uw...

which yields:

Y wlUap|0)p...6(0 | Uy | p
[ EHE

The ... in this formula shows a slot for p4. Let us insert p 4 in this slot then:

trU ap (p4@ | 0) 5(0|) U,

= Y (WlUap|0gps 60| ULy | p
lw)eHE

= D, MupaMj
lw)eHE

where
M, =(u|Uagp|0)p
This expression defines what is called a superoperator or a quantum operation:
A:ipy—=pa= Y Mup,M} (4.318)
|[wyeHE

2L maps an operator on H 4 into another operator on H 4. The resulting evolution
of p, is not unitary. This type of evolution is unitary only if there is only one
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M, in the expansion (4.318). The expansion in terms of the family of operators
M ; is called the operator sum representation of the superoperator 2.
Operators M ; have the following nice property:

1.
> MM,
|[pYEHE

= > BO|UYy | Uap|0)p
|lw)eEHE

= (0| UYLz UAr | 0)E
:E<0|1A®1E‘|0>E
=145(0|15|0)p =14

The superoperator 2 as defined in terms of the operator sum representation
has the following properties:

1. It preserves Hermiticity, i.e., if p4 is Hermitian then so is 2 (p4):

!
(b)) = 3 Ml
|[KYEHE

= > Myp,M} =p)
W) eEHE

2. 2 preserves trace 1:

tra2l(py) =tra Z MupAML:trA Pa Z MLMM
lweEHE lweHE

=tra(pala) =trapy =1
3. 2 preserves the positivity

AT [ A(pa) | T)a = a(¥ | Z M,p, M} | ¥)s

lmeHE
= Z (A(¥ [ M) pa (M, | T)a)
) EHE
= Z A<¢u|pA|¢u>AZO
[n)EHE

where we have used | ¢ )4 = M, | ¥) 4.

Given a family of operators M, it is always possible to find such U 4 that
(| Uar |0)g =M,

But the operator sum representation of a superoperator is not unique.
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Superoperators can convert a pure state into a mixture. They let us analyze
decoherence and other problems that are going to affect quantum computation
or any other operation carried out on a quantum system. Under the action of
superoperators states from H 4 can become irreversibly entangled with states
from H g, which leads to a loss of information.

Superoperators can be combined, i.e., % o 9B. This leads to the formation
of a semigroup. But, unlike unitary operators, superoperators do not form a
group, because there is no inverse. Phenomena described by superoperators are
irreversible, e.g., decoherence is irreversible. And so wee see that superoperators
define the arrow of time. This is the only place in Quantum Mechanics where this
happens. Of course, it is clear by now that evolution dictated by superoperators
is NOT unitary.

One can define a superoperator abstractly and then ask if an operator sum
representation can be found. To this effect we can define 2l as an operator that

1. preserves hermiticity of p 4
2. preserves trace=1 of p4
3. preserves non-negativity of p 4

In general there is no good reason to restrict 2 to linearity. One can conceive
of non-linear quantum dynamics. Some of these are even consistent with prob-
abilistic interpretation. But we have to assume linearity if we want 2 to have
an operator sum representation. To this effect we also have to impose a stricter
condition on the positivity of : we have to assume that 2l is completely positive.
With all these assumption in place one can show that 2 admits an operator sum
representation. This is the subject of the Kraus Representation Theorem.

4.7.3 Three Quantum Channels

The three quantum channels discussed in this section provide a quite insight-
ful model of perils that await quantum computers, and, for this matter, any
other quantum system. Also they provide us with fine examples of the use of
superoperators. Every channel is described by a superoperator. The channels
are non-unitary effects that arise from interaction of quantum systems with the
environment. The three we are going to study here are traditionally called:

depolarization channel this channel describes spin and phase flips that may
occur in quantum registers;

phase damping channel this channel describes decoherence, i.e., the decay
of a superposition into a mixture;

amplitude damping channel this channel describes spontaneous emmision.
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Depolarization

We begin discussing this channel by providing a unitary description of a com-
bined system comprising a single qubit and a 4-qubit “environment”. As we
have done in the section about superoperators, we assume that the environment
is initially in state | 0)g. The single qubit, which is a subsystem A in this
model, can spin flip with probability 1/3. The spin flip is described by o ,:

| ¥)a = 00 | )4
It can also phase-flip with probability 1/3. The phase-flip is described by & :
| ¥)a = o | ¥)a

Finally, the state can both spin and phase flip at the same time. This is described
by oy:

| W)a =0y [ T)a
There is a 1—p probability that the state will not suffer any of the flips described

above. The U 4g operator describing this evolution on the combined system can
now be defined as follows:

U sg :
| V)4 = /1-p[T)a® | 0)E

+\/§(aw | VAR | D) +0oy | T)aR | 2)E+ 0. | ¥)a® | 3)E)

Observe that the environment preserves the memory of what happens. And
so, if the qubit spin flips, then | 0)g switches to | 1)g. If the qubit phase-
flips then | 0)g is upgraded to | 3)g. And if the qubit phase-and-spin-flips the
environment is upgraded to | 2)g.

In order to find the corresponding superoperator 2 we need to use the defi-
nition of U 4 to find the family of operators M, where | u) € Hg, i.e., where
©=0,1,2,3.

The general formula is:

M, =p{p|Uar|0)E

Specifying this for | u) =| 0)g,| 1)E, | 2)E, | 3)E yields:

M, = E<0|UAE|0>E=\/1—p1A
My = 5(1|Usg |05 =[5 00
_ [P
M, = E<2|UAE|0>E— gay
. [P
M; = gB|Uar|0)Er = 30z
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Now we can make use of the operator sum representation of 2 to evaluate its
action of p4:

A(ps) = MOPAMIJ +Mip,M! + M,p, M} +M3PAMJ3E

p
(1-pp+ 3 (ozpo: + oypoy + o.p0)

Depolarization can have specially devastating effect on entangled states: a
single error of this type can completely randomize the state. To see this consider
a state from the the Bell Operator Basis, which we have introduced in the section
about teleportation:

1

ety = 5 (10 [1)=[1)]0)

S

|vB) = %(|0>|1>+|1>|o>>
|9y = %(|o>|o>—|1>|1>)
|TP) = —(0)[0)+]1)| 1))

S

2

Suppose our start-up state is | ¥2). Pushing this state through the depolariza-
tion channel on the first qubit converts the initial density matrix | ¥P)(TP |
to:

4
p = (1 - gp) | @PY (TP | +§1 (4.319)
For p = 3/4 we get
p=1/4 (4.320)

Remember that the 1 in this equation is | @A) (¥4 | + | @B (B | 4 | $OYW(TC |
+ | TPY (TP |. The result is a thoroughly chaotic state. All information carried
by | ¥P)(¥P | has been lost, sic!

In order to see the outcome of A acting on a general 2 x 2 density matrix,
consider the Bloch Sphere representation:

1
p=51+r-0)
2
For simplicity assume that r» = re,:
1
pP = 5 (1 + TO'Z)
We will make use of the following properties of Pauli matrices:
00,0, = —0;
o, 0.0y, = —0O;

0.,0,0, = O,
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Substituting the Bloch Sphere representation and making use of the above in
our expression for the superoperator of the depolarization channel yields:

3\2 2

DN =

(1-p);A+roy) +]_9 (131 + 17‘ (—o.—0. +U'z))

(1—p)1(1+raz)+p b

- —1-—=
2 27 67"
1-p. p 1-p
= _“14+%21 -z
5 + 2 + 2 ro, 6raz
1 3—3p—
= §1+ #raz

(1 (=32))

This shows the shrinking of the Bloch sphere. If we start in a pure state we get
a mixture right away.

Phase Damping

Phase damping occurs when the initial system becomes gradually entangled
with the environment. The following unitary description of this process assumes
that the environment is spanned by | 0)g, | 1)g, and | 2)p. The initial state
| 0)4 | 0)r has probability p of becoming entangled with | 0)4 | 1)g and a
probability 1 — p of not becoming entangled. The initial state | 1)4 | 0)g has
probability p of becoming entangled with | 1)4 | 2)g and probability 1 — p of
not becoming entangled. Observe that the state | ) 4 itself does not change in
the process at all. There is no exchange of energy or momentum, or any other
physical observable with the environment:

[0)a |0 — V1-p[0)a|[0)r+/p|0)a|l)E
[Dal0r — V1-p|[1al0)p+vP|1)al2)E

The first operator M is easy to find:
M0:E<0|UAE‘|0>E=\/1_I71A

For the operator M we need to perform separate evaluation on | 0) 4 and | 1) 4
in order to find the corresponding matrix:

Mi|0)s = 5(l|Uaz|00|0)s
= 51 (VI=p 04|05+ V5|00 | r)
= VP|0)a

Mi[1H)a = p(1|Uae|Dal0)e=0

Hence the matrix representation of M is

Mi=vi( g 0
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Similarly for M:

Ms>[0)a = p(2|Uap|0)a|0)r=0
M| 1)a = p(2|Uap|1)a|0)p
= 52| (VI=PIDal0s+ V5| Dal2)
= VPl1Da
Hence the matrix representation of M is
M=o (g V)

Now we can assemble the superoperator :

A(ps) = Mop M)+ Mip,M! + Myp, M}
10 10 0

It is easy to see that

and

So that the final form of A (p4) becomes:

2A(pa)

P11

P)pot

(1-p)pa +p( pgo 0
_ ( Poo (1-
(1 =p)p1o P11

S——"

Applying this operator n times results in:

Poo (1=p)"po1
Ap 4 =
Pa ( (1=p)"p10 P11

Suppose that the probability of the entanglement per unit time is T', so that
p =TAt. then n =t/At and

(1—p)" = (1 -TAp">
In the limit of At — 0 this becomes

lim (1 — TA¢)Y/At = ¢TIt
At—0
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This follows from:
. Z\™ -
lim (14 — =e
m—r 00 m

Which, in turn, can be proven easily by using

(@+y)” =3 (’}j) "y
k=0

and then taking the limit m — oo
EXERCISE Prove it.

And so our density operator becomes:

—T¢
/At _ _poo € " "po1
(Pa) e p1o P11

Observe the exponential vanishing of the off-diagonal terms. We have already
shown in the discussion about the NMR measurement that this implies vanishing
of superposition, and its exponential replacement with a mixture.

So now you see how this happens.

What does phase damping look like in the Bloch Sphere representation? Let

1 1 1+r, rgp—iry
pA_§(1+r"’)_§<rz+iry 17,

Then A (p4) becomes

m(pA)zl(( 1+, (1—p)(rz—iry)>

2 1—p) (ry +iry) 1—7r,

You see that spin becomes forced in the e, direction, with spin components
pointing in the e; and e, directions vanishing exponentially.

What physical process corresponds to the phase damping? There was no
energy or momentum exchange in the unitary description of the combined sys-
tem. The usual interpretation is that of a heavy atom, bombarded by a stream
of low energy photons. This process does not visibly affect the energy and mo-
mentum of the atom. Also, the photons, being of very low energy cannot affect
electronic transitions in the atom. Yet if the atom has been originally placed in
a superposition, this interaction with the low energy photon bath will sponge
the superposition away. All information contained in the superposition will be
lost irretrievably to the photon bath.

Amplitude Damping

This channel describes the process of spontaneous emission. If qubit A is in the
| 0) 4 state, then nothing happens. This is the ground state. But if qubit A is
in the | 1) 4 state, then there is a probability p that it is going to decay to state
| 0) 4 while emitting photon, which puts the environment, initially in state | 0) g
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in state | 1)g. But then there is also a probability 1 — p that none of this will

happen:

Uap |0)4 |0 = [0)a|0)p
Uae [ 1)a |0k
There are only two operators M ,:
My = g(0|Uar|0)E
M, = g(1|Use|0)r

= V1-p|Da|0e+vpP|0)a|)E

We proceed as in the phase damping section, evaluating the action of My and
M on both | 0)4 and | 0) g in order to find the corresponding matrix represen-
tations of these operators. And so

Hence

Similarly:

Hence

Mo |0)a = E(0|Uar|0)a|0)E
= p(0[0)a]0)E
= [0)a
My |1)a = E{0|Uap|1)al0)g
= 501 (VI=PIDal0p+vF |04 1)r)
= \/1—p|1>,4
1 0
MO:(O \/l—p)
Mi[0)a = p(1|Uap|0)4|0)r
= p(1|0)a|0)E
= 0
M |1)a = p(1|Uae|l)|0)E

= g1 (\/1—p|1>A|0>E+\/1_7|0>A|1>E)
= Vp[0)a

i

0

0{9)

The action of the superoperator 2 on p4 can now be assembled thusly:

Mop, M} + Mip, M|

2A(pa)

(
(
(

1

Poo

V1 —=pp1o

pPoo + Pp11
V1= pp1o

0 \/10——p)”A<0

1

V1= ppo1
(1 - p)pu

V1 —=ppo1
(1 - p)ﬂu

=)+

)+(
)

pbp11
0

0 b

0

0
0

)

0

Jeu

0 0
vp 0O

)
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Consider again A" (p,). The (1 — p)™ term eventually becomes e 1. As
t — oo p — 0, so that

n poo+p11 O

The system ends up in a ground state. Here it is possible for 2 to start with
a mixture and deliver a pure state at the end. All you need to do is to cool
system A and wait long enough for it to drop to the ground state.

Using the Bloch Sphere representation for p 4:

1 1 1+r, rg—iry
pA—§(1+7' a)_§<r$+iry 1-r,

yields the following expression for 2 (p4)

_ 1 1+p+(A—pr: VT—p(re —iry)
w00 =3 (vilyi i Vol e )

(o)

The convergence process squeezes the ball and pushes it towards the upper pole,
so that eventually it becomes the point at the pole itself.

At p = 1 this becomes

4.8 Midterm Assignment

1. In section about spin dynamics in NMR we have made use of the following
three identities:

eiwazt/Zaze—iwo‘zt/2 = o,
W2 em0ot/2 = g coswt — oy sinwt
et g oWt/ — g coswt + oy sinwt
Prove these identities.
2. Prove that
ele? = e—i(n/4)a;1>ei(7r/4)a;1>ei(ﬂ/z;)ag})

e—i(m/0)e? i(r/1)e? —i(r/1)eNeel? —i(r/1)e?

implements a controlled-NOT gate.

3. Analyze the behaviour of the Brassard Teleportation Circuit for the case
of the top two lines decohering to | 00), | 10), and | 11).

4. Show that for a Hermitian operator M : H — H and for a density operator
p : H — H the expectation value for M on the ensemble described by p
is (M) =tr(Mp)



174 CHAPTER 4. A BRIEF REHASH OF QUANTUM MECHANICS

5. Show that for an ensemble of single qubit systems
trp? = (1 +r2) /2

where p is the density matrix for the ensemble and r is the length of vector
7 used in the Bloch Sphere representation of the ensemble.



Chapter 5

Gates and Circuits

5.1 Gates
5.1.1 The Toffoli Gate

Although by now you probably remember it well enough it is always worth
emphasizing the difference between a bit and a qubit. A bit b is a scalar that
belongs to {0,1}:

be {0,1}

whereas a qubit q is a vector that belongs to a two dimensional complex Hilbert
space H:
qgeH

A Dbit can assume values 0 or 1. A qubit can assume values | 0) = ((1)) or

1) = ((1]) and all values in between. A bit cannot have a value between 0 and
1

A classical n-bit register can contain one value from
{0,1} x {0,1} x--- ntimes ---x{0,1} ={0,1}"

at a time. We can think of this value as a string of 1s and 0s. We could
name these n-bit strings by interpreting them as binary representations of some
numbers and then it would become clear that there are going to be 2™ such
strings that can be placed in an n-bit register.

A reversible function that operates on an n bit state of a computer converts
a string from {0, 1}" into another string from {0, 1}" in a one-to-one operation.
If we were to think of these strings as binary representations of numbers then
we would say that the reversible function converts a number from {0...2" —1}
into another number from {0...2" — 1} and that conversion is 1-to-1. In other
words a reversible function must be a permutation on {0...2" —1}.

From the theory of permutations we know that a set of m elements can be
permuted in m! ways. Hence the set of 2™ elements can be permuted in 2™!
ways. This is the total number of reversible functions on an n-bit register.

175
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We can think of each of these permutations as a reversible gate. There are
therefore 2™! reversible gates acting on an n-bit register.

But classical gates do not have to be reversible, and, as a matter of fact,
most of them aren’t. If we were to allow non-reversible gates to act on our n-bit
register, the total number of such gates, reversible and not, would be much,
much larger.

Consider a gate that converts a string from {0,1}" into a single bit:

f:{0,1}" = {0,1}

there are 2" possible numbers (from 0 to 2™ — 1) in the domain of this function.
The gate can be characterised by assigning either 0 or 1 to everyone of its 2™
inputs, for example

0 — 1
1 - 0
2 - 0
3 —» 1
2" -2 =
2"—-1 = 0

We can think of all the values on the right hand side as a string that, in turn,
can be thought of as a binary representation of a number. This string is 2™
elements long. Hence the numbers can range from 0 to 22" — 1. There are, in
other words, 22" possible right hand side strings, and each of them defines a
different gate f.

Now consider a gate with n inputs and m outputs. Every one of its m
outputs can be thought of as an independent single bit gate on an n-bit domain.
So every one of the single bit outputs can be characterized by one of the 22"
values that characterize a gate such as f. Think of this output line as a digit
(but not a digital digit and not a binary one either) that can hold a number
from 0 to 22" — 1. Think of all m output lines as a register comprising m such
digits, each of which can take values from 0 to 22" — 1. The numbers that can
be addressed by this register now range from 0 to (22")™ — 1. Each of these

numbers characterizes one n x m gate. There are, therefore, (22")m such gates.
Which is a larger number, 2! or (22")™?
The total number of gates with 2 inputs and 2 outputs is

52 2 .
(2") =162 = 256
But the total number of reversible 2 x 2 gates is only

221 =24
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When you think of it, it is obvious that the number of reversible gates must be
smaller, because reversible gates form a subset of an all-gates set. So the real
question is how much smaller.

All reversible 2 x 2 gates (since they are reversible they have to have the
same number of inputs and outputs, so we can simply call them 2-bit gates) can
be represented by linear transformations, for example a controlled-— gate is:

{071}2 > (xay) - (Z’,y +2 .CU) € {0’1}2

which in matrix notation can be represented as

() (5)=(40)

where +5 is modulo-2 addition.!

But for n > 3 there are nonlinear gates that are reversible, for example
the Toffoli gate about which more below. So those nonlinear 3- and more-bit
reversible gates cannot be made by a combination of linear reversible 2-bit gates.

This means that

there are no universal reversible 2-bit gates in classical computing.

There are, however, universal reversible 3-bit gates in classical computing
and one of them is the aforementioned Toffoli gate. The Toffoli gate is a
controlled-controlled-NOT gate and its diagramatic representation is as follows:

r — o —— T

y ——— Y

z 4697 Z+a2 2y

This gate flips z if  and y are both 1 and leaves z alone if they aren’t. x and
y themselves remain unchanged. The nonlinearity of the gate is evident in the
formula that describes the bottom output: z +2 zy.

The Toffoli gate can be used as a universal gate for Boolean logic if

1. fixed input bits can be provided on some inputs,
2. some output bits can be ignored.
This can be shown as follows:

1. First demonstrate that an n-bit Toffoli gate can be constructed from 3-bit
Toffoli gates allowing for scratch space.

INote that this matrix representation has nothing to do with unitary matrices acting on
qubits. In particular a 2-qubit unitary matrix would be 4 X 4, not 2 X 2.
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w w

D
0 ot 0
y — 4y

z 4697 Z +2 Wy

This figure illustrates how you can implement a 4-input Toffoli gate by
combining 3 3-input Toffoli gates. The point between the two gates on
the 0 line in the middle of the diagram becomes 1 only if both w and z
are 1. In order for z to toggle y must be 1 too. And so z toggles if all
three, w, x, and y are 1, and doesn’t otherwise.

. Next demonstrate that by combining an n-bit Toffoli gate with — gates

we can alter the control string that triggers the action of the Toffoli gate.
Well, this really should be obvious. We can insert — gates in front of and
behind any control point for the n-bit Toffoli gate and thus effectively
change the sequence that triggers the toggle.

The act of triggering the toggle effectively transposes two selected strings
of 0s and 1s. Recall that the toggled line doesn’t really have to be always
at the bottom of the diagram. You can place @ on any line and use other
lines as controls.

When a specific control sequence is applied to inputs only the two cor-
responding strings of 0s and 1s are transposed. All other strings remain
unchanged.

Now notice that by combining multiple n-bit Toffoli gates with appro-
priately adjusted controls a circuit can be built that transposes any two
specific n-bit strings, since such transpositions can be built from the ones
that transpose a single bit only. This operation will leave all other strings
unchanged.

Any permutation (and hence any reversible gate) can then be implemented
as an even or odd sequence of transpositions.

Observe that a — gate can be implemented by a Toffoli gate with its two
control lines tied to 1.

5.1.2 The Deutsch Gate

The Deutsch gate is a quantum gate, which is based on the idea of a Toffoli gate.
It is a 3 input gate where the two top inputs control the action of the bottom
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line. But this time the action is not a toggle. Instead it is a spin rotation by
angle 6 about the x axis. The figure below shows a diagrammatic representation
of the Deutch gate.

The operation R is given by:

R = —iet0/2)o= = _; (cos g + i0, Sin g)

We assume additionally that angle 8 is incommensurate with 7, i.e., that it is
not a rational fraction of .
The Deutsch gate has the following properties:

1. Because 6 is not a rational fraction of 7, consecutive applications of R to
a qubit | s) will eventually reach any point on the ei*?= | s) trajectory,
or, in other words, for any fixed value of A we can get arbitrarily close to
€= | 5) by applying R to | s) a finite number of times. Another way of
saying the same thing is to state that

powers of R are dense in torus e*7=,

2. The n'" power of the Deutsch gate is a controlled-controlled-R™ gate.
Since 6 is incommensurate with 7 we can make nf/2 arbitrarily close to
a multiple of /2 at which stage the Deutsch gate becomes a Toffoli gate.
Since Toffoli gate is universal for classical computation then so is Deutch

gate.
3. In the 8 dimensional 3-qubit space (23 = 8): | 000),| 001),...,| 111) the
Tofloli gate can be represented by the following 8 x 8 matrix
100 0 0O0O0TO
01 000O0O00O0
001 0O0O0OO0OO
T— 00010O0O00O0
00001O0O00O0
0 000O0OT1O00O0
000 0O0OTU 0?1
0000O0O0OT10

The gate is an identity for all vectors of the form | 00z), | 01z), and | 10z),
and it fires up for | 11z) where it converts | 110) into | 111) and vice versa,
or, in other words, it converts | 6) into | 7).
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4. What is a generator of this gate in the 8-dimensional computational space?
We need to find such 8 x 8 matrix A that T' = e*4. Consider the following
simple matrix:

o.(6),|7) =

S OO OO OO O
SO O OO OO O
SO O OO OO O
SO O OO OO O
S OO OO OO O
SO OO OO OO O
_o0 O o000 oo o
O H OOOOOo o

Now we need to take ¢??=(16:/7)  The easiest way to go about it is to

simply type it into Mathematica and then take its exponens. Here’s what
the conversation with Mathematica looks like:

In[35] A = {{0, O, O, O, O, O, O, O},
{0, o0, 0, 0, 0, 0, 0, O},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, o0, 0, 0, 0, 0, 0, O},
{0, 0, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0, 1, 0}}
Qut[35] {{0, 0, O, O, O, O, O, O},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, O, 0O},
{0, 0, 0, 0, 0, 0, O, 0O},
{0, 0, 0, 0, 0, 0, O, 0O},
{0, o0, 0, 0, 0, 0, O, 0},
{0, 0, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, O, 1, O}}
In[36] T = FullSimplify [ MatrixExp [ I a Al ]
Qut[36] {{1, 0, O, O, O, O, O, O},
{0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, O},
{0, 0, 0, 0, 0, 1, 0, O},
{0, 0, 0, 0, 0, 0, Cos [al, i Sin [al},
{0, 0, 0, 0, 0, O, i Sin [a], Cos [al}}

H

-
-
-

It is now easy to see that when a = 7/2 we get

i(m/2)e:(16),|7))
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SO oo O =
[l elNeNeBeBall S =
oo -=OO
SO O =OOO
SO OoOHOOOoO O
SO R OO OO O0o
SO OO OO oo
S OO0 OO OO

This is not ezactly a Toffoli gate, but if we add a x(—i) = xe ™"/ gate on

the third line then we’ll get exactly the Toffoli gate. So this 8 x 8 matrix,
o.(| 6),] 7)) is as close to a generator of the Toffoli gate as we are going
to get in this lecture.

5. This generator, as I have already remarked above, swaps | 6) +| 7). By
applying various combinations of Toffoli and — gates (but the latter can be
made of Toffoli gates too, remember) to | 000)... | 111) we can generate
any transposition and ultimately any permutation of these 8 basis vectors,
so that we can generate transformations such as | 4) «| 6) and others, or,
more generally | 7) «| k).

6. In particular we can generate | 5) <+ 6) and take the corresponding

generator of this transformation, which (up to an 4) is going to look as
follows

o:(]5), 6)) =

orR o
O
coco

The commutator of these two operators is

OO R
OO e
—_o o -
OO -

|
—
OO
OOO...
—_o o
- N OO O e
O = O
OO =

o= o

OO e
N , OO D

o O O
o O O
O O e
= O O
OO O e
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I U
)

SO =

-1
and this is i, applied to | 5) and | 7).

Similarly we can generate o, between any | j) and | k) vectors, for exam-
ple:

[oz (13) | K)oy (| ) | )] =io= (| 5) | K))

We can therefore reach any transformation generated by a linear combina-
tion of o, (| 7) | k), oy (| 3) | k), and o, (] 5) | k)), and these span the
whole SU(8) Lie Algebra.

Since using the generators of the Deutsch gate we can generate the whole
Lie Algebra for SU(8), by taking exponens of the generated matrices we
can deliver any element of SU(8). Consequently, the Deutsch gate is a
universal gate for 3-qubit computation.

Proceeding similarly to how we did with the Toffoli gate we can construct
the n-bit Deutsch gate. For example:

°
fan
N
fan
¥

_R_

Proceeding as above we can then demonstrate that the n-bit Deutsch gate
generates the whole SU (2"). Consequently the Deutsch gate is a universal
gate for quantum computation.

5.1.3 Universal 2-qubit Gates

So, a 3-qubit Deutch gate is a universal gate for quantum computation. But in
quantum computation we can do even better. We can, as it turns out, build a
3-qubit Deutch gate from 2-qubit gates.

Consider the following quantum circuit
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<
N
WV
——
N
¢V

l2)— U ut U —

where U is a controlled unitary operator gate, and @ is a controlled — gate.
Let us analyze this circuit.
1. Assume that | ) =] 0):

If | ) =] 0) then the first & gate leaves | y) alone and so does the second
one. Also the last U gate on the | z) line is inactive. In effect we only
have the U and U' gates on the | z) line.

If | y) =| O) then, first, it stays that way, and, second, it inactivates the
controlled U and U gates on the | z) line, so | z) remains unchanged.

If | y) =| 1) then, first, it stays that way, and second, it activates U and
U' on the | z) line. But because U is unitary U = U™, so these two
gates cancel each other in this context.

In summary, | z) =| 0) results in | z) unchanged.

2. Assume that | y) =|0) and that | z) =| 1):

In this case the two @ gates on the | y) line toggle, and the last U gate
on the | z) line is active too. But the first U gate is inactive. Because | y)
is initially | 0) it is toggled to | 1) between the @ gates and then back to
| 0), and this activates the UT gate on the | 2) line.

In final effect we find that | ) remains unchanged, as does | y). The | 2)
state is passed through the U gate first and then through the U gate,
but U'U =1, so | z) remains unchanged.

In summary, having either | ) =| 0) or | y) =| 0) or both leaves | z)
unchanged.

In all situations considered so far | ) and | y) remain unchanged too.

3. Assume that | z) =| 1) and that | y) =| 1):
In this situation
(a) Both & gates on the | y) line toggle, so | y) emerges unchanged at
the end, but. ..

(b) the U gate on the | z) line is inactivated by | y) becoming temporar-
ily | 0) between the two @& gates.

(c) Both U gates on the | z) line are active, so initial | z) becomes
transformed into UU | z).

(d) | ) remains unchanged.
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The whole circuit therefore behaves like a controlled-controlled U? gate:

_—

_U2_

We can now choose U so that U? = R, e.g.,

U? = —iR,(9)
U = e /*R,(0/2)

and this yields the Deutsch gate, which is universal. Hence the combination of
the 2-qubit @& and U gates used in this circuit is universal too.

Why doesn’t the same work for classical computing circuits? The reason
for this is that in order to implement a Toffoli gate this way we would have to
find such an operator U that U? = —, in other words U = /=. But /= is a
quantum gate. It cannot be implemented classically.

Now we are going to show that the controlled-U gates can be implemented
as a combination of single qubit gates and the controlled-— gate.

Consider the following circuit:

| 2)

N
NP
&
N
N
Q

ly)— A

Let us analyze this circuit.
1. If | z) =| 0) then

(a) The & gates are inactive and | y) is subjected to the action of A
followed by B followed by C, or, in other words, | y) - CBA | y).

(b) Now, if CBA =1 then there is no change to | y). Such C, B, and A
are easy to find. For example, let A be unitary. Then we can choose

C and B be both vV Af. This way:
CBA=VA'VATA=ATA=1
2. If | z) =| 1) then

(a) The @ gates are active, i.e., they turn into = = o,
(b) Vector | y) now turns into

|y> -V ATaw % ATU'wA | y)

where the operation V Alo,VAlo,A=Uisa unitary transforma-
tion, if A is unitary.
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So this is, in effect, a controlled unitary gate, which, in combination with the
controlled — gate proved to be universal. In other words we have pushed the
universality even one notch lower. We can state that

the combination of 2-qubit controlled — and 1-qubit unitary gates is
adequate for universal quantum computation.

5.2 Simple Quantum Oracles

Oracles are devices, which are used to answer questions with a simple yes or
no. The questions may be as elaborate as you can make them, the procedure
that answers the questions may be lengthy and a lot of auxiliary data may get
generated while the question is being answered. Yet all that comes out is just
yes or no.

The oracle architecture is very suitable for quantum computers. The reason
for this is that the read-out of a quantum system is probabilistic. Therefore
if you pose a question the answer to which is given in the form of a wave
function, you will have to carry out the computation on an ensemble of quantum
computers to get anywhere. On the other hand if the computation can be
designed in such a way that you do get your yes or no at the end, and some data
reduction may be required to accomplish this, then a single quantum computer
and a single quantum computation run may suffice.

In this section we are going to look at 4 increasingly complex oracles. The
questions these oracles answer range from very silly to silly. Make no mistake:
these are toy devices. Yet they demonstrate various techniques, some of which
we are going to use later to answer more involved questions.

The oracles we are going to study are:

The Deutsch Oracle This oracle answers the following question. Suppose
we have a function f : {0,1} — {0,1}, which can be either constant or
balanced. In this case the function is constant if f(0) = f(1) and it is
balanced if f(0) # f(1). Classically it would take two evaluations of the
function to tell whether it is one or the other. Quantumly, we can answer
this question in one evaluation. The reason for this is that quantumly we
can pack 0 and 1 into z at the same time, of course.

The Deutsch-Jozsa Oracle This oracle generalizes the Deutsch oracle to a
function f : {0,1}™ — {0,1}. We ask the same question: is the function
constant or balanced. Here balanced means that the function is 0 on half of
its arguments and 1 on the other half. Of course in this case the function
may be neither constant nor balanced. In this case the oracle doesn’t
work: it may say yes or no and the answer will be meaningless.

The Bernstein-Vazirani Oracle Suppose you have a function f : {0,1}" —
{0,1} of the form f(z) = a - &, where a is a constant vector of 0s and
1s and - is a scalar product. How many measurements are required to
find a? Classically you'd have to perform measurements for all possible
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arguments and then solve a system of linear equations for a. Quantumly
a is delivered in one computational step on output lines of the oracle.

The Simon Oracle Suppose you have a function f : {0,1}" — {0,1}™. The
function is supposed to be 2-to-1, i.e., for every value of f there are al-
ways two such x; and @ that f(x1) = f(x3). The function is also sup-
posed to be periodic, meaning that there is such a binary vector a that
f(@+2a) = f(x, where +5 designates addition modulo 2, i.e., 1 +21=0.
The oracle returns period @ in O(n) measurements. Of course, if you
have a sufficiently large ensemble of quantum computers then a single
computation will return the answer in the density operator.

5.2.1 The Deutsch Oracle

The circuit that implements the Deutsch Oracle is shown below:

|0) — H H |— measure

|1) —m H Uy

Here H is the Hadamard gate, which we have already encountered before,
when discussing the Brassard teleportation circuit and which is defined as fol-
lows:

H|0) = (10)+ 1)

(10)=11)

Sl

2
1

S

H|1) 5

w54

and Uy is a controlled gate with the following definition:

or in matrix notation:

Usla)[y)=|2)|y+2 f(2))

Function f maps {0,1} on {0,1} and as such it can be either constant or bal-
anced, and, as we have remarked in the preamble to this section, on a classical
computer two measurements are required to figure out which.
Observe that the Hadamard operator on the upper line converts | 0) into
% (| 0)+ | 1)), this way we can feed simultaneously both | 0) and | 1) into z.
Let us analyze the circuit in detail:
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1. The first pair of Hadamard transforms converts | 0) | 1) into

10+ 1) e(0-11)

Do =

2. Now we need to apply our controlled-U; gate to this. There is a useful
formula that we are going to derive now:

Usl2)@(|0)=11)) =[2) @ ((|0)=|1)) +2 f(2))
If f(z) = 0 then
(10)= 1)) +2 f(z) =/ 0)~ | 1) = (=1)° (| 0)~ | 1))
If f(z) = 1 then
(| 0)= [ 1) +2 f(2) =| )= 0) = (=1)' (| 0)= | 1)) = (=)' (J 0)- | 1))

This means that the same formula holds for all values of f(z), therefore:

(=)@ (1 0)~ | 1))

Uslz)®(10)-|1) = (=)@ |2) @ (] 0)~ | 1))

Applying this to our state yields:

Uss 10+ 1)@ (0= 1[1))
1

=3 (V7O [0y + (1D 1)) © (| 0= | 1))

DO | =

3. The last step in the circuit analysis applies the Hadamard gate to the first
vector, i.e., to (—=1)7©@ | 0) + (—=1)7™) | 1):

L (DO H |0+ (-1 OH | 1)) @ (10~ | 1)

Q—n“m§§am+|n>+vaﬂm§%uoyw1»)®um—|n>

N = N =

Now observe that

if f(z) is constant then
(_1)f(0) _ (_1)f(1) =0

and in this case the upper line vector evaluates to:

3 (10 (07O + (/®)) = £ [0

O®GAWWH4Wﬂ+HMFN@—FNm»®%OW%m
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if f(x) is balanced then
(_1)f(0) + (_1)f(1) =0

and in this case the upper line vector evaluates to:
1
z _1)fO _ (_)fM)) =
2<|1>(( 1) (—1) )) + 1)

Consequently in order to find whether f(x) is constant or balanced all that’s
required is to measure the upper line vector. If it’s | 0) then f(z) is constant, if
it’s | 1) then f(z) is balanced.

You may ask what happens to the bottom line and why the values such as
(=1)7®) mysteriously shifted to the upper line and have not stayed with the
bottom line. The answer is that the bottom line is allowed to decohere. As it
does so, it collapses onto | 0) or | 1), thus forcing the parameters that describe
the bipartite state onto the upper line. The Deutsch oracle is a very nice and
simple demonstration of the essentials of quantum computing: first it shows the
power of quantum parallelism, then it shows the importance of entanglement
and non-locality in quantum computing. Every quantum computer is a little
demonstration of the Einstein-Podolsky-Rosen paradox.

5.2.2 The Deutsch-Jozsa Oracle

This oracle looks much like the Deutsch oracle, only more so:

|0) — H H |— measure
|0) — H H |— measure
|0) — H H |— measure
|1y — H Uy

The Hadamard gates work as before, and the Uy gate is now controlled not
by one but by n lines. Function f maps from {0,1}" to {0,1}, and, as be-
fore, it can be either constant or balanced. Our task is to determine which of
the two by performing just one measurement. A classical oracle would require
2™ measurements, one for each value of the argument, to ascertain that f is
constant.

So let us analyze this circuit now.
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1. First we need to apply H to n vectors. We have already seen this done
when we introduced the concept of a computational basis. The reasoning
below repeats the calculation:

H|0O)H |0)---H|[0)

1 1 1
:7(|0>+|1>)ﬁ(|0>+|1>)'”ﬁ(|0>+|1>)
:zn/2(|00 0)+1]00...1)+...+]11...1))
=2n/2(|0>+|1>+|2>+ 412" -1)

2" -1

2n/2 Z |:E

Applying H to the bottom line yields

1
ﬁ(l 0)—11)

So the state of the whole computer becomes:

& (E0)3

2. Now the n-line controlled Uy is applied, and, extending our result from
the previous section, we get:

7 (Z_ (~1)/@ |w>) © 25 (10)- 1)

=0

(10)=11)

S|

3. Finally we have to apply the Hadamard transform to the top n lines again.
But the top lines are no longer just | 0), so here we have to do some more
thinking.

Observe that the basic definition for the Hadamard transform can be
rewritten as follows:

H|0) = 7<|o>+|1>) 25 (=10 10)+ (-1 1)
H{1) = 2= (0= 1) = 5= (<D™ [0)+ (1" |1)
in summary:
H|x>=%i(—1>w'y|y>

S
Il
<}
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In order to use this formula we have to figure out how to apply it not to
an individual qubit, but to a tensor product of n qubits:

H|z1)H |z2)®...0 H | zy)

<\/_Z z1-y1|y1> (\/_Z zzyg‘y2>®”'

1 1
(o m)

= 2n/2 Z (_l)zl Y1 (_l)zz Y2 .. (_1)35" Yn | Y1z - yn>
Y1y2.-.Yn
2" —1

where
T-Yy=2x1-Y1+t22T2-Y2+2... +22n - Yn

Now we can plug this expression into our formula to get:

— <Z_ (1)@ Q| w>) ¢ % (00— 1)

=0
- b S )i L ) )=y )®i( 0)— | 1))
2" —12"—1 f() 1
= (;‘;E |y>>ﬁ(|0>_|l>)

Well, that’s it! Wasn'’t too painful, was it?
What can we deduct from our final formula? First observe that if f(x) is
constant then we can take it in front of the sum, and then the sum becomes:

2" —-12"-1

PIDBICIAE)

=0 y=0
Now, let us fix | ¥) and consider what

2" —1

Y (1))

=0

is going to be. If y # 0 then
271

> (-1

=0



5.2. SIMPLE QUANTUM ORACLES 191

must be zero, because x - y will “push as often to the right as to the left”. So
the only term that is going to survive in this case is for y = 0. Consequently in
this case the final state of the oracle is going to be:

1y (S e L o— 1)) = (—1)F® | 0y (| 0)—
o (=1) (Z%( 1) °|0>>®\/§(|0> 1) =(-1) |0>®\/§(|0> | 1)
On the other hand if f(x) is balanced then for | y) =| 0) we get
m 1 1
> )@ 170 [0) = I (-1)7@ [0) =0
=0 =0

because f(x) pushes as often to the right as it pushes to the left, on account of
being balanced, so here we get that the probability amplitude of finding | y) in
| 0) is zero.

In summary, if f(x) is constant then measuring control lines on exit must
return | 0) on every line. If this is not the case then f(x) must be balanced.

5.2.3 The Bernstein-Vazirani Oracle

The Bernstein Vazirani Oracle is the Deutsch Jozsa oracle with

fl®)=a-x

The final state of the oracle is:

1 2" 12" -1 1
o (Z Z(—l)a'”<—1>”'y|y>> (|0)= 1)

z=0 y=0

S

As before, consider the sum over x:

2" —1

D (EDTH(=1)*Y | y)

=0

If a # y we are going to get zero, because the components of the sum will push
as much to the right as they will push to the left. But if a = y then we simply
get

(-1 (-1)** =1

so that our final state becomes:

(26 | y>) ® % (10)— 1) =/ a) @ % (10)— | 1))

Thus, measuring the control lines, in this case, returns a.
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5.2.4 The Simon Oracle

An example of a Simon Oracle for a function f : {0,1}® — {0,1}3 is shown
below.

|0) — H H — measure
|0) — H H |— measure
|0) — H H |— measure
|0) ———— Uy, decohere
| 0) Uy, decohere
| 0) Uy +— decohere

In general the oracle comprises n lines at the top, which look the same
as the top lines in oracles we have analyzed in previous sections, and then
n lines at the bottom. Each of these n lines corresponds to a sub-function
fi :{0,1}™ — {0,1}, n of which make up function f.

The boxes labelled Uy, are controlled — gates, where the control is provided
by fr(z).

In summary, the Simon oracle tests a function:
f:{0,1}" = {0,1}"

which in the drawing above was split into n scalar-valued functions
fr:{0,1}" = {0,1}

The Simon oracle function must satisfy the following conditions:

1. fis 2-to-1, i.e., for every value of f there are always two different vectors
1 and x5 such that f(x1) = f(x2)

2. f is periodic, i.e., there exists such vector a that f(x +2 a) = f(x)
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Of course, you may ask: if f is periodic then it should be more than just 2-to-1,
because
flx+2a+2a) = f(x +2a) = f(x)

But remember that here we work within binary arithmetic and + is a modulo-2
addition (or XOR), hence for every vector @ a+2a = 0 and therefore z+2a+2a
takes us back to .

Assuming that function f(x) satisfies these conditions, the oracle yields its
period a in O(n) measurements.

This is a considerable improvement on a classical system designed to do the
same, because the latter would have to be queried an exponential number of
times (in n) in order to find a.

Let us analyze the circuit and see how the oracle works:

1. Applying the Hadamard transform to the top n lines works the same way
as we have already seen in the Deutsch-Jozsa oracle, so we can simply reuse
the result obtained there (see step 1 for the analysis of the Deutsch-Jozsa
circuit):

2" —1 2" —1
W(Z |:c)®|o 01 0) W(Z |w)®|o

2. The application of the Uy, gates at this stage converts the n bottom lines
that carry | 0) into | fr(2)). This is easy to see: for every individual | 0)
line, if its corresponding fi(x) evaluates to 1 the line is flipped to | 1),
if fr(x) evaluates to 0, the line stays | 0), consequently the line simply
becomes | fi(x)).

In effect we get:
it (Z Iw>®|f z))

3. Now allow the bottom n lines to decohere and this yields some value, which
corresponds either to f(xg) or to f(xg +2 a). So this puts the top n lines
into a superposition of these two vectors (it’s Einstein-Podolsky-Rosen
paradox again!), and the state of the computer becomes

1
V2

4. Applying the Hadamard transform to the top n lines now results in:

%27% (Z ((_1)”’0'11 + (—1)(“0““)'”) | y)) ® | f(o))

Now we can divide all vectors y into two classes. For one y - a = 1, and
for the other one y - @ = 0. For the first class we’ll end up generating:

(~1)20 = (—1)=¥ =0

(| o)+ | o +2 @) @ | f(20))
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for every coeflicient, so the only vectors y that are going to survive this
are vectors perpendicular to a, hence this sum evaluates to:

%2”% ( 3~y y)) ® | f(0))

y-a=0

Measuring the top n lines now returns always a vector y which is perpendic-
ular to a. But it can be any vector from the superposition generated by the
corresponding measurement on the bottom n lines. However, if we perform the
measurement a sufficient number of times to obtain n different vectors y,,, then
we get n independent equations:

ypra = 0
Yy,ra = 0
Yn-a = 0

and these can be solved classically for a.

This is a good place to stop and ask: what makes the Simon oracle so
much more powerful than its classical equivalent. Our analysis of the cir-
cuit has already answered this question, but it’s enlightening to summarize
it here. Repetitio mater studiorum est.

1. Applying Hadamard transforms to | 0) inputs on the top n lines creates a
superposition of all possible numbers from 0 to 2" — 1 in a single register.
This superposition is then fed by the means of couplings to the second
register, which evaluates function f. Function f is evaluated for all pos-
sible values of its argument at the same time. Classically we would need
2™ — 1 separate evaluations to replace this single quantum step.

2. The use of controlled Uy gates entangles the whole computer.

3. When the bottom n lines are subjected to decoherence, the top n lines,
which remain entangled with the bottom lines, are forced through the
EPR paradox mechanism into superposition of some | xo) and | &g +2 a).
So we already have a waiting for us in the top n-qubit register although it
is still mixed with . All that is required is to clear that x¢ away. And
this is done by performing further rotation of each qubit, which results in
a superposition of vectors perpendicular to a.

The three elements, the parallelism of (1), the entanglement of (2), and the
EPR of (3), underlie just about every quantum computational algorithm. We
can therefore end this section by stating that

The power of quantum computing derives from superposition and
non-locality.
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5.3 Quantum Fourier Transform and its Appli-
cations

Quantum Fourier Transform is a magic box that replaces the last column of
Hadamard Transforms in the Simon Oracle. The box is markedly more complex
than Hadamard Transforms, but it lets us perform more effective extraction of
data from the upper lines of various oracles than a simple Hadamard rotation.

Fourier transform is a tool for decomposing a signal, and it can be any signal,
for example a computerised tomography measurement, or an acoustic signal, or
a planetary motion?, which is a signal of a kind too, into its constituent harmon-
ics. But the inverse Fourier transform, which combines constituent harmonics,
sometimes with changed amplitudes, into a new signal is a Fourier transform
too: the only difference is in the change of the sign in front of the imaginary
unit 7. So whenever you have several harmonics that add up and interfere with
various amplitudes forming beats and troughs, you see inverse Fourier transform
in action.

Most often when a signal is received it is filtered before it is delivered to
an analyzer. The receiver itself is a filtering device, because it is unlikely to be
equally sensitive at all frequencies. If the receiver filter is described by B(k)
and the incoming signal p(t) has a spectrum given by P(k) = Fj(p), then
the spectrum of the received signal is going to be given by B(k)P(k), and the
received signal itself is going to be given by p'(t) = F; *(B - P). Now, if b(t) is
such a function that B(k) = F(b) then

p'(t)=F;'(B-P)=F; (Fi(b)- Fr(p) = Fi' (Fi(bxp(t)) = b*p(t),

where % is the convolution operator.

This works also in spacial domain — in any domain, in fact, because ¢ is just
a letter, and it can stand for anything. For example, the double slit experiment
and the resulting interference pattern can be thought of as a convolution of the
beam (the signal) with the slits (the filter).

In short, whenever we have interference, we have Fourier transform hiding
behind. Whenever we have filters, we have convolution of a signal with a filter.

In quantum computing Quantum Fourier Transform is a device, which is
used to force interference between qubits. The interference then enhances con-
structively certain aspects of the signal and destroys some other aspects: the
constructive interference pattern is what we are after. This is the answer to our

2Decomposing a planetary motion into harmonics yields the old fashioned epicycles and
deferents. There was nothing wrong with these. In fact their invention and then application to
describe planetary motions was one of the greatest intellectual accomplishments of antiquity.
Contrary to a popular belief epicycles and deferents were not invented by Ptolemy, who worked
between 127 and 151AD in Alexandria, Egypt. Their application to describe planetary motions
goes a long way back to Hipparchus, who lived in Nicaea, Bithynia, and died in Rhodes some
time after 127BC. But their invention goes even further back to Apollonius of Perga, who
was born about 262BC in Anatolia and who died about 190BC in Alexandria. From our
perspective it often seems like Apollonius, Hipparchus and Ptolemy lived at the same time.
But there is about 350 years difference between them. This is like difference between, say, us
and Descartes. Descartes is hardly a contemporary of Stephen Hawking!
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computation. The transform itself can be combined with a variety of filters, so
as to produce a variety of computations.

5.3.1 Quantum Fourier Transform

Quantum Fourier Transform is a unitary operation on n qubits defined as fol-

lows:
2m 1

1 ) n
F:lx)—» — e2mizy/2" | 4y 5.1
9 g L 61

where zy is a normal “decimal” multiplication of numbers z and ¥y, which are
represented by the quantum registers

lz) = |2n-1)®|Zn2)®@ - @ |20)
|y> = |yn—1>®|yn—2>®"'®|y0>v

where | z1) and | yi) are individual qubits.
Compare this with the notation in the section about Simon Oracle, where
T - Yy meant

Y=o Yo t+221 Y1 +t2x2-Y2+2  +2Tpn-1"Yn-1

There we treated & and y as arrays of bits rather than integer numbers. Of
course in computing a single integer number is implemented as an array of bits,
but the point is how you interpret this array, and so zy in the Fourier Transform
formula is not the same as « - ¢ in the Simon Oracle formula. The former is an
integer operation on two scalar numbers and the latter is a binary operation on
two binary vectors. The former can be expressed in terms of a binary operation
too, but it will not be = - y.

Observe that once you know what F' does to the basis vectors | x), you
can figure out what F' does to any other vector. This other vector can be
> . f(x) | ), which yields the following formula for Quantum Fourier Trans-
form of function f:

N-—1 N-1
F (Z /@) | w>) = Y f@F ()
v v
_ \/_N > f(:E) !;] eZﬂz:cy/N | y>
1 N—-1N-1 oy /N
- \/—N y=0 =0 f(w)e ' | y>

From this formula the y** component of F' is

N-1

Fy(f) = o= 3 Sl
=0

which is beginning to look quite like a normal Discrete Fourier Transform.
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5.3.2 The QFT Circuit
In order to implement the circuit that calculates:

2" —1

1 2mizy /2™
e | y)
V2nr 4—0

we shall deploy the trickery of the Fast Fourier Transform. Let us have a look
at:

. n
e27rz:cy/2

This expression is periodic in zy and the period is 2™. The trick about the Fast
Fourier Transform is that it only uses the terms of e2™*%/2" that correspond to
the “first circle”, i.e., the terms for which zy/2" < 1. Let us evalute then xy/2"
while truncating everything that would go onto the second and third circle:
T 1 _
2—2 =0 (zo + 212+ 222% + 232° + - + 2,127 1)
X (Yo +y12+ 122 + Y323 + -+ yp_12"Y) = ...

Here we have decomposed = and y into their binary components, so that each
of the z; and y; terms is either 0 or 1.

1
= on (yo (560 + 21242922+ + $n—12n_1)
+y121 (3)0 + 12+ .’IJ222 4+ e+ $n_12n_1)
+...

+yn712n_1 (.’130 + .’L’12 + 1'222 4+ xn—12n_1) )
=L (zo + 212+ 222° + -+ + 212" 1)
- on Yo \To 1 2 n_1
+y1 ('Z'O2 + 1'122 + .’L'223 + -+ l’n,22"71)
+Yy2 (1'022 + .’13123 -+ .%'224 4+ .. 4 xn732n71)
+...

+yn—1$02n_1)

—yn (P02 T2 el
— Y (2n Tt Tt )
Zo x1 T2 Tp—2
+y1 (271,—1 + on—2 + on—3 +ooot 2 )
X0 x1 ) Tn—3
+y2 (2n—2 +2n—3 +2n—4 +ot 2 )
R
x
+yn—1_0

2
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There is a special notation, which covers the sums in the brackets:

- = .
5 (-0)
Zo I1
2—2 + E — (..’L‘oiL'l)
Zo I1 T2
2—3 + 2—2 + 7 —> (..T(]xlxz)

Using this notation:

T
2—3 = yo(-xoZ1-.-Tpo1) +y1(-To%1 ... Tp—2) + Y2(2oT1 ... Tp—3) +---

+yn—1(-20)

So now we can write our Quantum Fourier Transform thusly:

2™ 1
1 . n
Fla) = —— 3 & |y)
y=0
2" —1
_ Z eZWi(yo(.zom...zn_1)+y1(.zom...zn_z)+y2(.zom...wn_3)+---+yn_1(.zo)) |y>

— §
3

y=0
2™ -1
271 . el — 271 . el —
— Z e miYo(-ToT1.-Trn—1) |y0> Qe miy1 (-ZoZ1..-Tn—2) |y1>
y=0

®€27riy2(.z0z1...wn_s) | y2> R Q 627riyn_1(.z0) | yn—1>

— @
3

B

Now observe that yj, is either 0 or 1. If it is 0 then the corresponding term is,
for example,
eZin(.zozl...zn_s) | 0> =| 0>

If it is 1 then the corresponding term is:

6271'1'1(.11:0:1:1...:1:"_3) | 1) — e2ﬂi(.$0$1...wn_3) | 1>
The sum over all possible values of y will eventually assign both 0 and 1 to
every yx, therefore the following superposition is equivalent to the above:

L

F|xz) = 7

(| 0) 4 e2milzorsan ) | 1>) 2 \/ii (| 0) 4 e2milzorszns) | 1>) @

1
R
2

7%

And this already points to the way we can implement a QFT circuit.
Consider the following circuit:

(10 +e2miCo) | 1)) (5.2)
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|z2) — H — Ri — R» | F»)
| 1) H — R ————— | F)
| o) H — | F)

Here, as before, H is the Hadamard operator and Ry is a controlled gate defined

by:
1 0
Rd = ( 0 eiﬂ_/2d )

where d is the distance between the lines.
Let us analyze this circuit step by step:

1. After the first Hadamard gate the top line becomes
i i(_l)zzy | y> — i ie27riz2y/2 | y> — i (l 0> + e2m’(.z2) | 1))
Nop= Nop= V2

2. The second step applies Ry to the top line under the control of the middle
line. Observe that R; does nothing to | 0) and phase shifts | 1). The
phase shift factor is e?™/2 if the control line | ;) is | 1) and there is no
phase shift if | ;) = | 0). We can therefore write that the phase shift
inflicted by Ry on | 1) is always €™*/2, where z is the control signal.

Applying this to states on the top and on the middle line yields

1 2mi(.x2)
R1|m1)®ﬁ(|0)+e )

= | SL‘1> ® | 0> + eZm‘(.zz)eimvl/Z | 1))

1 (
V2
1 2mi(z2 /241 /4)
:|x1)®—ﬁ(|0)+e |1>)

1 .
=l ® o (|0 e 1)

3. The third gate applies R» to the top line, but this time under the control
of the bottom line. This operator, again, will do nothing to | 0), but will
phase shift | 1) by additional e?™#0/4 so the state of the whole system now
becomes:

1 27i(.z122)
R2|xo)®|x1)®ﬁ(|0)+e )
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1 ) .
=lz0)® |22 ® 5 (10 + @rilmamsleninn/t | 1))

1 .
=[20)® | 21) © = (| 0) + emilro/sm /il | ) )

V2
1
7

_ | l‘o)@ | l'1> ® (| 0> +e27ri(-mom1m2) | 1>)

4. Reasoning as above we can see immediately that the next two gates applied
to | z1) will convert it into

% (| 0) + e2mitzoms) | 1>)

So that now the state of the computer is:

1 . 1 )
| xO) ® ﬁ (| 0> + e27rz(.z0z1) | 1>) ® ﬁ (| 0> + eZm(.zcozclzg) | 1>)

5. And finally the single Hadamard transform on the bottom line converts
| Zo) to (| 0) 4 €27i(:20) | 1))/4/2, so that in effect the final state of the
computer is:

\% <| 0) 4 e2mil-@0) | 1))@% (| 0) 4 e2mil-zoz1) | 1))@% (| 0) 4 e2mil-zomiz2) | 1))

But this is a 3-point Quantum Fourier Transform, so the circuit shown above is
a QFT circuit. Furthermore the analysis of the circuit shows also how to make
a 4-point QFT circuit and an n-point QFT circuit in general.

5.3.3 Finding the Period, The Shor Oracle

Let us now replace the last column of Hadamards in the Simon Oracle with the
Quantum Fourier Transform box and see what we can do with this new circuit.
This question was first posed by Peter Shor, who demonstrated, as you will see
below, that the resulting oracle can be used to find period of an integer function

f:Na3z— f(z) N

This time both the function and its period are defined in a normal way without
any modulo-2 hocus-pocus. We are in the world of normal integer arithmetic
now (though still restricted to what we can possibly pack into an n-bit register).
If the period of the function is r then

f(@) = f@+kr),

where k is an integer.
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In order to throw this problem on a computer (classical or quantum), we have
to restrict our input and output values to a finite number of bits (or qubits),
and we have to rewrite function f as a binary function thusly:

f:{0,1}" = {0,1}™, re€e[1,2"

The figure below shows the new circuit, the Shor Oracle, which is the Simon
Oracle with a QFT box replacing Hadamards in the upper right corner of the
circuit.

|0) — H — measure
|0) —m H QFT |— measure
|0) —| H — measure
| 0) Uy, decohere
| 0) Uy, decohere
| 0) Uys — decohere

Let us analyze this circuit then. The beginning of the analysis goes exactly
the same way it did for the Simon circuit. After we cross the first array of the
Hadamard gates we generate the superposition of all integer numbers between
0 and 2™ — 1 on the top lines:

2" —1

1
o 2 19

and then when we pass the array of Uy, gates on the bottom lines we generate
f(x) for every | x), so that the state of the computer is:

1 2" —1
on2 Yz | f(=),
=0

where

| f(@) =] fa1(@))@ | faa(®)) ©--- @ | fo(2))
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Now we allow the bottom lines to decohere, as we did in oracles discussed in the
previous section, and we end up with some value of f that corresponds to some
2. But the same value also corresponds to xo+7 and zg+27 and so on. Because
we haven’t touched any of the top lines yet, the decoherence of the bottom lines
forces the upper lines, via the EPR mechanism into the corresponding state, so
that the state of the whole computer becomes:

L[4 .
7 j§|x0+gr) ® | f(zo)),

where A is such an integer that we don’t run outside the [0,2"] segment as we
jump from zg to z¢ + r, then to z¢ + 2r, and so on. Of course we can also jump
from zg to xg — r, so it is good to think of z¢ as the lowest z¢ € [0,2"].

At this stage we can forget about the bottom lines and concentrate on what
happens on the top n lines. The state of those lines is now passed through the
QFT box, which yields:

1 A-1 1 2" -1 A
Fl - To + 77 - - 627ri(z0+jr)y/2"
J= Yy=0 )=
1 2" -1 A
— Z 2mizoy /2" Z 2mijry /2" |
e e Y)
VA2" =0 =

When we perform a measurement at this stage the probability of finding a given
| y) is given by the square of an appropriate amplitude, i.e.,

Now, assume that period r divides 2™ exactly, i.e., without a remainder. Then
A =2"/r and A/2™ = 1/r. The probability amplitude then becomes:

2

11 &

1 Z 2mijy/A

r|A 4 ey

Jj=0
For y = A this becomes:
2

LT omio | omit | 2mi
il iy GO P

2

[ = S =

l(1+1+1+ )
1 o

2

A

1 1
A r
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For y = 2A we get

2

11 2730 272 274
. A(e +e™ 4?4 )
1)1 2
=- Z(1+1+1+... as many as before!)
r
11 > 1
= — —A = —
r|A r

But if y is incommensurate with A then we’ll hit a range of points around the
circle, eventually filling the whole circle, so that the resulting interference will
be totally destructive. In effect the measurement will return

y € {A,24,34,... rA}

From this we can easily find A and knowing the range 2" we can easily find the
period r = 2"/A.

What if r does not divide 2" so that there is a bit less than r left? In
that case y will get scattered around integer multiples of 2" /r and the width
of the peaks is going to be about 1. This still gives us a sufficiently precise
idea about r, to find its exact value by trial and error without much additional
computational effort.

We are going to discuss this case in more detail in section about Phase
Estimation further down.

5.3.4 Breaking the RSA Encryption

The period finding procedure is the only quantum computation required to
break the RSA Public Encryption Key. In this section we are going to discuss
how this is done. This is not very enlightening from the Quantum Computing
point of view, because whatever is of interest there we have covered already, but
since this is what made Quantum Computing such a popular subject all of a
sudden, and what also resulted in the injection of a significant amount of money
into this area, we feel that we should cover this topic for completeness.

However we are not going to talk about it in the lecture, because we're
running out of time, so this section is for you to read at your leasure.

The RSA Public Key Cryptography

The RSA Public Key Cryptography was invented by Ronald Rivest, Adi Shamir,
and Leonard Adelman in 1978. The trick here is that encrypted messages can
be passed from the sender to the receiver, and they can be decrypted by the
receiver, without having to pass a secret decryption key between them.
Instead a public/private key pair is used. The public key, which can be
safely published for all to know, is used to encrypt the message. The private
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key, which is held by the owner, and which is never shown to anybody, is used
to decrypt the message.
We can describe this process symbolically as follows:

E (m, kpubtic) = m'

D(ml7kprivate) = m

where FE is the encrypting function, D is the decryption function, m is the
message, m' is the encrypted message, kpubiic iS the public key and Kprivate iS
the private key.

In order for the public key encryption scheme to work, the private and the
public keys must be linked in some way, but this way must be such that knowing
the public key makes us none the wiser as to what the private key might be.

The RSA algorithm links both keys in the following way:

e pick two large prime numbers p and g and let n = p - g;

e find a random integer d that is co-prime with (p — 1) - (¢ — 1). Coprime
means that the Greatest Common Divisor of d and (p—1) - (¢ —1) is 1;

e let e be a modular inverse of d, i.e., € - d|mod (p—1)(g—1) = 1;
e the pair (e,n) becomes a public key now, and

e the pair (d,n) becomes a private key.

o the encryption rule is: m} = m¢|modn

¢ the decryption rule is: m; = m;d|modn

How difficult is breaking the RSA crypt going to be? Since the public key
(e,n) is known, n is known too. Recall that n = p - ¢. If we could find p and
g, we could find p — 1 and ¢ — 1 as well. Then since € - d|mod (p—1)(g—1) = 1
and since we know e we can find d and this is all that’s needed to decrypt the
message.

But assuming that n is really, very, very long, how hard can it be to find p
and ¢ such that p- ¢ = n? This problem is called integer factoring.

Although integer factoring seems to be a pretty trivial problem, it turns out
that it is extremely hard. There is an algorithm for doing this called a Number
Field Sieve algorithm. Let = be the number of bits needed to encode n. Then
the time to factor n using the Number Field Sieve algorithm is proportional to

eazl/s(ln z)2/3

The problem, as you see, scales sub-exponentially. This makes it hard, because
the scaling is faster than polynomial.

To see how hard this can be consider the challenge, which Rivest, Shamir
and Adleman issued to the computer community in 1977. They challenged them
to factor a 129-digit integer number. Eventually it took computer scientists 17
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years to rise to the challenge. The number was eventually factored on a cluster
of 1,600 computers.
What if the number is longer? According to Vazirani,

if every particle in the Universe was a classical computer running at
full speed for the entire life of the Universe so far (about 12 billion
years) that would be still insufficient to factor a 2,000 digits number.

Breaking the RSA Crypt Quantumly

But Shor’s oracle makes it possible to break the RSA encryption key quantumly
in polynomial time. The trick that makes it possible is as follows. Let z is
coprime with n. Define a function
fn(a) = :Ea'modn
This function is periodic with the period being a function of x. If for a given z
the period is r then
Jola+r)= -T((H_T)'modn = 272" |modn
which implies that
$T|m0dn =1

Now assume that r is even. Then

2
(xr/2) = 1|modn hence
(xr/2)2 —1%> = Olmodn hence
(xr/"’ — 1) (xr/z + 1) = Olmodn

This implies that unless /2 = +1|modn either (xT/Q — 1) or (wT/2 + 1) must

have a nontrivial factor in common with n. The factor of n can then be found by

calculating the Greatest Common Divisor of either (z7/2 — 1,n) or (z7/2 + 1,n).
In summary,

we have reduced the problem of factoring n to the problem of finding
a period of fn(a) = % modn, Where & is co-prime with n. And to
find the period we can use the Shor oracle.

The only quantum question that remains is how to implement function f,(a)
using quantum computing elements.
If a < 2™ then we can decompose a into powers of 2:

a=ag+a12+a2>+...+ap_12"!
Making use of this decomposition we can now express z? as follows:

a ao a12xa222 an_12""1

xr = T

rxr
a1 52\ @2 n—1\ @n—-1
= xao (.’I;2) (xz ) e (wz )
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where ay, € {0,1} —so that they can be thought of as control lines: if a = 0 then
the corresponding (x2k> f o 1. The powers of 22" can be evaluated classically

by repeated squaring.
The resulting quantum circuit, which evaluates | %) looks as follows:

| a)

|1) — Xz — xa? — x2* — [29)

5.3.5 Phase Estimation

The period finding circuit is a special example of a broader category of circuits,
all of which fall under the label of Phase Estimation circuits.
Let U be a unitary operator and let | u) be its eigenvector such that

U |u) =e>™ | u)

Consider the following circuit

|0y — H —
[0) — H QFT! —
|0) — H —
|y ——— v H v o | W

where gates U 2" with k = 0,1,2 are all controlled by the corresponding lines.
Observe the similarity to the circuit we have drawn in the previous section.
Because wu is the eigenvector of U once we have fed u into the 3 bottom
lines, it stays there unchanged. This, courtesy of the EPR paradox, forces all
the action into the top 3-qubit register. The Hadamards rotate | 0), applied to

the input of each top register line, to (| 0)+ | 1)) /+/2. And so after the first v
gate has been traversed, the combined state of line 0 of the top register and of
the bottom register is

= (10 1wyt [ e ) =

7 (10)+e2” 1)) u)

S

2



5.3. QUANTUM FOURIER TRANSFORM AND ITS APPLICATIONS 207

Immediately before the application of the second U 2! gate the state of the zeroth
and first lines of the top register and of the bottom register is

1 1
V2 V2

When the second gate is traversed, this state changes to:

In a similar manner we can already see that after the third gate, U 2" is traversed
the state of the computer becomes:

1 ( Qi 1 il 1
— (| 0) + e2mie 1)—( 0) + 2mi¢ 1)—
7 | 0) [1) 7 | 0) | 1) 7
Remember that the products between vectors in this formula are all tensor
products.
Suppose that ¢ in the formula above can be represented by the following
expression ezactly:
$o | P1 | P2
o=ty
where ¢g, ¢1, 02 € {0,1}. Then

(10)+11)) == (10) + €2 %" 1)) | )

(10)+ e 1)) | w)

(10)+e2" | 1)) | )

= (.Pod102)

e2mi92° _ 2mi(90/2°+61/2°+62/2°) _ 2mi(-god1d2)

and

e27rz'¢21 _ e27ri(¢0/22+¢1/21+¢2)
But because ¢ is either 0 or 1, e2™¢2 = 1, so we can drop it from the formula,
which therefore yields:

e2mid2! _ 627ri(¢o/22+¢>1/21) — 2mi(-¢od1)

By similar reasoning:
e27ri¢22 — 2mi(-¢0)

Substituting this to our expression that describes the circuit after the application
of the three U gates yields

1
V2

Ah, but what we have here is exactly the formula we used to implement Quan-
tum Fourier Transform as a circuit, given by equation (5.2) on page 198. The
only difference is that this is the formula for F | ¢'), where ¢/ = ¢92° + ¢12* +
$222%. In summary, the state of the circuit just before its upper register passes
through QFT? is:

0m+¥ﬂmwn)%0m+¥ﬂwmwuk%0m+éﬂmmw|m|w

(Fl¢))@|u)
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It is now clear that applying QFT', ie., F~! to the upper register is going to
yield {¢o, ¢1,¢2} in the upper register when the measurement is made. It is
now up to us whether we want to read these as ¢’ = ¢92° + 12! + ¢222 or as

¢ =o/2% + ¢1/2% + ¢ /2"

Now, I want to torture you a little with the analysis of a far more
difficult case. What if ¢ # (.¢op1¢2)? This case is similar to another case
we skipped above: the case of a period of function f not fitting exactly
into {1,...,2"}. The analysis is difficult, because this time we have to
abandon the purely algebraic approach that is really very easy to follow,
although at times somewhat tedious. The approach instead is going to be
characteristic of mathematical analysis. We’re going to plunge into the
subtle world of inequalities.

Suppose b is a t-bit integer described by a string of zeros and ones
{bo,b1,...,b;_1}. Dividing it by 2¢ yields

b

2 = = (.bob1 ... bs—1)

Now assume that (.bob: ...b:—1) is the best ¢-bit approximation to ¢ that’s
still less than ¢, i.e.,
(.bobl .. .bt_1) < ¢

Let the difference between ¢ and (.bob1 .. .bs—1) be §. Because (.bob1 ...bt—1)
is the best approximation of ¢:

b 1
5:¢—(.bob1---bt71):¢_§<§

From the analysis of the Phase Estimation Oracle we know that just

before the application of the inverse Fourier Transform the state of the
upper register is going to be:

2t_1

t Z 27rz¢k

2lcO

There is no division by 2¢ in the exponens, because this is implicit in the
definition of ¢ = ¢’ /2.
The inverse Fourier Transform is given by the formula:

2t—1

2 : —2mikl/2

Acting with the latter on the former yields

2’—1 2t—1

5 Z Z 2rigk —2mkl/2t | 1)

k=0 1=0
Now the probability amplitude of measuring | I) is

2t_1 2’—1 2‘—1

> Z —2mikl/2t o2midk _ == Z ( 2mi(p—1/2%) ) > Z q
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where ' ,

q = e2mi@=1/2)
The above is a sum of a geometric series, for which we have the following
expression:

1— n+1
S, =—9
1—-g¢

where n = {0,1,...}, e.g., So =1 and S1 = 1+ ¢. And so the probability
amplitude of measuring | I) becomes

1 C11—g"
T T

Substituting our expression for ¢ into qgi yields:

qzt — e27ri(2t¢—l)

so that the probability amplitude is
11— ezm'(2i¢—1)
9t 1 — g2mi(¢—1/2%)
If b/2¢ is the closest to ¢ then what is of special interest to us is the

vicinity of I = b. Let us thus replace [ in the above formula with b+ and

let us define:
1 1 2mi(2'e—(b+D)

T 201 — e2ni(p—(6+D/2)
with | = 0,+1,£2,.... Our hope is that «; should peak at [ = 0 and that

the peak should be sharp. We can rewrite this expression even further
making use of our definition of § = ¢ — b/2" to get:

(&)

11— e2m’(2‘5—1)
N = 5 T e2nie-1/20)
In order to assess if there is a peak there at all and how sharp it is if
it exists let us try to estimate the

probability of finding upon a measurement that l is more than
e steps to the left or to the right of 0:

P= Yl Y b
le]-2t—1,—(e41)] le[e+1,2t—1]

The exact expression for o; is too complicated to help us here, so we are
going to replace it with estimates instead. We want to demonstrate that
P is less than something. To do this we need to show that |a| is less than
something else. Because «; is a fraction, its absolute value is a fraction of
absolute values of its numerator and denominator:

! ‘1_6%1(2‘5—1)‘
|eu| = ot |1 _ e2m’(6—l/2t)|

To show that || is less than something we need to show that the nu-
merator in the above formula is less than something. But at the same

209
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time we need to show that the denominator in the formula is greater than
something else. And these estimates need to be tight, but not any tighter
than necessary to show what we want to show, i.e., they should result in
an expression that’s easy to use for our purposes.

The numerator is of the form

‘1_61'9

6

It assumes the largest value when § = 7 and then ¢ = —1. So we can

clearly see that:
‘1 _ ezm(2t5—1)| <2

Now let us have a look at the denominator. It is also of the form

‘l_eio

but now we must find what it is greater than and here we can’t be too
blunt (it is obviously greater than 0, but this doesn’t help). First observe
that 1 —e® is a bowstring (or a chord) connecting the ends of the arc that
corresponds to €, see figure below:

eiG

|1 - ei9| is the length of the chord. The maximum length of the chord is
2 and it corresponds to # = w. The chord is always shorter than the arc,
but it is always longer than 2 x arc/m. Because the radius of the circle
here is 1, the length of the arc is simply equal to the angle 8, so we have
the estimate:

. 2

‘1—@”
T

with 6 € [0, 7].

For # = m we get the equality. Then as the angle diminishes the
left hand side becomes increasingly larger than the right hand side. For
example for § = 7/2 the length of the chord is v/2 = 1.4142..., whereas
the right hand side evaluates to 27 /(27) = 1. For very small angles, the
length of the chord is 6 and the right hand side is 20/7 = 0.63660, so the
length of the chord is 1.57 times larger than the right hand side of our
estimate.

The particular angle we’re really interested in is

9 =2m (6 — l/2t)
hence

i0 2 t| _ t
|1=e?| > Z2mfs — 12t =4[5 - 1/2'|

Making use of our estimates for the numerator and for the denominator

we can now state that:
2 1 1 1 1 1 1

1
< — = — = ——
lal < 52 A6 — 1724 ~ 2626 —1/2F] 2L |5 —1/2t]  2[2t5 — ||
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The probability of getting further to the right or to the left of b than e
steps is therefore:

1 1 1 1
P<i X Gaorti 2 Gy
le]-2t=1,—(e+1)] le[e+1,2¢ 1]

Now, recall the definition of §:

b 1
6:¢_(-b0b1...bt_1):¢__ < —
therefore
0<2%<1

and for positive values of [
(206 —1)" = (1-2%)" > (1—1)?

hence
1 < 1
(2t —1)% " (1—-1)°

For negative values of [

(25 -1)" >
hence for negative values of [

11

(2t6 —1)> "I

Now our estimate for P simplifies further to:

1 1 1 1
P<Z Z l_2+Z Z (1—1)2

le]—-2t=1,—(e+1)] l€le+1,2t—1]

We can replace the [ —1 term in the second sum simply with [ by renaming
the index of the sum: instead of running from e + 1 to 2! we’re going
to run it from e to 287! — 1, and so:

1 —(e+1) 1 1 2t—1_q 1
P<i 2 pti 2 @
I=—2t—141 l=e
Let us now extend the upper range of the first sum to e. This does not
change the inequality, because by doing this we increment the value on the
right hand side even further. But this will help us wrap this expression
into a single sum, because 1/1> = 1/(—1)?, and so we get:

17
P<:= -
<3 g E
The sum on the right hand side is less than the integral
it 1 © 1 ., 1|e0 1
—dl= —dl' = ——
/e (-1 / Z v

e—1 e—1
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Here we have replaced 1/1? in the sum with 1/(I — 1)? in the integral, in
order to obtain the estimate from above. The replacement has the effect
of shifting the integrated function to the right by one unit on the z axis,
so as to be above the rectangles represented by the discrete sum. We
wouldn’t have to do it if the function was a rising one.
In summary:
1

P <3

The probability of straying further away from b than e steps drops faster
than 1/(2(e —1)). There is clearly an interference peak in the vicinity of
b.

This result brings home the importance of running quantum compu-
tations on statistical ensembles of quantum computers. If you have, say,
10 million registers in your sample, all performing the same computation,
you will see a very well defined distribution upon the measurement, which
will be easy to read and analyze. If instead you have just one quantum
register, you may get almost anything on the final measurement, because
1/(2(e—1)) isn't really a very sharp peak (for e = 2, 3,4, 5 the probability
is less than 1/2,1/4,1/6,1/8). You will have to repeat the computation
and the measurement over and over, before you get a well defined distri-
bution.

5.3.6 Discrete Logarithms

Consider the function
f(z1,22) = a***t*2 mod N
where x1,22,5,a, N € N and r is the smallest positive integer such that
a"modN =1
Observe that
F@r 41,39 — sl) = @*@+HD+a2—sl _ goartslbza—sl _ gsvitor — f(p )

So a pair (I, —sl) constitutes a period of this two-argument function.
The question we would like to ask now is

given a and b = a®* mod N what is s?

The oracle to answer this question is drawn below:
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1 H |
|0y — H QFT! —
g |
g |
|0) — H QFT™! —
g |
0y — | Uy E QFT E

The top six lines correspond here to ;1 and x2. The bottom three lines and the
box on them implement

f(z1,20) = b*1a™ = (as)wl 02 = gseites

After the column of Hadamard gates is traversed the state of the computer
becomes:

1 2t 1 1 2t—1
—= > = =) |x) | |0)
\/2_t$1=0\/2_t$2=0

Then we apply the Uy gate to the bottom register and the state of the computer
becomes:
2t—1 2t—1

DI DMENIESIEES
x1=0

332:0

Now let us rewrite f(z1,22) in terms of its own Fourier Transform:

|
-

r

| flzy,22)) = e2mi(szitm2)l/r | f(Sl,l))

S| ok
<

Il

o
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We can therefore rewrite the state of the computer as

2t -1 2t -1

r—1
1 wi(sz1+T r|f
Qt DD \/F}jé (serte2)l/r | f(s1,1))
=0

1= =0 :Ez—O

_ ot 1 9t_1
2risz1l/r 2mizal/T 7
zth 2 et | | 30 e jw) | | fsL0)

Applying QFT ! to the top two register now yields:

Qt\/_z|

Measurement of the two upper registers is going to return a pair

ol 1
r'r
from which s can be readily obtained.

5.3.7 The Hidden Subgroup Problem

An astute observer would have noticed by now that all quantum algorithms pre-
sented so far, with the notable exception of the Brassard Teleportation Circuit,
are very similar to each other. There is always a bottom register, with some
function being evaluated on the output of that register. A superposition of all
possible arguments is fed into the function box. The output of the function is
allowed to decohere, which shifts some result back onto the upper register or a
group of registers. Filters are then applied to the upper registers in order to ex-
tract information about some properties of the function. We have studied only
two filters so far: the Hadamard operator and the Quantum Fourier Transform.

It is possible to rephrase the above in mathematical terms. We can think
of the function as characterizing cosets of some subgroup K of some group G.
The function varies from a coset to a coset, but is constant on any given coset.
Thus the decoherence of the bottom register places the whole coset in the upper
register. Through filtration and repetitive measurements we can then generate
the subgroup K on the output of the upper register.

The algorithms described so far were therefore examples of procedures de-
signed to crack a specific hidden subgroup problem. This is what made them all
so similar.

5.4 Quantum Database Search

Imagine that you have a telephone number and a telephone book and that you’re
trying to find the person in the book the number belongs to. The problem is hard
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because listings in the telephone book are ordered alphabetically, and not by
number. The numbers themselves appear quite randomized, with the exception
perhaps of the leading 3 digits or so which may be the same for a large number
of people in a given locality.

This problem is not uncommon. In more general terms, if you have a very
large unsorted data base with N > 1 items and if you need to locate an item
with specific narrowly defined characteristics, then this is the kind of problem
we’re going to consider in this section.

In simpler terms, suitable for a quantum computation, we can define a char-
acteristic function f(z) : z € {0,1,...,N — 1} — {0,1} such that for just one
Zq f(z4) =1 and for all other z it is 0. The task of our quantum algorithm will
be to find x,. This is like solving an equation, but function f may not be given
by any specific formula such as 2% + 2z — 1, rather f may be defined arbitrarily,
e.g., as a table. In this case one would normally have to search the whole table
to find the corresponding z,.

5.4.1 The State Marker

This time we are going to construct the oracle step by step rather than draw
the whole circuit from the beginning and then analyze it.

This problem is not quite like the hidden subgroup problem discussed in
the previous section, but it has a sufficient number of common elements with
it. And so our first step is to construct a controlled unitary gate that would
implement function

fw(x):{o if z#w

1 if z=w
The gate itself can be described by the formula:
Up, |l z) |y) =) |y +2 fu(r))

Now consider the following circuit. This is not the whole oracle. It is just one
of its elements, but an important one.

| )

Let us analyze it:

1. The Hadamard operator on the bottom line converts | 1) to (| 0)— | 1)) /v/2
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2. As we have seen before in the section about the Deutsch-Jozsa oracle, when
a 4 operator controlled by a function f,, of | ) acts on (| 0)— | 1)) /v/2
the following results:

Ur. Iw>%(| 0)=| 1)) = (=1)% |w)% (10)=11)

3. Now consider (—1)/(®) | ). If z = w then f,(z) = 1, otherwise it’s zero.
Consequently for all z # w

(-1~ | 2) = (-1)° | ) =| @)
but for the single z = w
(1)@ w) = (1! |w) = = | w)

Given that | w) is one of the basis states and that it’s length is 1 we can
sum up the above as follows:

(=)@ 2y = (1-2|w)w ) | z)
4. The resulting state of the computer can therefore be written as:

1
(A -2]w)w ] [2) ez (0)-]1)

Now suppose that we place a column of Hadamard operators in the upper reg-
ister in front of this gate arrangement and generate a superposition of all values
2 can assume from 0 through N — 1. With this simple device we will have ac-
complished an important result: we will have labelled | w) with a phase that’s
different from all other vectors | ).

The operator
1-2|whw|

is a reflection that flips a component of | &) that is parallel to | w) and
leaves all other components unchanged. A reflection in a mirror is an
example of such a transformation. The vector w in this case is a line that
is perpendicular to the surface of the mirror.

Reflections and rotations are closely related. Both preserve a scalar
product of two vectors and therefore also a length of the vector. Both are
described by orthogonal matrices, i.e., matrices P such that PT - P = 1.
The difference is that for rotations det P = +1 whereas for reflections
det P = —1.

Reflections and rotations can be combined into a group, which has a
disconnected structure. It comprises two simply connected layers: the first
one is a subgroup of pure rotations, and the second one is a set obtained
by multiplying rotations by a single reflection. This second layer is not a
subgroup, because it does not contain the identity.
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Whereas you can get arbitrarily close to the identity within the first
layer, the rotations, you cannot get arbitrarily close to the identity within
the second layer. The reflected rotations stand apart. Which is why we
say that the combined group of reflections and rotations is disconnected.

But if you combine two reflections or two rotated reflections you get
back a pure rotation because det P - det P = (—1)-(—1) =1.

Observe that if R is a rotation then in an odd-dimensional space
P = —R is a reflection, and vice versa. For example in a 3-dimensional
space 1 — 2w ® w is a reflection along the direction of w but 2w ®
w — 1 is a rotation by 180° about the direction of w. But this rotation
can be also viewed as a reflection about the axis defined by w. In odd-
dimensional spaces reflections like that happen to be rotations too, but in
even-dimensional spaces they are just reflections.

If you combine two reflections of the second type, i.e., reflections about
two axes Py = 2w®w —1 and P; = 28 ® s — 1, where the angle between
w and s is @, then P, - P, is a rotation in the plane defined by w and s
and the rotation angle is 26.

Show this!

If you combine P,, =1 — 2w ® w with P, = 28 ® s — 1 then this
can be still thought of as a rotation by 26 in a plane defined by w and s
combined with a total reflection (the —1 bit). But a total reflection does
not change the direction of the vector, it only changes where it points.

5.4.2 The Grover Iteration
Define

1 N-1 N
|s>=\/—N;|w>=®H|0>|0>-~|0>

Since | w) is one of the basis states that | ) runs through, and they are all
perpendicular to each other, we know that

<w|3)=L:COSG

VN

The probability of finding | w) when measuring | s) is

w8 =

Define a reflection:
P,=2|s)(s| -1

The superposition of Pg and P, defined above
Re=P,-P,=(2]8)(s[-1)-(1-2]w)w])

is a rotation by 26 in the plane spanned by | 8) and | w) combined with a total
reflection. This rotation is called Grover iteration.
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By applying this rotation repetitively to the input state | 8) we can zoom
on the solution | w).

Consider first a simple situation where N = 4. Then

1
(3|w)=i= 2 = cosf, hence 6=60°

vz

A single Grover iteration rotates state | 8) by 120° and then it reflects it in the
opposite direction. Now 60° + 120° = 180° and when you do the reflection you
end up with a vector that is parallel to | w) and points in the same direction
too, sic! In other words, a single Grover iteration converts | s) into | w).

Now consider a situation where N is large, i.e., > 4. A very large N implies
that cos@ is very small and therefore close to 90°.

Now we need to apply the Grover iteration R a sufficient number of times so
that the state which is initially | 8) and nearly perpendicular to | w) gets rotated
onto a direction that is parallel to | w). Let  — 6 = 1. Then cosf = sin¥. On
every iteration we move by 2¢ away from /2. Eventually we are going to align
with w after

/2 _ w2 _ 7/2 /N

29~ 2cosf 2/vVN T4

iterations.

A classical computer would have to perform O(N) queries to find the answer.
Grover algorithm is therefore quadratically faster than a classical algorithm.
Although the improvement is not exponential, for very large N the saving is
dramatic: for example if N = 250 x 10°, roughly speaking the number of people
who live in the USA, v/N = 15,811. There is a tremendous difference between
making 250 million queries versus making only 15,811 queries.

5.4.3 Implementing the Iteration

We have already shown at the beginning how to implement 1 —2 | w)(w |. Here
we’re going to show how to implement P,;. The combination of the two circuits
yields one Grover iteration.

Because P, =2 | s)(s | —1 and | 8) = ®" H | 0), and because H? = 1 we
can rewrite P as follows:

P,=QQH(2|0)0|-1)XH

What stands between the Hadamards is an operator that flips states about
the | 0) axis, i.e., it reverses every basis state with the exception of | 0).

Consider the following circuit:
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|z) —t——

1) — os —

For all | ) but | N — 1), i.e., when every line is set to | 1) nothing happens
on the bottom line, so the state of the computer remains | )® | 1). But if all
control lines become | 1) then the bottom line changes its sign and the state of
the computer becomes: — | N —1)® | 1). Now if you place a NOT gate, i.e.,
a o, gate before and after the control connection on every line then you invert
the control, so that | 0) triggers the change of sign, whereas all else leaves the
sign unchanged. This is the opposite to what we want, but this is still OK,
because the difference is in the overall phase factor.

Recall that we have actually implemented a controlled-o, operator in the
section about the controlled-NOT gate. But assuming that you have constructed
the controlled-NOT gate by some other means and that you have plain single
qubit NOT gates too you can construct the controlled-o, gate by placing o,
between two Hadamard gates.

What does Grover circuit look like then? The whole iteration is shown in
the figure below:

|.’I}> QH : Ko, RO, : QH :

| 1> (o

|1) — H [— Uy,

5.4.4 The Optimality of Grover Algorithm

Grover algorithm searches an IV elements data base in O | v N ) iterations. This

is not an exponential speed up, which we would normally expect of a quantum
algorithm. The obvious question to ask then is if a better algorithm can be
found.

It turns out that Grover algorithm is optimal, i.e., no other algorithm can be
found that would be any better. This is not to say that it is impossible to find
an algorithm that would run, say, 2 times faster. The proof of the optimality
of Grover algorithm that we are going to discuss below, shows merely that

the problem cannot be solved in less than O (\/ N ) iterations. Since Grover
algorithm is already in this category it is optimal in this sense.
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The Grover algorithm as well as the proof of its optimality constitute a
remarkable accomplishment of this relatively new and budding area of quantum
computing. It also shows that it is not necessary to focus on exponential speed

ups for quantum algorithms only. A O (\/N ) speed up is sufficiently significant

and interesting in its own right.

The remainder of this section, i.e., the proof itself, is somewhat lengthy and
tedious — as most proofs of this nature are. It is OK to skip it if you're not
interested in details.

Assume that we have a search problem, as specified in the introduction
to this section, and that we start with some vector | ¥). We shall also
assume that the problem has just one solution given by some vector | ).
In quantum terms we’re going to move over the sphere of radius 1 in the
Hilbert space to which | ¥) belongs, until we find the solution to the
problem, i.e., until we stumble upon | ). Our task is to minimize the
number of moves required to reach the solution.

We also assume that we can use the circuit that gives a phase shift
of —1 to | ) and leaves all other states unchanged. As we have already
demonstrated before, the circuit implements O, =1 — 2 | x)(x |

The generic form of the algorithm is

| ¥%) = UxO,Uy_10,...U,0, | ®)
Let us also introduce another vector called | ¥;) defined by:
| 1) = UpUg—1... U1 | ®)

And let | ®o) =| ¥). What is the difference between | ¥;) and | ¥3)?
The former is a vector that is reached upon a unitary walk, which does not
include any references to the search problem itself. The latter is a result
of a walk interrupted upon every step with invoking the search circuitry.
Let us define an auxiliary expression, which is a sum of squared dis-
tances between | ¥) and | ¥%) over all zes:
N-1
Dy =) || ®F)— | ¥)|?
z=0
We are now going to prove two interesting statements about Dy. The
first one is that as we keep moving around the sphere, D), does not grow
faster than O(k?). The second statement is that in order to make it
possible for us to distinguish the final solution | ) from the sea of other
states, once we get to it after having made k steps, D, as a function of
N must be of the order of N.
These two statements together imply that k? &~ N and therefore k =
VN , which is the basic tenet of this section.
We are going to prove the first statement, i.e., that Dy ~ O(k?) by
induction. To accomplish this we must express D41 in terms of Dy:

Diy1 = > |Uk4105 | ¥5) = Upia | ®1)[°

@x

D Ukt1 (00 | T7)— | T0))I°

x
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Since U1 is a unitary operator, it doesn’t change the norm. Hence we
can drop it altogether:

= > 10, | T~ | T

D 102 | ¥F) = 0a | Ti)— | Ti) + Oa | )|

D10 (| T~ | ¥)) + (0s — 1) | T)|?

But O, =1 — 2| z){x | therefore
(Oz = 1) | ¥) = =2 | z)(z | ¥)

hence

o= 10 (1 TR~ | T)) — 2 | @) | T
We are now going to make use of the Schwarz inequality, which says that
la —b|* < lal® + [b]* + 2lal b
Substituting this into what we have evaluated so far yields:
Dt < 310 (| 5) - | ¥ + 4] | )
+2(0. (| ¥E)— | Ti))| 2@ | T

We again make use of the fact that O, being unitary does not change the
norm of the vector, so we can drop it from the above expression altogether.
Also notice that 3, [{(z | ®x)|* = 1 because | ¥}) is a normalized state.
And so

Di1 <4+ || %5)— | Tu)l” +4 T5)— | Tr)l (x| )

x

First, observe that 3" || ®%)— | ®x)|* = Dy. This leaves us with
4l i) — [ Tr)| [z | )

in the expression for the Dj1 estimate that is still somewhat uncomfort-
able. But even here we can make use of the fact that

2
(Shel) < Sper
so that the uncomfortable terms can now be estimated from below by
4\/2 w5 | wk>|2\/2|<x | @) = 4vD;

In summary we have shown that:

Diy1 <4+ Dy +4VDy,
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Observe that this growth is like that of Dy, = 4k
Diy1 =4k +1)° = 4(k* + 2k +1) = 4 + 4k + 4(2k) = 4 + Dy, + 4V Dy,

Thus
Dy, < O(4k?)

And so, we have demonstrated the first leg of our proof that Grover’s
algorithm is optimal. The second leg now talks about scaling of Dj, with
the size of the data base N. Here we want to show that there is a certain
condition imposed on Dy that has to do with our ability to distinguish
between | %) and other states.

The condition is that as we keep stepping, or iterating, we should
get to see | z) itself more clearly with every step. Since the state of our
search after k steps is described by | ¥%) this implies that the probability
of finding | ) upon measuring | ¥{) should be high. How high? Well, let
us say at least 1/2. This is then our criterion:

z 1
[ | WD) > (53)
If the algorithm is to be generally valid, this should hold for every | z).

Now consider the distance between | z) and | ¥%):

| T%)— | &) = (¥§ | ¥F) — 2Re(z | ¥E) + (z | @)
=2 —2Re(z | %)

Resorting to polar notation for (z | ¥%) and making use of the fact that
[(z | %) > +/1/2 we can replace the above with

...52—2Ree”i

V2

The largest value of Ree?® = 1, therefore the sharpest form of this in-
equality is
| T5)— | 2)* <2-V2

This is how we are going to replace our original somewhat weaker criterion
(5.3)3.

Let us now introduce two auxiliary quantities Ej, and F}, with which
we are going to estimate Dy. Ej is simply the sum of distances between
| ¥%) and | =) over all z-es, and we already have an estimate for it:

Ep=) [l ¥)— )" < (2-V2)N

3Nijelsen and Chuang [80] use the following argument here. They say that “Replacing | z)
by e | ) does not change the probability of success, so without loss of generality we may
assume that (z | ¥%) = [(w | ¥£)|.” As we can clearly see this replacement results in a new
criterion, which is stronger than the original (5.3), i.e., we want | ¥{) to be even closer to
| ). This is quite OK, because the original criterion (5.3) is of a hand-waving variety anyway.
Replacing it with a stronger one makes the following calculations easier and this, of course, is
the real reason why we do this.
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F}, is a sum of distances between | z) and | ¥y:

Fe=)_lle)=| %)’

As before we can easily see that:

|| @)= | ®e)|* = 2~ 2Re (e | T4)

Summing it up over z yields:

Fy =) (2—2Re(z | ¥y))

x

=2N—22Re(:c | ¥r)

The sum } Re(z | ¥x) attains maximum for | ) = 3" | y)/VN, ie.,
when | ¥;) is an equally weighted superposition of all | y). This can be
shown by using constrained extremization with Lagrange multipliers [87].
So let us make this substitution, which lets us estimate Fj from below:.

Fk22N—ZZZ%(m|y)=2N—2\/ﬁ

So now, let us see how we can estimate Dy with a combination of Ej

and Fy.
Dy = XZ:II‘I'@—I‘I’HV
= Zgﬂ:ll‘I'£>—|ﬂﬂ>+lw)—|‘1’k>l2
= %:II‘I'£>—|fc)|2+llw)—|‘I’k)|2+2Re(<w|—(‘I’k (I Te)— | =)
> S NT)— D)+ (2= [T +2) Re((z | —(Te ) (| ¥5)—| )
> ;k+Fk—2\/m ) ’

= (VB -VE)

Observe the change of sign in front of 2v/Ej Fi, which correponds to the
worst possible case of all phase factors e?= aligning at —1.

Substituting the estimates for E} and F) we have obtained above

yields:

pe > (VR -VE)
> (\/2N—2\/ﬁ—\/(2—\/§)N>2

For large N we can neglect the v N in the first square root, compared to
N and so we get:

2
Dy, > (x/i— 2—\/5) N =0.421N
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Let us now sum up what we have accomplished here. First we showed
that Dy < O(4k*). Then we also showed that Dy > 0.421N. Together
these two inequalities imply:

0.421N < Dy < O(4k?)

. o( 0.4ilN>

In other words, the number of iterations required to solve the problem
must be of the order of v /N. Grover algorithm is therefore optimal.

Hence

The reason why Grover’s problem is classically hard is because its search
space has no structure. Hence we have no other choice but to resort to brute
force and search the whole space through. Quantum mechanics offers improve-
ments due to quantum parallelism: we can pass the whole search space all at
once to the characteristic function and get the searched element marked in just a
single step. Yet it still takes O(v/N) iterations to zoom on this marked element.
Still, the saving is very substantial for large N.

On the other hand, if a hidden structure exists in the search space, we can
make use of this and then further improvements to algorithm efficiency are
possible. This is what we have seen in the hidden subgroup problem examples.



Chapter 6

Quantum Error Correction

Quantum computers, like classical computers, are subject to errors. The sources
of errors are in some cases similar, e.g., thermal fluctuations, interaction with
cosmic rays. In other cases errors are specific to quantum systems, for example
beta decay or K-capture, decoherence, dissipation.

As we have already emphasized in section 4.6 (page 147), a description of
a quantum system in terms of rays in a Hilbert space subjected to unitary
operations is an idealization. In real life states are not rays, measurements are
not orthogonal projections and evolution is not unitary.

If the above statement shocks you then think about a well known
classical idealization of a planet as a material point. Of course planets are
not material points. Their trajectories are not elliptical. And, to make
things worse, they are not exactly where we see them, because of the finite
speed of light. The latter was used by Ole Christensen Rgmer in 1676 to
estimate, for the first time, the speed of light, which he did with about
25% error — not bad at all for the first shot!

Idealizations of this nature are favourite with some physicists, especially the-
oretical types (mostly because they lead to easily solvable models), and with
mathematicians (for the same reason). But they are not looked very kindly
upon by experimental physicists and they are definitely out of favour with en-
gineers. The reason is obvious: engineers and experimentalists have to deal
with real world. Engineers have to design and build devices for the real world.
Imagine designing a car and completely ignoring friction. Or imagine designing
a computer, and completely ignoring the need for shielding and fault-tolerant
memory.

Consequently, ever since its conception, the budding area of quantum com-
puting has been concerned with managing errors that may affect computational
procedures.

Errors may creep into these procedures at various stages. Initial state prepa-
ration may be laden with errors. Gates applied to the system may be inaccurate.

225
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qubit 7 (in ) | time per gate (in s) | number of steps
GaAs electron 10-10 10-13 103
Au electron 108 10-14 108
trapped In ion 107! 10714 1013
optical cavity 103 10714 10°
electron spin 103 107 10*
electron quantum dot | 1073 10-6 103
nuclear spin 10* 1073 107

Table 6.1: Decoherence time 7 versus time per gate for various qubit implemen-
tations. The last column show the number of gates that may be executed before
the register decoheres [30].

As we have seen in section 4.7.3 (page 166) the register may be subjected to
depolarization (spin or phase flip), decoherence (phase damping), and dissipa-
tion (spontaneous emmission or amplitude damping) during or between gate
traversals. Finally, we may end up with measurement errors.

In section 4.7.3 (page 169) we have investigated a simple model of decoher-
ence. We have also described decoherence observed in NMR measurements in
section 4.6.7 (page 156). The characteristic feature of decoherence is exponen-
tial vanishing of off-diagonal terms in the density matrix of the register, which
corresponds to the collapse of the wave function and the resulting replacement
of a superposition of states with a mixture.

NMR measurements yield a time scale 7 for this process. Measurements
performed for other systems that are candidates for quantum registers also give
us an idea about the time scale of decoherence in those systems. Although
the simple model we have looked at in section 4.7.3 gives us some idea about
how decoherence takes place, our understanding of this process is still rather
sketchy and we do not have good theoretical predictions for 7. You will find
a very good discussion of decoherence presented by the master of this subject,
Wojciech Hubert Zurek from Los Alamos, in [107].

Table 6.1 shows estimated decoherence times for various potential qubit
candidates. In the same table we also list the time it takes to execute a single
gate on that qubit, and in the last column we print a number of gates that can
be traversed by the register before it decoheres. Observe that what matters
is two factors: the decoherence time and the time per gate. For example, the
decoherence time for nuclear spins is 10*s, which is really very long. But it
also takes about a ms to apply a gate to a nuclear spin. Consequently the total
number of gates that one can hope to apply to a nuclear spin based register
before it decoheres is about ten million. In principle, we should be able to do
much better with, e.g., trapped Indium ions, where the decoherence time is 0.1s,
but gates can be applied in only 10~ 5. So we can apply 10'3 gates before the
register decoheres.

Decoherence can be controlled. In section 4.7.3 we attributed decoherence
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to scattering of light low energy particles against a heavy particle. The light
particles did not have enough energy or momentum to change the state of the
heavy particle, but they sponged away information contained in the quantum
state of the heavy particle. The decoherence time was related to the number of
scattering events per second and the probability that such an event would result
in the entanglement between the heavy particle and the light particle scattering
off it. This has the following implications:

e The denser, the hotter, and the larger the medium in which o
register is embedded, the shorter is the coherence time of the
register.

o The lighter (i.e., the more susceptible to the entanglement) the
constituent particles of the register the shorter the coherence
time of the register

This explains why it is going to be so difficult to maintain coherence of a quan-
tum register in a crystal. Here a high density of the medium, and the rich
spectrum of various excitations such as phonons, polarons, photons and what
not work against the long coherence time. If such a register is to be based
on electron spin or electron energy levels we have additional problem caused
by the small mass-to-charge ratio for the electron. In other words, structures
based on electrons in solids (e.g., quantum dots) are perhaps the worst possible
candidates for quantum registers, with the exception, maybe, of systems based
on collective excitations, such as anyons.

On the other hand, systems based on nuclear spins attached to molecules
(which provide structuring and binding needed to deliver individually address-
able qubits and couplings within the register) suspended in a diluting medium,
be it a magnetically neutral liquid or a rarified gas, are excellent candidates for
quantum computing, at least as far as their resistance to decoherence goes. A
proton is 1,836 times heavier than an electron while having the same electric
charge. A proton is therefore that much less likely to entangle with light par-
ticles that try to sponge information away from its quantum state. A look at
table 6.1 confirms this assessment: the decoherence time for electrons in GaAs
crystals is only 10719 s, whereas decoherence time for nuclear spins is 10*s.

Decoherence time is also going to depend on the type and temperature of the
environment as well as on the size of the environment. Table 6.2 shows estimates
for decoherence time in seconds if the register is exposed to interaction with (1)
cosmic background radiation, (2) room temperature, (3) sunlight on earth, (4)
vacuum, (5) air — all in an enclosure of various sizes.

Decoherence is an example of an error that cannot be described by a uni-
tary operator. Decoherence, as we have seen in section 4.7.3, is a non-unitary
phenomenon. So is dissipation, i.e., an act of emitting a photon or a phonon or
some other quantum of energy, and dropping to a lower energy state.

Although we have discussed dissipation in section 4.7.3 (page 171), you
may possibly harbour some doubts as to the validity of this statement,
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cosmic .
size (cm) background room sunlight vacuuim air
> temperature on earth 106 particles/cm?
radiation
10~3 107 10~ 1016 10~18 10-3%
107° 10%° 1073 10-8 10-10 102
10-6 10 10° 102 106 101

Table 6.2: Decoherence time, in seconds, for various types of the environment
in function of the environment’s size [54].

thinking of a dissipation as a case of a bit-flip. Consider the following
description of this process:

D|1) = |0
Do) = |0)

The matrix that corresponds to D in this basis is:
1 1
D =
(0 0)

It is easy to see that this matrix is not unitary, because

2 0
.Dt =
p-o'=(¢ ()

But there is also a group of errors that are quite unitary: spin and phase flips.
These can be described by Pauli matrices, and they are collectively referred to
as depolarization errors. We have discussed these in section 4.7.3 (page 167).
To remind you the errors are as follows:

bit flip error described by o,:

no error described by 1:
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These depolarization errors, all of which are large and discrete are most tractable
of all quantum errors. Here procedures exist that are, to a degree, derived from
procedures that handle similar problems in classical computers. Of course,
we cannot apply classical error correction procedures directly. For example
some classical error correction procedures are based on replication. But in the
quantum domain we cannot replicate, because of the no-cloning theorem. Yet,
there is enough commonality here so that some ideas used in the construction of
classical linear codes, for example, can be re-used to develop Calderbank-Shor-
Steane codes for quantum registers. Applying these lets us encode logical qubits
in groups of physical qubits, in analogy to the way that logical bits are encoded
in groups of physical bits in classical computing. The encodings are such that
errors can be detected and corrected, while at the same time preserving the
coherence of the quantum state of the register.

Quantum circuits were developed and implemented even (to a degree. . . [61]
[45]), which demonstrated such procedures.

But then quantum computers are also subject to small errors. For example:

(6)-Gie)

._)

b b + €p

where €, and ¢, are small. Classical bits, of course, cannot do this: they can
be only 0 or 1. But even here procedures were developed that can correct such
errors without ever measuring them explicitly, which would destroy the quantum
state of the register.

The ultimate in quantum error correction are the so called concatenated
codes, which let us carry out quantum computations with arbitrary precision,
sic!, assuming that the probability of error occuring can be pushed below a
certain threashold.

Last, but not least, fault tolerant gates and measurement procedures have
been developed.

The theory of fault-tolerant quantum computation has become a sizeable
industry. Unfortunately, as the procedures concocted by this industry often re-
quire a fairly large number of additional qubits, well in excess of what’s currently
possible, there is little here in terms of experimental demonstration yet.

On the other hand, in some situations we don’t really have to worry about
quantum error correction procedures too much. Consider a case of NMR com-
putation. Assume that the sample is cooled to reduce thermal fluctuations and
to improve signal-to-noise ratio. Because of a large mass-to-charge ratio of nu-
cleons depolarization errors are not going to be all that common. But more
importantly, because NMR computation is carried out in parallel on trillions of
quantum registers, when measurements are made we end up with very well de-
fined distributions, in which any quantum errors that may have occurred during
computations would either average away, or they would simply join the back-
ground noise. It should therefore be possible to carry out sizeable computations
using NMR on quite a large number of raw qubits without explicit qubit-level
error correction procedures.
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We can think of this process as an error correction procedure of a kind.
The procedure is based on replication. But it is not qubits that we replicate.
Instead we replicate whole independent registers. Then we replicate the whole
computation on all the registers, and finally we sum up answers from all the
registers. The summation averages errors away. This is similar to majority
voting schemes in classical computing.

6.1 Decoherence-Free Subspace

Apart from cooling and isolating the system, there is another way to deal with

decoherence. Decoherence can be dealt with algorithmically. It is possible to en-

code logical qubits in physical qubits in such a way that even though decoherence

affects physical qubits in some ways, logical qubits remain unaffected.
Consider the following encoding:

1 ,

10z = S0 1) =i]1)10)
1 ,

Ve = Z 10 IH+il1)10)

First observe that | 0)7 =| 1)z. You can also check easily that (0 | 0y = (1|
1) =1 and that (0 | 1), = 0. Therefore the states | 0); and | 1), constitute
an orthonormal basis.

Decoherence can be modelled by an operation called collective dephasing.
The operation transforms | 1) into €% | 1) for both physical qubits at the same
time and leaves | 0) unchanged for both of them. You can see that this results
mn

| 0>L — ew | 0>L
D = €| 1)
alOr+p8[lr = e’(a|0)r+p8]1)z)

If all operations are carried out on qubits encoded in the same way, all that
happens when collective dephasing takes place is that the whole system gets
multiplied by e?. But this doesn’t change anything because no probabilities get
affected by it. What really matters in quantum mechanics are phase differences
between qubits.

We can say that the encoding maps qubits onto a Decoherence Free Subspace
of Hilbert space.

How well does this model correspond to what really happens when decoher-
ence takes place? First, the model is collective, i.e., it assumes that all qubits
in the register are affected by the same error at the same time. This is very
different from an independent error model. Quoting from [68], the collective
dephasing model derives from

Dicke’s quantum optics work on superradiance of atoms coupled to a ra-
diation field, where it arose in the consideration of systems confined to a
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region whose linear dimensions are small compared to the shortest wave-
length of the field.

Recall that in our simple decoherence model in section 4.7.3 we made the as-
sumption that particles scattering off the heavy particle subjected to the deco-
herence superoperator all had low energy. Low energy means a long wavelength
— possibly longer than the physical dimensions of the register. This, in term,
implies that all qubits in the register may get affected in the same way.

But the final arbiter of truth in physics is always the experiment.
In February 2001 Kielpinski, Meyer, Rowe, Sackett, Itano, Monroe and
Wineland reported in Science an experiment in which they encoded a qubit
into a decoherence free subspace of a pair of trapped °Be* ions. They
used encoding exactly like the one shown above. Then they measured
the storage time under ambient conditions and under interaction with an
engineered noisy environment and observed that the encoding increased
the storage time by up to an order of magnitude [59].

Mathematically the description of decoherence free spaces is as follows. We
assume a Hamiltonian H gp that describes interaction of a system S with a heat
bath B of the following form:

HSBZZSz’@Bi

k3

The decoherence free states are those, and only those states which are simul-
taneous degenerate eigenvectors, i.e., eigenvectors with the same energy, of all
system S operators appearing in Hgp, i.e.,

Si|¢) =si|¥)

where the eigenvalues (energies) s; do not depend on 1. It turns out that the
subspace spanned by these states is decoherence free, i.e., the Hgp evolution
in this space is unitary, whereas in general, as you should remember, it isn’t.
Consequently, there is no decoherence in this subspace.

This results in a passive protection against errors — as opposed to the active
protection of the quantum error correction codes, about which more below.

6.2 Linear Codes

Classical error protection codes are just as important as quantum error correc-
tion codes, perhaps even more so, because classical computers exist, whereas
quantum ones don’t (yet). Unprotected physical bits are seldom used in com-
puting. They are vulnerable to thermal fluctuations, cosmic rays, power fluctu-
ations and other environmental hazards. Yet bit protection can be implemented
quite cheaply in classical computing. For example parity checking can be used
to protect with just one or two additional bits the whole 8-bit register. An-
other classical method of error correction is replication combined with majority
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voting, mentioned in the preamble to this chapter. All these methods can be
described in terms of simple linear operations.

Assume that & corresponds to a classical logical register of k logical bits. The
encoding of this register into n physical bits can be described by a generator
matrix G with £ columns and n rows, where n > k, and where each matrix
entry is either 0 or 1. For example a replication code for 1 logical bit, to be
replicated 3 times, can be described as follows:

1 Zo
G=|1 x = (z0) Gr=| o
1 Io

The following generator matrix, in turn, encodes a pair of two logical bits each
into a triple of physical bits:

1 0 To

1 0 o

_ 1 0 _ Zo _ Zo
G = 0 1 T = ( I ) Gz = I
01 1

01 1

The columns of G must be linearly independent so that there is a unique en-
coding for every vector . Observe that you can replace the first column in the
G above with the sum of both columns, and this will produce a code, which,
although not identical, is very similar nevertheless:

Zo
Zo

Zo Zo
xr = Gz =
X1 To +2 T1

To +2 T1
To +2 21

I
— o = =
O O O

If 2o = 0 the bottom half of the resulting vector evaluates to three times x1, so
in this case the result is identical. If £y = 1 the bottom half of the resulting
vector evaluates to three times 145 27 = — ;. We end up with another variant
of a replication code.

The above formulation of encoding, in terms of the generator matrix G,
doesn’t tell us how to detect and correct errors. One can associate another
matrix H, which is called the parity check matrix, with G, which can be used
to do this. Let H be orthogonal to G, i.e., let

HG=0

Matrix G, which encodes a k-bit register into n physical bits, where n > k,
is n x k, i.e., it has n rows and k columns. Consequently, to make the above
orthogonality relation valid, matrix H must have n columns. We also require
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that it should have n — k rows. Thus matrix 0 in the orthogonality relation
above is (n — k) x k. Observe that if you were to put H on its side and place it
to the right of G you would obtain an orthogonal matrix n x n. Matrix H can
therefore be thought of as an orthogonal complement of matriz G.

In order to build H, and assuming that you have G you need to find n — k
linearly independent vectors y, orthogonal to the columns of G and then set
the rows of H be yI,yd,... ,yT_,.

Be aware that there are many surprises in binary arithmetic. In partic-
ular being orthogonal in the binary world does not in itself imply linear
independence. Every vector with an even number of ones, for example,
is orthogonal to itself. Consequently the rows of H while orthogonal to
the columns of G and linearly independent of each other may be linear
combinations of the columns of G. You will see in the next section about
the CSS codes that this is indeed the case for the Hamming code, and,
in fact, we are going to make use of it in order to construct the so called
Steane code.

In order to build G, and assuming that you have H you need to find &
linearly independent vectors orthogonal to the rows of H. Matrix G is then
built by making the vectors the columns of G.

Matrix H maps n-dimensional vectors onto an n — k dimensional space.
All vectors that H maps onto zero of this n — k dimensional space form a
k-dimensional subspace, which is called the kernel of H. This subspace corre-
sponds to the k-dimensional vectors encoded by G. This is easy to see because:

HGx=0x =0

Consider our simple example, which encoded a single bit by replicating it
three times. The generator matrix for this encoding was:

1
G=|1
1

We can choose the following 2 x 3 matrix H:

110
H‘(011>

Remember that all our additions are modulo 2, so this matrix is indeed perpen-
dicular to G:

[ 11491-1450-1\ _ [ 1451\ [0
HG = ( 0-T421-1451-1 ) - ( 1451 ) - ( 0 )
To check if a given vector (o) has been correctly encoded into y = (xo, zo, o)
we calculate:

Hy - 110 ‘ZO _( oty \ _ [ wot220 \ _ (0
01 1 ! Y1 +2 Y2 To +2 Xo 0

Y2
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because 0 +o 0 =0 and 1 +5 1 = 0 too.

Observe that if any of the bits in y is different from the other two bits
Hy # 0. The value returned by Hy is called the error syndrome. If the first
bit of y has flipped then, remembering that classical bit flip is simply +21 we
get To +2 1 +2 79 = 1 and the error syndrome is (J). If the third bit of y has
flipped then the error syndrome is ((1)) And if the second bit of y has flipped
the error syndrome is going to be (;). Observe that by looking at the error
syndrome we can point to the bad bit and we can repair it. This, of course, is
based on the assumption that the other two bits are good. This procedure is
called the majority voting. But observe that if two bits flip at the same time
then majority is going to be wrong and minority is going to be right. This, of
course, never happens in politics.

In general we can describe the error syndrome finding procedure as follows.
If Gz = y, then if an error occurs, we can represent it by e such that ¢’ = y+e.
The error syndrome then returns:

Hy =H(y+e)=He

An important category of linear codes are the so called Hamming codes.
The parity check matrix H for Hamming codes is constructed by making its
columns be numbers in binary representation from 1 to 2" — 1, where r is the
number of rows in the matrix. For example for » = 3 the parity check matrix
for the Hamming code looks as follows:

0001111
H=10110011
1 01 0101

The Hamming codes have this nice property that the error syndrome points to
the location of the error right away. If, for example, e = (0,0,1,0,0,0,0) then

0
He = 1
1

which, counting from the bottom to the top, is binary for 3. This tells us right
away that the third bit has flipped.

The generator matrix G that corresponds to the Hamming parity check
matrix H shown above is

Q

Il
—_H OO KM OO
O == O -=OO
_ OO O O
= -0 00O
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Because matrices G and H complement each other their roles can be re-
versed. This means that you can use H' as a generator matrix and G as
a parity check matrix. This new encoding is different from the original one
given by G and H, but both codes are related. We say that they are dual to
each other. The notation that accompanies this duality is as follows. If the
pair {G, H} defines code C[n, k] that encodes k logical bits in n physical bits
(n > k) then the pair {H”,G”} defines code C-[n,n — k] which encodes n — k
logical bits in n physical bits.

We can also identify C' with ker H and C+ with ker GT, i.e., we can think
of C and C* as sets and apply set equality and set inclusion relations to them.
Making use of these set relations, if C' = C* we call such a code self-dual and
if C C C* we call it weakly self-dual.

6.3 Calderbank-Shor-Steane Codes

Calderbank-Shor-Steane codes, or CSS codes for short, are quantum codes,
which let us identify and correct large qubit errors, i.e., errors described by
Pauli matrices. CSS codes derive from classical linear codes.

In order to construct a CSS code you need to have two classical linear codes,
Ci[n, k1] and Ca[n, k2] such that Co C C;. The resulting code is a quantum code
called CSS(C1/C5) (this is read “CSS of C; over Cy”), which encodes ki — k2
logical qubits in n physical qubits, so this code is [n, k1 — ka].

Codes C1 and C3 can be dual as long as C; C Ci. In this case C; =
Ci[n, k] and C; = Cz[n,n — k]. The resulting CSS code is CSS[n, 2k — n].
For example, if we were to take the (7,4) Hamming code discussed in the
previous section, its C* would be a [7,3] code. You will see below that
in this case C2 C C1. The resulting CSS code would be a [7,2 x4 —7] =
[7,1] code, i.e., a code that can correct errors on a single logical qubit by
encoding it in 7 physical qubits.
The smallest quantum code that can be constructed this way is

CSS(C1[5,3]/Ca[5, 2]) = CSS[5, 1]

This smallest code was first discovered by Laflamme, Miguel, Paz and
Zurek in 1996 [63].

The encoding is a vector space spanned by all states constructed by taking a
codeword x € C; and then adding to it the whole of Ca:

1
| +2 Cs) = Y lz+ay)

V |02| ’yECz

where |Cy| is the number of elements in C. Observe that if & € C; and &' € Cy
but (' —y @) € Cy then  +2Cy = x +2 &' —3 & +2 C5 = &’ +2 Cs. This means
that « +5 C for all * € C; depends only on division of C into layers parallel
to Ca, each of which is an image of C> shifted by & (or any other vector of the
form of & +2 e where e € C2). This layering is what we mean by C1/Cs.
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Let us again take the C1[7,4] Hamming code and its C»[7, 3] dual and
let us try to construct the corresponding [7,1] CSS(C1/C>).
The codewords of C'1[7, 4] are spanned by the columns of the generator

matrix
0 0 01
0 010
11 00
G=|1 0 0 0
01 1 0
01 01
1 011
The codewords of C3[7,3] are spanned by the rows of the parity check
matrix
0 00 1 1 11
H = 0110 0 1 1
1 01 01 01
First observe that each row of H can be constructed by adding rows of
GT eg.,
0 0 01 1 11
= 0011 0 01
+2 0 0 1 0 1 1 0

The same holds for the other two rows of H, which means that C5 is
indeed contained in C1, as we have already asserted above. Now we need
to generate every possible vector of C;. Apart from the ones already listed
in the H matrix we also have the following sums:

00 01 1 11
+2 0 1 1 0 0 1 1
= 0111100

00 0 1 1 11
4+ 1 0 1 0 1 0 1
= 1 01 1 0 1 0

0110 0 11
+2 1 0 1 0 1 0 1
= 1 1 0 0 1 1 0

000 1 1 11
+2 0 1 1 0 0 1 1
4+ 1 0 1 0 1 0 1
= 00 0 1 1 1 1
+2 1 1 0 0 1 1 0
= 11 0 1 0 0 1

An element that obviously must belong to Cy is | 0000000). This element
belongs to C> too. It is obtained by adding any other Ci or C2 vector to
itself. Therefore the first element of C1/C2, which we are going to identify
with | 0) is going to be }° ., (| 0000000)+2 | y)) where | y) are all the
vectors we have found above including | 0000000) which belongs to Ca
too:

[0)z = (] 0000000)
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+ | 1010101
+ 0110011
+ | 0001111
+ 0111100
+ 11011010
+ 1100110
+11101001))/v/8
In order to find the second element of C;/C2, which we are going to
identify with | 1)z, we need to find a vector in C; that does not belong to
C5. Such a vector is, for example, | 1111111). Indeed, we have already
listed in | 0)z all vectors of C2 and this one wasn’t amongst them. You
can see that this element belongs to C1 if you replace the last row of G
with the sum of the last two rows and then add all the rows of this new
matrix together.

Now we need to form 8 sums of this vector and every vector listed
inside | 0)z. But remember that adding 1 modulo 2 to a binary number
means to negate this number. And so our second vector in C1/C} is:

1), = (| 1111111)

+ ] 0101010)

+ | 1001100)

+ | 1110000)

+ | 1000011)
)

)

)

T T T o — ~

+ 10100101
+ 1 0011001
+10010110))/+v/8

This seven qubit encoding is due to Steane.

Having constructed a CSS code to protect a qubit we now need to demon-
strate how the qubit is protected.

Suppose the bit flip errors, which correspond to o, are described by a binary
vector e;. Positions of ones in the vector correspond to the qubits affected by
the error. Suppose also the phase errors, which correspond to o, are described
by a binary vector ey. Positions of ones in he vector correspond to the qubits
affected by the phase error. Assume that the originally encoded register was of
the form

\/_Z|a:+2y

yeCs
After the errors have occured the state of the register changes to

I~ | g gyt )

\ |C2 y€eCs

Remember that the phase error, o, negates | 1), but leaves | 0) alone. This is
why we have the (—1)(‘”4'%’)"32 in front of | x +2y +2€1). Where ¢y, +2y, =0
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the phase flip does not occur. Where it is 1, the phase flip may occur and if the
corresponding entry in es is 1, it will.

In order to detect and process the error we need to add an ancilla register
to the system, in which we are going to store the flip error syndrome. We will
use H; to generate this syndrome. Because x +5 y € C acting with H; on
| € +2 y +2 e1) leaves | Hie1) in the ancilla register. The state of the whole
computer, including the ancilla register, becomes

1
Z (—1)=tev)e | gty y +yer) | Hier)

v |C2| yels

‘We should now stop and ponder on the number of additional qubits we will
need in order to construct the ancilla register. The Steane code derives
from the [7,4] and [7, 3] dual linear codes. In this case matrix Hj is a
3 x 7 matrix, which means that 3 additional qubits will be required to
store syndrome He;.

Having extracted e; from the ancilla register we can apply NOT gates on lines
pointed to by e;, which will convert

|z +oy+oe1) | x+2ytoer+ae1)=[2+2y)

thus eliminating the bit-flip error.
Having repaired the bit-flip error we are now going to work on the phase
error. To this effect we are going to apply Hadamard gates to each line of:

1
S (D g gy y)

V |02| yeCs

Remember our Hadamard formula:

2" —1

@H |x) = \/272 1)%# | 2)

Applying this formula to our register yields:

2" —1

1 1
(m+2y) z( )(m+2y)~e2 | z)
VICa| V2 Z; EC%
2" —1
— Z+2y)'(z+282) | Z)
JevE S XD

Let us now introduce a new variable z’ = z +5 e5. Because of binary arithmetic
z = z' +5 es, and our state can now be described as:

2" -1
1 1 /
= 2 (1ERYE 2 gy e)
|C2| 2n z'=0 yeC»
2" —1

- S [ e e
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As 2’ runs through 0 to 2" — 1 it will run through the dual of Cs, i.e., through
Cs-. As 2' stays in Cy it is orthogonal to all y € Cs, so that for these 2’ we
have (—1)¥# = (—1)° = 1. Hence for 2’ € C5:

Y ENTE =3 1=0

yels yeCa

Now let us assume that 2’ ¢ C5. In this case

Y (v =0

y€eCa
because as y runs through Cy half of y - 2’ will be 0 and half will be 1.

In order to see this better consider again the Steane code. For this code
we have that C3 = Ci. We also have that Co C Cy. Hence as z’ runs
through [0, ...,2" — 1] it will run through C3- = C: and then it will also
run through all the remaining integers. In the meantime y runs through
C>. We know what are the elements of C>. They are all the vectors
we used to construct | 0)z. These vectors also belong to Ci. The other
vectors that belong to C1, but not to C2 form a layer that is offset from C>
by | 1111111}, i.e., they are the vectors that form | 1)z. In summary, C is
made of vectors, which we have used to form both | 0)z and | 1). Observe
that every vector from C5 is orthogonal to every vector from C> and from
Ci as well including itself. Hence for y € C> and for 2’ € C1 = Cy we
have that y - 2’ = 0.

Now let us take a vector that is not in Cy. For example | 0000001) ¢
C, = C3. Taking scalar products of this vector with vectors of Ca we
can see that it is going to be 0 in four cases (all the y vectors that have
0 in the rightmost position) and 1 in the other four cases (the remaining
y vectors have 1 in the rightmost position). The same will hold for any
other vector 2z’ with 1 in just one position and zeros everywhere Ielse, and,
indeed for all vectors not in Ci. So this is how }° o, (=1)¥* =0 for
2 ¢ Cf.

Consequently we can rewrite the state of the register as:

G| 1 .
T X U 1 e
2 z'eCy

But this looks like the bit-flip problem, for which we know the correction pro-
cedure already: use the ancilla register and the parity check matrix Hs to find
es and apply NOT gates to lines pointed to by es.

The parity check matrix H» for the Steane code is going to be a 4 x 7
matrix. It is simply the generator matrix for C1 turned sideways. So this
will call for additional 4 qubits in the ancilla register.
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Having generated

|02| 1 Z Lot '
2 S (1T |2
|02| 2 z'€C

we now apply ® H again in order to come back to

%,2' Y lz+y)

yeCs
which completes the error detection and correction procedure.

The total number of auxiliary qubits needed by this routine would be 7
in case of Steane code, unless, the same 4 qubit register can be reused for
both syndrome measurement operations.

But certain economies are possible, and the size of the ancilla register
can be reduced to 6.

The easiest way to construct the relevant error syndrome measurement
circuit is to resort to the so called stabilizer formalizm. We can’t go into
the details of this formalizm here, because we don’t have enough time for
it in this course. You can read more about it in Nielsen and Chuang [80].

The result of applying this formalizm to the Steane code is the so called
check matriz, which describes the stabilizer generators for the Steane
code. In its standard form this matrix looks as follows:

100 0 111 0 0 0 O0O0TO0TO0
060101011 000O0O0O0O0°O0
00111 100O0O0O0O0TO0TGO0
00 00 O0O0OCO0OT11 011001
00 00 O0O0OO0OO0OT1T1O0T1O01
00 00 O0O0OO0OT1 110010

The columns of the matrix correspond to 7 qubits The 1-s in the left half
of this 6 x 14 matrix show the location of o, operators on the 7 qubit
lines if the corresponding entries in the right half of the matrix are 0. The
1-s in the right half of the matrix show the location of &, operators on
the 7 qubit lines if the corresponding entries in the left side of the matrix
are 0. If there are 1-s in the same locations in the left and in the right
halves of the matrix, these show the location of o, matrices.

First, you can see that there are no o, matrices in the error syn-
drome measurement circuit for the Steane code. o, and o, matrices
are distributed on the 7 qubit lines as shown in Figure 6.1. Observe the
similarity of the distribution to the Steane code check matrix.

The circuit shown in Figure 6.1 is amongst the most complex we have
encountered so far. In total we end up using 13 physical qubits to encode
and measure error syndrome on just one logical qubit. And we haven’t
implemented the error correction part of the circuit yet.

It should be quite clear already that quantum error correction pro-
cedures, although possible in principle, are much more costly than is the
case in classical computing. In the situation in which even a small register
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Figure 6.1: A circuit for measuring the error syndrome for the Steane code.
The bottom 7 lines represent the 7-qubit register, which encodes a single logical
qubit. The top 6 lines represent the ancilla.
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of individually controllable qubits with individually controllable couplings
is very difficult to construct and operate on (the largest quantum compu-
tation carried out so far, at the time of this writing, operated on just five
physical qubits) such largesse seems very wasteful.

You will see in the next section that it is possible to carry out quantum
computations with arbitrary precision, by stacking up quantum circuits
hierarchically. But this will result in even higher consumption of physical
qubits.

The obvious question for today therefore is if these procedures are
worth the bother. After all, if computations are carried out on a suffi-
ciently large statistical ensemble of raw quantum registers, and if quantum
errors are truly random, they should average away in final measurement.
The cost here would be gradual loss of signal as the computation proceeds
and as errors accumulate. Methods other than software error control could
be employed to slow down this process.

6.4 Concatenated Codes

In the previous section we have learnt how to encode a single logical qubit in
746 = 13 physical qubits and how to carry out a procedure checking for possible
encoding errors and correcting them.

This is all purely hypothetical, of course, at this stage, because there are
no known implementations of any of these procedures — the largest quantum
computation carried out so far being a 5 physical qubit one.

But assuming that the technology has progressed sufficiently and that we
can have as many individually controllable qubits and couplings as we wish,
what can we do next with our encoded qubit?

The strategy is to use the encoded qubits in all computations without ever
having to decode them. This implies that the gates have to be redesigned
to work on encoded qubits. Furthermore, gates themselves may have to be
designed with fault tolerance in mind too. And so, whereas a normal raw-qubit
controlled-NOT gate is a 2 x 2 gate, its logical qubit counterpart would be a
14 x 14 gate, not counting the additional 6-qubit ancillas for every logical qubit
line.

It turns out that for the Steane code the controlled-NOT gate can be imple-
mented simply as seven controlled-NOT gates applied pair-wise between the two
logical qubit blocks, as shown in Figure 6.2.

This gate is not fault tolerant as such. But fault tolerance of gates can be
implemented by qubit error correcting after the application of the gate. This
can be seen quite easily as follows. Imagine that an error occurs before the
application of the gate. Let @ stands for the controlled-NOT gate and let the
error be described by some unitary operator U. The combined action of the
error and the gate on the system of two logically encoded qubits is given by

oU
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(1N
\

/
(1N
N

Figure 6.2: A controlled-NOT gate applied to two logical qubits encoded using
Steane code.
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But this can be rewritten as:
eU=0Us'a=Us

In other words, whether the error occurs before or after the application of the
gate makes no difference. If we apply an error correction procedure after the
gate we’ll have, in effect, a fault tolerant gate. A schematic diagram of such a
gate is shown below:

e syndrome recovery ——
measurement e —
syndrome ——

( /\" me}z;surement recovery

Ancilla qubits aren’t drawn in this diagram for clarity.

Now, observe that Steane code can detect and correct one error (on 7 physical
qubits) only. This means that we cannot have more than one error on input to
the upper line and one error on input to the lower line.

Note that if there is a single error in the upper block of 7 qubits the error
will carry to the lower block when the gate is traversed. So we’ll end up
with two errors on output. But a recovery procedure, having found an
error in the upper block should be able to correct the propagated error
in the lower block too and then attend to any independent errors in the
lower block.

Suppose the probability of a failure on an individual physical qubit in the circuit
is p.
Now we have the following seven scenarios.
1. The first scenario is that we have faulty qubits entering the gate in both
input blocks. What is the probability of something like this happening?
A probability of a failed qubit entering the controlled-NOT gate is ¢ p for
the upper block and the same for the lower block, where ¢; is the total
number of places at which a failure could have occurred during syndrome
measurement and recovery in the previous stage of the circuit (remember
that every gate preceding our controlled-NOT is going to have a syndrome
measurement and recovery procedure following it). Assuming that both
errors in the upper and lower block occur independently the probability
of two errors entering the gate is

P = (e1p)® = ip

The value of ¢; can be estimated to be about 10 locations times 7 qubits,
ie.,
1 ~10x7="70 and 0%24,900
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. The second scenario is that only a single error enters the gate. But then

when the gate processes the input and then when the output of the gate is
processed by the syndrome measurement and recovery procedures another
error occurs. The probability of this happening is

PQ = 02p2

where ¢o is the number of pairs of points within the circuit shown above
where a failure may occur. The value of ¢z is 140 locations times 7 qubits,
ie.,

co &~ 140 x 7 =980

. The third scenario is that there are no errors on input, but two failures

occur during the traversal of the controlled-NOT gate. The probability of
this occuring is
Py = c3p’

where c3 is the number of pairs of points where a failure can occur. This
is about 100, i.e.,
C3 ~ 100

. The fourth scenario is that there are no errors on input, but a failure

occurs during the traversal of the controlled-NOT gate and then another
failure occurs during the syndrome measurement. The probability of this
event taking place is

P4 = C4p2

where
[ 100

. The fifth scenario is that two or more failures occur during syndrome

measurement. The probability of this happening is
P; = csp’
where ¢; is the number of pairs of points at which a failure may occur

cs ~ 70% = 4,900

. The sixth scenario is that a failure occurs during syndrome measurement,

and another failure occurs during recovery. The probability of such an
event is
Ps = cep’

where cg is the number of pairs of points where a failure may occur. For
the Steane code we're considering here it is

cg ~ 70 x 7=1490
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7. The last scenario is that two or more failures occur during recovery. This
is again given by:
P; = crp?
where
cr TP =49

In summary the probability that the circuit introduces two or more errors into
the encoded block of qubits is

P = PP+P+PB+P+P+P+P

= P2(C%+02+C3+C4+C5+06+C7)

= p* (4,900 + 980 + 100 + 100 + 4,900 + 490 + 49)
p?11,519

= Cp2

where
c=11,519

This means that if the probability of a single error occurring is very small,
e.g., p < 107* then every time we traverse our combination of a gate with
error syndrome measurement and recovery procedures we end up reducing the
probability of an incorrect output by p (since the first p in p? cancels c).

One can carry out similar reasoning for other gates and the value of ¢ that
comes out is going to be similar as long as we stick to the Steane code, i.e.,

c~10*

Because P = ¢p? < 1 for p < 1/+/c (we will actually show later that we
really need to have p < 1/c), we can consider hierarchical encodings. What if,
say, we apply the Steane 7-qubit code to every qubit that is used in a higher
level 7-qubit encoding? I.e., instead of encoding one logical qubit in 7 physical
qubits we would encode one logical qubit in 7 logical qubits, each of which, in
turn would be encoded in 7 physical qubits. We would then have 49 physical
qubits encoding a single logical qubit. But why stop at these two levels of
encoding? We could have

0. one logical qubit

1. encoded using 7 logical qubits, each of which is
2. encoded using 7 logical qubits, each of which is
3. encoded using 7 physical qubits

So now we’d have 7 x 7 x 7 = 343 qubits encoding a single logical qubit. Are
we on the right track here? Is this going to improve things sufficiently to justify
this enormous expense in terms of qubits?
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Of course, it is not enough to just encode qubits so. We will have to construct
fault tolerant quantum gates that operate on hierarchically encoded qubits. But
assuming that we have all this in place, if the probability that an error occurs
after a gate and correction procedure traversal using a single level encoding is

P = ¢p?

then the probability of an error occurring after a gate and correction procedure
traversal for a two level encoding is going to be

P =c(ep?)? = (ep)” Je

and the probability of an error occurring for the 3 level 343 physical qubit
encoding is
P = clc(ep’)*)? = (ep)* Je

In general then, for a k-th level encoding

P =(cp)* /e

The size of the circuit increases too. The increase is purely exponential, i.e., if
a given encoding required d gates then the k-th level encoding will require d*
gates.

Now suppose we have a 0-level encoding circuit with a certain number of
logical gates, say, the number of gates is N. Suppose we want to reduce a
probability of error in our computation to less than e. The error per each gate
is thus ¢/N. How many levels of concatenation do we have to use in order to
achieve this level of accuracy? The answer is

(cp)** < £
¢ — N
This inequality has a solution for & if
1
p< - =D
c

This is a threashold condition for quantum computation.

Provided that the threashold condition is satisfied we can achieve, in
theory, arbitrary accuracy in any quantum computation.

The solution to the threashold equation can be obtained by multiplying both
sides by ¢ and then taking logarithm. This yields:
ce log ce/N
2k ] =log — ok = —=o 1

ogep =log - or log cp

Since
2=d"
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we have
log2 = xzlogd hence z=1log2/logd and 2= d'°8%/108d
We can therefore replace 2 with d'°82/1°84 hich yields

dklog2/logd _ log ce/N
log cp

or
dk _ log (CG/N) IOg d/ IOg 2 _ log (N/Cﬁ) IOg d/ IOg 2
log cp log (1/cp)
We can thus summarize this section by stating the threshold theorem for quan-
tum computation:

A logical quantum circuit, which contains N logical gates, can be
implemented so that the probability of computational error is less

than € by using
log (N/ce) log d/ log 2
(log(l/cp)>
physical gates on hardware whose components fail with probability
pen = 1/c.
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Conclusions

What are the main challenges and focal points of quantum computing today?

The first and perhaps the most important challenge is to deliver a suffi-
ciently large quantum register with individually addressable qubits and indi-
vidually controllable couplings. The decoherence time for the register should
be sufficiently long to allow for a sizeable computation of the order of at least
thousands or tens of thousands of gates.

Our discussion in the previous chapter showed that in order to make such
a register a basis for fault-tolerant computation, it would have to be very large
indeed, at least of the order of 13 physical qubits per one logical qubit. Prefer-
ably even more, if we were to use contatenated encodings (49 plus ancillas?).
Assuming 32 logical qubits, comparable to present day PCs, and 7 + 6 qubit
encodings, the register would have to comprise 416 physical qubits.

This, as we have already remarked, just about eliminates the possibility of
working with fault tolerant registers in the near future, other than for simple
demonstrations of a single qubit encoding perhaps. What we may see in the
near future then will be quantum computations carried out on raw qubits and
on increasingly large registers. Error control in this case would have to be based
on working with statistical ensembles of registers. Methods such as NMR and
its possible future improved variants seem quite adequate at this stage.

In order to implement fault tolerant quantum computation, we would need
registers with a very large number of physical qubits. For a 64-bit qubit system
and two levels of concatenation the register would have to have more than 3,000
physical qubits, not counting ancillas. A very large molecule, such as DNA,
could perhaps be used in this role, but here the question is how to control
individual qubits. The more repetitive the molecule, and DNA is very repetitive,
the harder to implement individual qubit control. What I am driving at is that
techniques such as NMR probably will not scale to this point. But there is still
a lot of life left in NMR computation and it will continue to serve as a fine
exploration vehicle in these early years.

The challenge for NMR computing will be to design and synthesize a molecule
specially for quantum computation and then to develop techniques to automate

249
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the computations. Amongst these may be the development of compilers, which,
given a circuit diagram would generate the pulses required to implement the
circuit. The next challenge will be to extend the computation time, for example
by cooling the sample, and to improve the accuracy of the gates, while still
working with raw, unencoded qubits. I think it should be possible to get to tens
of raw qubits and thousands, perhaps even tens of thousands of gates along this
path.

Whereupon we’re going to hit a brick wall.

But this is OK, because by that time other implementations of quantum
computers may become a reality, and in the meantime we will acquire a lot of
practical experience with quantum computing.

What may the other implementations be? Systems based on printing millions
of quantum dots and/or Josephson junctions on a chip are current favourites.
But it will be very difficult to implement couplings on such systems, and even
more difficult to ensure a sufficiently long decoherence time. Solids are dirty
and noisy and lightweight particles such as electrons are very susceptible to all
that noise.

There are two interesting alternatives to quantum dots and Josephson junc-
tions. One is to use nuclear spins embedded in crystal lattice. This is the
Kane computer, which we have mentioned right at the beginning of this course.
The other alternative is to use systems based on anyons. In the next lecture
series, M744, you will learn more about anyons and, in particular, about their
extraordinary stability, which derives from the topology of anyon physics. To-
day people look at anyons, scratch their chins and mumble “hmmm. .. this may
possibly work, but, it’s a very exotic and a very risky path to take...” and so it
is, but, perhaps with the notable exception of NMR, just about everything else
in quantum computing is risky and exotic, so. .. what the hell, let’s tackle it!

This is exactly what we have set to work on here at Indiana University, and
if you would like to join us in this effort you should write to Prof. Zhenghan
Wang.

The challenges I have outlined so far are hardware challenges, and, of course,
these are central, because quantum computing will remain forever in the realm
of fantasy, if we are not going to have quantum computers to carry out the
computations on.

But the other challenge, which is also very interesting, is what to do with
quantum computers, once we are going to have them. Today we know just
a handful of quantum algorithms, which are quite unusual and interesting in
their own right, and in some cases may have important applications, e.g., to
code breaking or data base searches, but there are just a few of them, and they
tend to be very similar to each other. So the challenge is to seek new areas
of applicability for quantum computing and to seek new forms of quantum
algorithms, that would be quite different from what we’ve seen so far.

Early this year (2001) the National Science Foundation announced a pro-
gram called “Quantum and Biologically Inspired Computing”. Quoting from
the Program Description:
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This program will try to emphasize two more fundamental, long-
term issues in [Quantum Information Science]:

1. research which probes the physical foundations which are rel-
evant not only to QIS but to other areas of future possible
technology;

2. strategies to develop quantum computing principles for general-
purpose computing and systems-level computing design, and
special-purpose algorithms that transcend the limitations of
special purpose algorithms now available for niche applications
such as cryptography and number theory.

In physical foundations, the areas of interest include (but are not
limited to) topics such as:

e Empirically-driven understanding of fundamental decoherence
effects, particularly at low temperatures

e Better operational understanding of measurement and tempo-
ral effects in measurements of entangled states of all kinds

e Better understanding of novel types of entanglement, such as
double entanglement or positional entanglement or N > 2 en-
tanglement

e Use of QIS experiments to address issues in the foundations of
physics

e Developing a broad and general collection of quantum algo-
rithms

¢ Extending concepts of information theory to the realm of quan-
tum foundations and experiments

o Strategies to use stable attractors or self-stabilization effects to
reduce error rate in QIS

These points hark back to what we have said early on in the preamble to this
course. Namely that once you have quantum computers, you can turn the table
and use quantum computers, or more generally, quantum information science
to explore fundamental physics.

The program statement then continues:

In general-purpose computing and systems-level computing de-
sign, there is interest in topics such as (but not limited to):

e Quantum simulation of quantum systems (e.g. molecular mod-
eling)

e Use of learning rather than programming to achieve general-
purpose capability (e.g. quantum neural networks, including
quantum associative memory and quantum-based stochastic
search)
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e Use of computer science theory to address broader ranges of
computational tasks

e Concepts like quantum fast Fourier transforms and similar ap-
proaches to reach a large user base

e Novel approaches to fault tolerance and to managing the stochas-
tic errors in quantum systems.

Here we again see the reference to Feynman’s original idea: use quantum com-
puters to attack problems of quantum physics. Although the idea is there, we
have not seen many specific quantum algorithms' that would address this quite
central issue for quantum computing.

The issue of fault tolerance is mentioned last, but it is also a central issue.
The existing fault tolerance control methods for quantum computers are clearly
too costly. Anyonic computation again may help here and this would certainly
be a novel and different approach to managing the accuracy of computations
in quantum computers. But this would be a hardware solution. There may be
alternative software approaches, such as decoherence free spaces, for example,
which are much less costly than CSS codes.

All these are open areas for research in quantum computing. The National
Science Foundation, in its wisdom, selected these as candidates for special fund-
ing this year. This opens numerous opportunities for researchers interested in
this topic. The field is new, challenging and exciting. There is a lot here to
discover, and a lot that may have implications for fundamental physics even.

11 actually haven’t seen any, but this does not mean that they don’t exist. If there is
anyone out there who knows of such, I'd be delighted to include them and discuss in these
notes.
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