The Knowledge Complexity of Interactive Proof-Systems

(Extended Abstract)
Shafi Goldwasser Silvio Micali Charles Rackoff

MIT MIT

1. Introduction

In the first part of the paper we introduce a
new theorem-proving procedure, that is a new effi-
cient method of communicating a proof Any such
mcthod implies, directly or indirectly, a definition of
proof. Our "proofs” arc probabilistic in nature. On
input an n-bits long statement, we may ecrroneously
be convinced of its correctness with very small proba-

bility, say, ~2-1- and rightfully be convinced of its
correctness with very high probability, say, 1 — 71"—
Our proofs are interactive. To efficiently verify the
correctness of a statement, the “recipient” of the
proof must actively ask questions and receive answers
from the "prover”,

In the second part of the paper, we address the
following question:

How much knowledge should be communicated
Jor proving a theorem T?

Certainly enough to see that T is true, but usually
much more. For instance, to prove that a graph is
Hamiltonian it suffices to exhibit an Hamiltonian tour.
This appears, however, to contain,much additional
knowledge than the single bit "Hamiltonian/non-
Hamiltonian".

We give a computational complexity mecasure of
knowlcdge and measure the amount of additional
knowledge contained in proofs.

Permission to copy without fee all or part of this material is granted
provided that the copics are not made or distributed for direct
commercial advantage. the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and; or specific permission.

© 1985 ACM 0-89791-151-2/85/005/0291 $00.75

University of Toronto

We propose to classify languages according to the
amount of additional knowledge that must be
releascd for proving membership in them.

Of particular interest is the case where this addi-
tional knowledge is essentially 0 and we show that is
possible to interactively prove that a number is qua-
dratic non residue mod m releasing 0 additional
knowledge. This is surprising as no efficient algorithm
for deciding quadratic residuosity mod m is known
when m's factorization is not given. Moreover, all
known NP proofs for this problem exhibit the prime
factorization of m. This indicates that adding interac-
tion to the proving process, may decrease the amount
of knowledge that must be communicated in order to
prove a theorem.

2. Interactive Proof Systems

Much cffort has been previously devoted to
make precise the notion of a theorem-proving pro-
cedure. NP constitutes a very successful formaliza-
tion of this notion. Looscly speaking, a theorem is in
provable in NP if its proof is easy to verify once it has
been found. Let us recall Cook’s [C] (and indepen-
dently Levin's [L]) influential definition of NP in this
light.

The NP proof-system consists of two communi-
cating Turing machincs 4 and B: respectively,
the prover and the verifier. The prover is
exponential-time, the verifier is polynomial-time.
Both 4 and B are deterministic, read a common
input and interact in a very elementary way. On

This research was supported in part by IBM Young Faculty
Development Award dated Sepiember 1983, IBM Young
Faculty Dcvelopment Award dated September 1984, and
NSF grant DCR-8413577

input a string x, belonging to an NP language
L, A computes a string y (whosc length is
bounded by a polynomial in the length of x)
and writes y on a special tape that B can read.
B then checks that f,(y)=x (where f; is a
polynomial-time computablc function relative to
the language L) and, if so, halts and accepts.
This process is illustrated in figure 1.

—INPUT_
S

J zg/

WORK T.

oA

Fig. 1: The NP proof-system®”

What is intuitively required from a theorem-
proving procedure? First, that it is possible to
"prove" a true theorem. Sccond, that it is impossible
to "prove” a false theorem. Third, that communicat-
ing a proof should be efficient in the following sense.
It does not matter how long must the prover compute
during the proving process, but it is essential that the
computation required from the verifier is casy.

Theorem-proving procedures differ in the
underlying definition of a proof. The notion of a
proof, like the notion of a computauon, 1S an intuitive
one. Intuition, however, may and must be formalized.
Computability by (deterministic) Turing machines is
an clegant example of formalization of "the intuitive
concept of a computation. Each formalization, how-
ever, cannot entirely capture our original and intuitive
notions, exactly because they are intuitive. Following
our intuition, probabilistic algorithms [R] [SS] are
means of computing, though they are not in the pre-
vious formal model. Similarly, NP is an elegant for-
malization of the intuitive notion of a theorem-

~>> a read-only head and by — ~— W —>
a write-only head)

292

proving procedure. However, NP only captures a par-
ticular way of communicating a proof. It deals with
those proofs that can be "written down in a book".
In this paper we introduce interactive proof-systems
to capture 3 more general way of communicating a
proof. We deal with those proofs that can be
“explained in class". Informally, in a classroom, the
lecturer can take full advantage of the possibility of
interacting with the "recipients” of the proof. They
may ask questions at crucial points of the argument
and receive answers. This makes life much easier,
Writing down a proof that can be checked by every-
body without interaction is a much harder task. In
some sense, because one has to answer in advance all
possible questions. Let us now formally set up the
proper computational model.

2.1 Interactive Turing machines and interactive pairs
of Turing machines

— INPUT KAND-T.
RAND: 3 ‘/ K I%
N , R\
Al p

Fig. 2: an interactive pair of Turing machines

An interactive Turing machine (/TAf) is a Tur-
ing machine with a read-only input tape, a work tape
and a random tape. Thc random tape contains an
infinite sequence of random bits. The random tape
can be scanned only from left to right. When we say
that an interactive machine flips a coin we mean that
it reads next bit in its own random tape. This tape is
the only source of randomness for the machine. In
addition an interactive machine has a read-only com-
munication tape and a write-only communication
tape. The head writing on the latter tape moves only
from left to right, writes only on a blank cell and can-
not move to the right without writing.

Two ITM's 4 and B form an interactive pair of

Turing machines(A .B)by =
1)
2)

letting 4 and B share the same input tape and

letting B’s writc-only communication tape be
A’s rcad-only communication tape and vice
versa.

The interactive pair (4,B) is ordercd and machine B
starts the computation. The machines take turns in
being active. When, say, 4 is active, it can perform
internal computation, read and writc on the proper
tapes and send a message 10 B by writing on the
appropriate communication tape. The ith message of
A is the entire string that A writes on the communi-
cation tape during its ith turn. The ith message of B
is similarly defined. Either machine can, during its
turn, terminate the computation of the pair. Consider
a computation of (A .B) on input x. Let the compu-
tation consist of n turns and let g; be A’s ith message
and b, be B’s ith message. Then the text of the com-
putation is defincd to be the scquence
{bray,- - - .by,a,}. (a, is empty if it is B that halts the
computation of (4,B) in its nth turn). The text of all
possible computations of 4 and B on input x will be
of relevance to our analysis and it will be denoted by
(A4.B)[x]. This set has the structure of a probability
space in the natural way. The probability of each
computation in (4,B)[x] is taken over the coin tosses
of both machines.

2.2 Interactive proof-systems

Let LC{0.1}" be a language and (A4,B) an
interactive pair of Turing machines. We say that
(A.B) is an interactive proof-system for L if A (the
prover) has infinite power, B (the verifier) is polyno-
mial time and they satisfy the following properties.

1) For any x€L given as input to (4,B), B hals
and accepts with probability at least 1——},‘— for
cach k and sufficiently large n.

2) For any ITM A4’ and for any x not in L given

as input to (4°,B), B accepts with probability at
most n—lk for each k and sufficiently large n.

Here n denotes the length of the input and the pro-
babilitics are taken only over B’s own coin tosses.

(W]

Condition 1 cssentially says that. if x€L, there
exist a way to casily prove this fact to B that succeeds
with overwhelming probability, This way is 4's algo-
rithm. In other words, it is possible to prove a true
thcorem so that the proofs arc easily verified (B is
polynomial-time). Condition 2 says that, if x not in
L, there exist no strategy, for convincing B of the
contrary, that succeeds with non negligible probabil-
ity. In other words, no onc can prove a false thcorem.
In fact, B nceds not to trust (or to know) the machine
with which it is interacting. It is enough for B to
trust the randomness of its own coin tosses. Notice
that, as for NP, the emphasis is on the "yes-
instances”: if a string is in the language we want to
show it, if it is not we do not care. Let us consider an
example of an interactive proof-system.

Example 1: Let Z, denote the set of integers
between 1 and m that arc relatively prime with m.
An clement a€Z, is a quadratic residue mod n if
a=x"mod m for some x€Z,. clse it is a quadratic
nonresidue. Now let L ={(m x)|x€Z,, is a quadratic
nonrcsiduc }. Notice that L €NP: a prover needs only
to compute the factorization of m and send it to the
verifier without any further interaction. But looking
ahead to zero knowledge proof-systems, we will con-
sider a more interesting interactive proof-system for
L. The verifier B begins by choosing n=|m]| ran-
dom members of Z,, {r.r..r.}. For each
i,1<i<n, he flips a coin, and if it comes up heads
he forms 1, =r,2 mod m, and if it comes up tails he
forms 4, =x-r,> mod m. Then B sends f£,0,,...,0, 10 4.
The prover, having unrestricted computing power,
finds which of the are quadratic residucs, and uses
this information to tell B the results of his last n coin
tosses. If this information is correct, B accepts.

Why does this work? If (m,x)EL, then 4
correctly predicts all last n coin tosses of B who will
definitely accept. If (m,x) not in L, then the {1} are
just random quadratic residues, and the prover will
respond correctly in the last part of the computation

with probability —217 In fact, for cach of the last n

coin tosses of B, A4 has probability exactly 172 of
guessing it correctly.

A more complex interactive proof-system for L. that
releases essentially 0 additional knowledge, can be
found in section 4.2.

2.3 Interactive Complexity Classes

We define /P, Interactive Polynomial-time, 10 be
the class of languages possessing an interactive proof-
system. In this casc we may also say that L is interac-
tively provable. To cmphasize that the prover has
unlimited power, we may write [P for IP. To closer
anatyze the role of the prover, we define /Pp, to be
the class of languages having an interactive proof-
system whose prover runs in time 7(n). To focus on
the role of intcraction, we let TP[f{n)] denote the
class of languages having a proof-system that, on
input a string x of length n, halts within f(n) turns.
Here f is a non decreasing function from natural
numbers to natural numbers.

Interactive proof-systems should be contrasted
with the "Arthur-Merlin” games of Babai [B]. In
those games Merlin plays the role of 4 and Arthur
the role of B. The big difference is that Merlin sees
all results of Arthur's coin tosscs. This allows Babai to
prove that arbitrary intcraction is not necessary in his
framework: it is sufficient to allow Arthur to talk to
Merlin and have Merlin respond; at least as long
they alternate a constant number of times. Actually
Arthur’'s message to Merlin consists exactly of the
sequence of its own coin tosses. (See figure 3).

INPUT

N

RANDOM

R/
A ‘ !Z/ w\ll\'
Tw &,K/

fig. 3: The Arthur-Merlin proof-system

A
2| o |

If membership in a language I can be proved by an
Arthur-Merlin game (L € AM) then, for any random
oracle O, EENP? with probability 1. It is apparent
that AM CIP (actually, AM CIP[1]) and we believe

that the inclusion is a strict one. We also believe that
our "interactive hicrarchy” docs not collapse, i.c. that
IPlk}] is strictly contained in IP[k +1]. In any case,
interactive proof-systems are the right proof model 10
both analyze and reduce the knowledge complexity of
a language. Next scction is devoted to the discussion
of this more subtle notion. Let us also mention Papa-
dimitriou’ [P] "gamcs against nature”. This is an
elegant characterization of PSPACE, though not an
efficient method of communicating a proof.

3. Knowledge Complexity

Communication is a tool for transferring or
exchanging knowledge. Knowledge has received a lot
of attention in a model-theorctic framework [FHV],
[HM]. In this context, roughly speaking,

1) Al participants are considered to have infinite
computing power. (E.g. each participant "knows"
all logical conscquences of the information in his
hands) and

2) The object they try to "know better” is not an
available public input. (Rather some event occurs
that is witnessed or noticed by some but noi all
participants. To give an elementary example,
onc participant flips a coin and tells the outcome
to a few others who now "know" it. The
remaining participants do not "know" what the
outcome was and they have to decide between
two possible worlds: one in which "heads” came
up and one in which "tails” came up).

This scenario may not be realistic in many practical
contexts. In physics, for example, scientists have
bounded resources and the object they try to know
better is a public inpur: nature. Our point of view is
that

1) Knowledge is a notion relative 1o a specific model
of computation with specified computing resources
and

2) One studies and gains knowledge about available
objects.

In this paper we mcasure the amount of knowledge
that can be gained from a communication by a parti-
cipant with polynomially bounded resources and

294

investigate how much knowledge must be communi-
cated for proving a thcorem® Our computational
complexity mcasure of knowledge is, however, of
wider applicability. For example, as sketched in scc-
tion 6. it constitutes a powerful tool for developing a
mathematical theory of cryptographic protocols. The
following concept will be crucial to our analysis.

3.1 Degrees of distinguishability for probability distri-
butions

Let I be an infinite sct of strings and ¢ a posi-
tive constant. For each x €/ with length n, let IT; be
a probability distribution over the n°-bit strings.
Then we say that Ifier{I1, |«x€7} is a I-c-ensemble.
By saying that I1 is an ensemble or a I-ensemble we
mean, respectively, that there exist /7 and ¢ or simply
¢ such that IT is a I-c-ensemble.

A distinguisher is a probabilistic polynomial-time
algorithm D that on input a string s outputs a bit b.
Let IT,={I1,, |x€/} and I,={I1,, |x€/} be o
I-c-ensembles. Let pP; denote the probability that D
outputs 1 on input a |x |°-bit long string randomly
selected with probability distribution I1,,. Symmetri-
cally, p?, denotes the probability that D outputs 1 on
input a {x [°-bit long string randomly selected with
probability distribution I1,,. Let p:N —[0,1}. We say
that the ensembles I, and II, are at most p-
distinguishable if for all distinguishers D,

Ip? —p2 | < p(Ix]) + for all k and suffi-

ciently long x.

Of particular interest will be the notion of at
most 0-distinguishability (or indistinguishability). In
this case the two ensembles are "cqual” with respect
to any polynomial-time computation. In scction 4.2
we will present an interesting example of indistin-
guishable ensembles. In this example, the IT,, and
I,, are indistinguishable in a stronger sense. In fact
the probability that they assign to each |x|¢-bit
string is identical except for a set of strings strings

(2) Our definitions may be given with respect to any time
bound. but we restrict our attention to polynomial-time both
to simplify the matter a bit and because we believe that it
constitutes the most important case.

Jx|*

295

whose total probability does not exceed ﬁ for

some constant 4 between 0 and 1. Such strong indis-
tir.guishability is a luxury not always available and, in
any casc, is not necessary to develop our theory.

Notice that our distinguishers are fed with a sin-
gle | x |“-bit string at a time. One may consider dis-
tinguishers that are fed with more strings of length
|x|¢ at the same time. In this case, if two ensemble
are O-distinguishable, they will remain undistinguish-
able (as long "more” < poly(|x |)). If the two ensem-
bles are at most p-distinguishable, they may remain at
most p-distinguishable or the probability of "distin-
guishing” them may become much higher. (This
plays a role for deciding whether a certain crypto-
graphic protocol may be played securely more than
once using the same secret key).

Related notions of indistinguishability, have
been previously considered in [GM] in the context of
probabilistic encryption and then in [Y] and [GGM] in
the context of pscudo-random number generation.

3.2 The knowledge computable from a2 communica-
tion

Which communications convey knowledge?
Informally, those that transmit the output of an
unfeasible computation, a computation that we cannot
perform oursclves. For example, if 4 sends to B n
random bits, this will be n bits of information. We
would say this contains no knowledge, however,
because B could gencrate random bits by himself.
Similarly, the result of any probabilistic polynomial-
time computation will not contain any knowledge.
With this in mind we would like to derive an upper
bound (expressed in bits) for the amount of
knowledge that a polynomially bounded B can
extract from a communication.

First a bit of notation. Notice that any proba-
bilistic Turing machine A/ generates the ensemble
M[]={M[x]},e;. where Af[x] denotes the sct of pos-
sible outputs of A (on input x€/) taken with the
probability distribution induced by Af’s coin tosses.
Similarly, we will denote by (4,B)[] the cnsemble
associated to an interactive pair of Turing machines

(A4,8). We are now ready to introduce our defini-
tion.

Definition: Let (4.8) be an interactive pair of
Turing machines and 7 the set of its inputs. lct B be
polynomial-time and f:N—N bc non dccreasing. We
say that A communicates at most f(n) bits of
knowledge to B if there exists a probabilistic

polynomial-time machine M such that the /-

ensembles Af[] and (4,B)[] are at most 1- 2/1(n)'

distinguishable. We say that A communicates at most
f(n) bits of knowledge if for all polynomial-time
ITM's B> A communicates at most f(n) bits of
knowledge to B"’.

Remark 1: Assume A, on input x, tries to select
a string "as undistinguishable as possible” from a
computation randomly selected in (A4,B)[x]). Note
that in this attempt no information is hidden from A{:
A’s program, B's program and x arc all inputs of M.
M may have "built in" the description of A. This,
however, is not of great help, as A's algorithm may
be absolutely inefficient.

A non mathematical discussion; Let us try to
illustrate the above definitions. Assume that a crime x
has happened, B is a reporter and A a police officer.
A understands the rights of the press but, for obvious
reasons, also tries not (o comrmunicate too much
knowledge. Should reporter B call the police officer
A to know more about x? It depends. If he has pro-
bability esscntially equal to 1 of generating at home,
in front of his typewriter, the "same” conversations
about this specific
x that he might have with 4, he should not bother
to call. A4 will give him essentially 0 knowledge about
x. If, instead, say, he may gencrate an honest conver-
sation about x with probability 1/4 (i.e. what he gen-
erates is at most 3/4-distinguishable from the "real”
conversations), then the officer may tell him some-
thing that he docs not know. This knowledge how-
ever, will not exceed two bits and may not be of the
"uscful” kind! Still, it may pay off to call. If, finally,
B has only chance 1 in 2'® of generating the possible
conversations about x with the police officer, then A4
is a rcal gossiper and B should rush to the telephone!

0
(4

Assume now that B is so news-hungry that is ready to
become dishonest during the phone conversation, i.e.
he is ready to transform himsclf to B'. Despite this, if
the officer is so skillful to be one who communicates,
say, at most 2 bits of knowledge, no matter how tricky
questions ' asks and how much he cheats, he will
not get out of him more than two bits about x. (Here
we are implicitly assuming that a cheating reporter
still remains a polynomial-time one!)

Example 2: Consider the ITM (A4,B) of example
1. Restrict its inputs only to the strings in L. Then
A communicates at most 0 bits of knowledge to B.
In fact, there cxists a probabilistic polynomial-time
machine M such that (for those inputs) generates
exactly the same cnscmble that (A4,B) does. Essen-
tially, M can simulate B, as B is polynomial-time,
and simulates 4 by looking at B's coin tosses as fol-
lows. When B sends f computed by squaring r,, M
will answer "quadratic residue”. When B sends ¢
computed by squaring r, and then multiplying it by x,
M answers "quadratic nonresidue”.

Notice, however, that, if the problem of deciding qua-
dratic residuosity is not in probabilistic polynomial-
time, A doecs_not communicate at most 0 bits of
knowledge. In fact, some machine B°, interacting with
A, may decide to create the s in a different way.
For instance, such a B may send the sequence of
integers { =i and therefore receive an answer about
their quadratic residuosity that it may not be able to
compute by itself.

An interesting [TM A4 that communicates at most 0
bits of knowledge may be found in section 4.2.

3.3 The knowledge complexity of a language

How much knowledge should be communicated
to provide a proof of a theorem 77 Certainly enough
to verify that T is true. Usually, much more. For
example. to prove that a certain a€Z,, is a quadratic
residue, it is sufficient to communicate an x such that
a=x? mod m. This communication, however, con-
tains more knowledge than just the fact that ¢ is a
quadratic residuc. It communicates a square root of
a. We intend to measure the additional knowledge
that a prover gives to a verifier during a proof, and

investigate. whether-this-additional knowledge may be
essentially 0.

Definition: Let L be a language possessing an
interactive proof-system (A ,B). Let f:N—N be non
decreasing. We say that L has knowledge complexity
f(n) if, when restricting the inputs of (4,B) to the
strings in L A communicates at most f(n) bits of
knowledge. We denote this fact by LEKC(f(n)).

An informal discussion. Let us recall that we are
concentrating on the "yes-instances”. When a string
x is not in the language the prover "gives up” and we
do not mcasurc knowledge. When, instead, x€L,
what is the verifier’s point of view at the end of an
interactive proof? First, it is “convinced” (correctly
with overwhelming probability) that x€L. This was
the goal of the proof-system in the first place. Second,
it possesses the text of the entire computation with
the prover on input x. This text, has been used to
verify that x€L, but docs not contain more than
f(n) bits of additional knowledge. In fact, on input
x€L, we are guarantecd to be able to casily generate
suih texts with probability distribution at most (1-
2y
with which machine B’ A is interacting. The special
case LEKC(0) is of particular interest. In this case,
by interacting with 4 and from the text of the com-
putation, B can verify that x €L, but, with respect to
polynomial-time computation, the text is irrelevant for
any other purpose, no matter with which B* 4 is
interacting. In fact, en input a guaranteed x€L, such
texts can be casily sclected with essentially the right
probability distribution and without 4.

We believe that knowledge complexity is one of
the fundamental parameters of a language or,
equivalently, of a theorem-proving procedure,
Theorem-proving procedures are intended to com-
municate knowledge and it is very natural to classify
them according to the amount of knowledge they
communicate,

)-distinguishable from the “real” texts, no matter

Note that knowledge complexity is also defined
for NP proof-systems as they are a special type of
interactive proof-system. However, their knowledge
complexity tends to be very high.

A very important application of knowledge com-
plexity is that it cnables proving correctness of crypto-
graphic protocols in a modular way (sce scction 6).

4. Languages in KC(0)

Every language in P or RP or BPP has trivially
knowledge complexity 0. If L is not in probabilistic
polynomial-time, no NP proof-system for L can
release 0 additional knowledge. However, there may
be a more intcractive proof-system for L that does
relcase 0 additional knowledge. A natural question
arises. Do meaningful ecxamples of languages in
KC(0) exist or is KC(0)-BPP a fancy way to define
the empty sct? A similar question could be asked for,
say, RP. Namcly, is RP-P a fancy name for the
empty sct? The best sign of a possible negative answer
to the latter question is constituted by the fact that
primality testing is in RP [SS] [R] and, while the prob-
lem of deterministically deciding primality has
reccived a lot of atiention for centuries, no
polynomial-time algorithm is currently known. Simi-
larly, it is of great interest to find candidates for
languages in KC(0) but not in, say, BPP. This is the
best one can do, given our current knowledge about
proving lower-bounds.

We know of two interesting languages that have
knowledge complexity 0. Both are algebraic. The first
one is the following language BL proposed by Blum
in [B11] where he gives all the essential ingredients to
prove BLEKC(0). Let n be an integer with prime
factorization n =pf‘---p:". Then n€BL if the number
of different p,s congruent to 3 mod 4 is even. The
other language that is known to belong to KC(0) is
the well known quadratic non-residuosity language.
We give a proof of this fact in this section.

For y€Z,, we define

0 if y is a quadratic residue mod m
1 otherwise

Then L = {(y.m) | Q.(»)=1}

non-residuosity language.

Our proof that L €KC(0) does not depend on
any unproved computational complexity assumptions.

0.0) =

is the quadratic

We first review what is known about the complexity
of deciding membership in this language.

4.1 The Quadratic Residuosity Problem

The quadratic residuosity problem with parame-
ters mEN and x€Z,, consists of computing @, (x).
If the factorization of m is known, it is trivial to com-
pute Q. If the factorization of m is unknown, then
there is no known efficient procedure for computing
Q.. This decision problem is one of the four main
problems discussed by Gauss in "Disquisitiones Arith-
meticae” (1801) (along with primality testing, integer
factorization and Solvability of Diophantine Equa-
tions). A polynomial time solution for it would imply
a probabilistic polvnomial time solution for other
open problems in Number Theory such as deciding
whether a composite integer m is a product of 2 or 3
primes.

The Jacobi symbol (-%) for mEN and x€Z,, is

a polynomial time computable function that evaluates
to 1 and -1 and provides some information about

0, (x). Namely, if (7:-)=—1 then QOn(x)=1. How-

ever, when (—%):1 then computing Q,,(x) is a hard

problem. n fact, it is not even known how to effi-
ciently produce a single "guarantced” quadratic non-
residuc mod m with Jacobi symbol 1.

4.2 A "0" Knowledge Interactive Proof System for L

In the proof system, (4,B), that we exhibit for
(y,m)EL the prover A is only requircd to be a pro-
babilistic polynomial time Turing machine with the
additional power of being able to evaluate Q,,. (Of
course, it remains true that no infinitcly powerful A’
can convince B that y is a quadratic non-residue mod
m if that is not the case).

For simplicity, we only consider proving that
(y,m)EL when the Jacobi symbol (—’{1—)-:1. The case

where (—’%)= —1 is uninteresting. We specify A and

B by giving- their explicit program at each step of the
interaction.

The basic idea is that B generates numbers of
two types: x =r* mod m (type 1) and x =y-r> mod m
(type 2) where r is randomly chosen, and quizzes 4
about them. If indeed (y.m) is in L, then A can tell
the types of these numbers. If () is not in L, they
look all the same to A and it will fail the quizzes with
very high probabiilty. The danger with this basic idea
arises when indeed (y,m) isin L as 4 , when answer-
ing the quizzes, may release some knowlcdge other
than (y,m)EL (e.g. the quadratic residuosity of
specific other x€Z, chosen by a cheating B'). We
overcome this danger, by having 4 make sure that
the machine with which it is interacting “knows" what
are the types of the numbers it quizzes A about.

A and B’s Interactive Program
Input: (y,m)EL such that (-:7)-—-1 and n =logym.

Initialize iteration =0.

Step 1:
B first chooses a random r, from Z,,, and then
tosses a coin C,. If C,=0, then B sets
x=r¢ modn, else if C,=1 , B sets
x=y-r¢ mod n. Bsends x to A.
Then, B chooses two random sets, each of size
n,

T={thoty | 4, =rPmodm}
and,
S = { b s 1 ln s 2wenslan l 4 = Y'rlz mod m }

B scnds to A the elements in T|_JS in random
order.

Step 2:
A picks a random subset ZCT|JS of size n
and sends it back to B.

Step 3:
For each z€Z, Bsends to A r such that z = P
mod m or z = y-r* mod m.
Suppose that the sizes of T~Z and S-Z
differ by d. Then, B chooses d random elements
from the larger set, A— and sends their

respective r,...,r, 0 A (ie t,j:r,j or

d

L=y, mod m for some 1 < iy < 2n).
B ses X=T-Z-{4,....1},
Y—-‘-’S"’Z —{’ll' ses .!1‘}.

If x =r mod m, B lets:

and

X'
Yl

{rer, = Yx;modn | 4t€X }
{yren = Vyxt,modn | tEY }

else if x =y-rd mod m, B lets:

=

It i

X ={yreri = Vyxt,modn | LEX }
Y, = {y'ro'r,' \/;'—E mod n I I‘EY }
B then sends the elements in X'|JY' to A in
random order.
Step 4:
A checks that X[JY' is of the form specified
in step 3 (ie for all w€EX'|JY', w*=1,x mod m
or w'=1,x-y mod m for some €X | JY) and
that |[X'JY'| > —g If this is not the case, A
halts detecting cheating. Otherwise, A sends B
the value v =0, (x).
Step 5:
If v#C, then B halts detecting cheating, other-
wise iteration =iteration +1 (this is the end of
an iteration).
If iteration 2> n, then B accepts (y,m)EL, oth-
erwise B goes back to step 1.

Let us first prove that (A,B) constitutes an interactive
proof-system for L.

Remark 2: Note that if A4,B both operate
according to specification, then each iteration of the

program will be completed with probability > 1——1—

2Cll
for0<c <1l

The following claims 1&2 hold for each com-
pleted iteration.

Claim 1: If (y,m) is not in L, then A (or any other
A') correctly guessed C, (ie sends v=C;), with

probability exactly —;—
proof: The proof follows from the fact that C, =0

293

% and that cven with infinite

computation power A’ can't distinguish between a
computation with B in which C, =0 from one in
which Cy =1. The latter can be seen as follows.

Suppose C, =0.

Then, in step 3 for all 4€X, A receives
ron=vix=vrir§d mod m. Note that
e =1x mod m is a random square, (as ¢ is)
and ryr, is a random square root of ¢, mod m.

for all LEY, A receives
yren=v ytx =V yrfrf mod m. Note that
fi=y4-x=y*r>x mod m is a random square,
(as r? is) and y-ryr, is a random square root of
fi mod m,

Suppose C; = 1.

Then, in step 3, for all (€X, A receives
yrern =¥ yx =V yrEr{ mod m. Note that
& =y-trx mod m is a random square, (as both
y and t, arc now squares and { is a random
square) and y-ryr, is a random square root of g,
mod m.

for all 1,EY, A receives y-rer, =¥ I-x mod m.
Note that f, =t-x =y2r>r¢ mod m is a random
square, (as r’ is) and y-ryr; is a random square
root of f, mod m.

Thus, for both C, =0 and C, =1 A will still receive

random square roots of random squares. Therefore A
can’t have any advantage in predicting C;.

with probability exactly

Claim 2: If (y,m) in L, then A correctly computed C,
in step 4.

Theorem 1: (A ,B) is an interactive proof-system for L.

Proof: For every (y.m)€L given as input to (A,B), B
halts and accepts with probability greater than

(1—5%-) for all constants 0 < ¢ <1 and sufficiently

large n. This follows by claim 2. For any machine A’
and for any (y,m) not in L, given as input to (4',B),

B accepts with probability at most 31.- by claim 1 and

remark 3.

We now proceed to show that L has knowledge
complexity 0.

Theorem 2: L has knowledge complexity 0.

Proof: To show that (4.B) constitutes a 0 knowledge
proof-system for L. we must show that for ecach
polynomial-time ITM B', there cxists a probabilistic
polynomial-time Turing Machine M, such that the two
ensembles M[] and (4.B')] are indistinguishable.
The basic idea is that Af can easily simulatc B', as B’
runs in polynomial time. On the other hand, M will
succeed in simulating A, by running B twice with the
same coin tosses,

A more precise description of M is the following: On
input (y.m)€L, M randomly fills the random tape of
B' with a sufficiendy long string R, and makes B’
perform "its own version" of step 1. (B’ may in fact
exccute a different algorithm than B during step 1.)
Simulating 4 in step 2 is easy for M, as all A does
here is picking a random subsct. Next, M makes B’
perform its own version of step 3. Now, M must
simulate 4 in step 4, Notice that it is easy to check
whether A will halt in step 4. Thercfore it will be
easy for M to simulate A in a computation with B' in
which A halts in step 4. Difficulties arise if A won’t
halt but continue. This implies that A must compute
0,.(x) correctly as A docs. This is easy to do for A
who has enough powcer to decide the quadratic resi-
duosity of x. Notice that this would also be easy for
M if B', either generated x by squaring mod m an ry
that A/ may observe (in which case M knows that
0.(x)=0), or if B' generated x by squaring mod m
an ry and multiplying by y (in which case M knows
that 0, (x)=1). However, life may be not so easy.
B’ might have generated x in some other way (e.8.
at random) which would make it hard for M to com-
pute 0.(x). We overcome this difficulty as follows.
By cpcucs,... we denote fixed, positive constants
depending on 4 and B'. Without loss of generality,
we may assume that on input (y¥,m), A will halt in

step 4 with probability less than 1 - —~— (Otherwise
2

by simulating A and B’ for steps 1,2 and 3, as above,
and having A halt in stcp 4, we trivially gencrate com-
putations which are indistinguishable from

(4.80,m)).

At the end of step 3, M saves all messages sent so far

by B’ and the "virtual” 4. M now runs B’ again with
the same input (y,m) and the same content R in the
random tapc of B'. For this second compuation, M
simulates A ancw, by flipping new coins. Four things
will happen in this sccond computation.

1) B'sends in step 1 the same sets S and 7, as in
its first computation.

2) In step 2, A will select a random subset

ZCTUJS. With probability greater than
1 - ——c];"— Z#Z (where Z denotes the set
2

chosen in the first computation).

3) In step 3, B sends the sets X and Y. (The
respective sets in the first compuation were X

and ¥"). With probability > 1~ —— ¥ and ¥
2

are of the right form (i.e could not cause the
legal A to halt).

4) With probability 1

> e X#X' and
Y=Y
M now sclects an element (€T -X)X. As
LET—X', in the first computation B’ sent its
corresponding r;. As L€X, in the sccond computa-
tion B’ sends v x1, mod m or v xt,y mod m. Now,
in whatever case, it is just a matter of algebra for M
to easily compute r, such that r§ =x mod m or
ré-y=x mod m. If (y,m)EL, exactly one of these
cases may occur. Therefore M, having computed r,

can simulate A by sending a v=0,,(x).
QED

5. A parenthetical section.

Remark 3: A stronger way of saying that A
communicates at most f(n) bits of knowledge with
respect to polynomial-time computation, is the follow-
ing.

For all ITM B’ there exist a polynomial-time

ITM Af that by interacting with B’ (but also

reading the random tape of B'!) produces an

ensemble at most (1-—271(;)-)'distinguishable from
(4.8°))

This notion is stronger as it allows B’ not to be bound
to polynomial-time computation while 4 needs not to
know what the computing power of B’ is. Full details
will be given in the final paper. Interestingly, the
interactive proof-system for quadratic non-residuosity
of scction 4.2 releases 0 additional knowledge even
with respect to this stronger dcfinition.

An informal definition' One advantage of the
point of view of Remark 3 is that it allows one to
express in a clean way notions like "the polynomial-
time machine B knew x at some point of its computa-
tion”, Let us consider a particular example. Assume
that machine B started computing on input k& and

outputs a k-bit integer m. B may have randomly-

selected two primes p; and p, multiplied them
together to produce m, then “erased” p, and p, and
output m. What could one mecan by saying that B
knew the factorization of m? A natural choice is that
B is able to compute it. In a narrow sensc, this may
mean that, in performing next instruction, B will out-
put m’s factorization or that it was written, say, at the
beginning of B’s work-tape at some point in time. In
a broader sense it may mean that if a probabilistic
polynomial-time machine M "monitors™ the sequence
of istantaneous descriptions of B's computation, then
M outputs m’s factorization with very high probabil-
ity in poly(k) time. This, however, may not be gen-
eral enough. In fact, "extracting” m’s factorization
may not be easy for M, and still B had cnough
"potential” to efficiently compute it (though B's pro-
gram may never explicitly do so). We believe that the
following (informal) definition achieves the right level
of generality. Let M be a probabilistic polynomial-
time machine that monitors B’s computation from the
start till it outputs m. In particular, M reads all the
inputs (random and not) of B and all its outputs.
Informally we say that B knew m's factorization if M
can now use B to compute m’s factorization. This
use of B may be very general. For example, M may
run B more than once after altering the content of its
tapes. An example of this is implicit in section 4.2.
Full details will be given in the final paper.

6. Applications to Cryptographic Protocols

Given our current state of knowledge about
lower bounds, the sccurity of a cryptographic protocol
must be proved based on the intractability assumption
of some candidate hard problem. Thus one must
accept that further analysis may reveal some candi-
date hard problems to be efficiently solvable. What
is not acceptable is that a protocol may be broken
without violating the relative intractability assumption,

In traditional computational complexity or com-
munication complexity, the goal is to communicate as
much knowledge as possible as efficiently as possible.
Since all participants are considered good friends, no
one carcs if more knowledge than neccssary is com-
municated. The situation with respect to cryptographic
protocols is very different. In this case there is gen-
erally no problem at all communicating the
knowledge cfficicntly, but the whole problem is mak-
ing sure not too much knowledge has been communi-
cated.

Model theoretic knowledge has been used to
analyze protocols. For example, in [HR] it has been
used to prove Rabin’s "Oblivious Transfer” correct in
some sctting. However, as pointed out in [FMR],
Rabin’s oblivious transfer still lacks a proof of correct-
ness in a complexity theoretic framework.

We believe that knowledge complexity provides
the right framework to discuss the correctness of
crytographic protocols. Applying these ideas, [FMR]
modificd Rabin’s oblivious transfer so that it can be
proved correct. A sketch of this can be found in sec-
tion 6.1.

Knowledge complexity helps in proving or
disproving the correctness of cryptographic protocols
as these arc based on the secrecy of some private
information and should preserve this secrecy. The
privacy of some information is what gives us an
advantage over our adversarics. Lct A(lice) possess
the prime factorization of an integer n (say n =pyp,),
while B(ob) only knows n. During a protocol with
B, A must protect the privacy of her information.
Assume that 4 can perform each step of the protocol
without having cven to look at the value of p; and p,.
Then it is easy to show that the protocol did not

301

compromisc the privacy of n s factorization. It is also
easy to see, however, that the protocol could not have
accomplished any interesting task. In fact 4 has not
made use of her "advantage™! The protocol may
accomplish a non-trivial task if, in at lcast onc step of
it, A performs a computation ¢ that depends on p,
and p,. This raises the question:

Will o(p,,py) betray to much information about p,
and p,?
Classical information theory does not provide an
answer to this question. Knowledge complexity can.
In particular,

1) We can quantify the amount of knowledge
about p, and p, that ¢ conveys and
2) We can design protocols so to minimize this

amount of knowledge.

If (4.8) is a 0 knowledge interactive proof-system for
L, we already saw that, on input x€L, 4 gives B at
most one bit of knowledge, namely x€L. (That is 0
additonal knowledge). More generally however, we
definc an upper bound, measured in bits, on the
amount of knowledge A gives to B in a particular pro-
tocol (to appear in the final paper).

We use this to give an upper bound on the
number of times a single protocol or a combination of
protocols can be played, using a common secret key,
without giving away too much information about the
secrct key. In addition, trying to measure the amount
of knowledge revealed during the cxccution of a pro-
tocol about the secrct, may pin point weaknesses in
the design of the protocol. For example the amount
of knowledge revealed in a protocol of [BD] appeared
to be unreasonably large. Further analysis by [H]
showed that this protocol could be broken if the
encryption function used in the protocol is RSA with
low exponents or Rabin’s function,

A most important application of these ideas is
that it allows us to prove correctness of protocols in a
modular way. Complex protocols are usually com-
posed of sub-protocols. For instance, many protocols
use a sub-protocol for "coin tossing over a telephone”
(Blum {B11j). However, it is not clear how to use a
"normal” definition of correctness of “coin tossing" to

(45

prove the correctness of the main protocol. In general,
it appears that much stronger definitions for these
sub-protocols are nceded in order to fit them mody-
larly and cleanly inside larger protocols. Full details
will be given in the final paper.

6.1 A Modification of the Oblivious Fransfer
That Is Provably Equivalent to Factoring

This section is joint work of FFMR}. The notion
of an Oblivious Transfer (OT) has been introduced by
Rabin [HR] who also proposed the first protocol
implementing it. OT appears useful as a design tool.
Sce for example Blum [BI2) and Even Goldreich and
Lempel [EGL]. Rabin introduced OT (to be described
below) in a number theoretic setting. More generally
the OT can be viewed as a protocol for transferring a
large amount of knowledge with probability 1/2 [EGL).
Berger, Peralta and Tedrick [BPT) present a correct
protocol for “obliviously transferring” a random
number. Different from OT, this protocol transfers
no knowledge.

The notion of an OT involves two parties 4 and
B and an integer n (product of two large distinct
primes) whose factorization is only known to 4. 4
would like to send the factorization of n to B with
the following constraints:

1) B must have 50% chance of receiving the factor-
ization of n and the other half of the ume B
should not know any information at all about
the factors of n.

2) A should not have any idea whether or not B

received the factorization of n.

Rabin’s protocol relies on the computational difficulty
of factoring. However, as described below, there is a
potential flow in his protocol: it is possible that B can
cheat and factor n with probability much higher than
1/2 even if the intractability assumption of factoring
holds. Although we cannot prove that B can really
cheat, no one has yet been able to prove that 8 can-
not. Before proceeding any further, let us describe
Rabin’s proposed protocol. We assume that 4 and B
both know n and that 4 knows its factorization.

[N

Step 1: B chooses a random x, 1 < x < n, relatively
prime with n. Then B computes y=x* mod n and
sends y to A.

Step 2: A computes a random square root (mod n) z
of y and sends z to B. (If no square root exists, 4
does nothing).

Step 3: B checks that z2=y mod n. (If not, B halts
detecting cheating). Let us assume that z’=y mod n.
It is well known that y has four square roots mod n
that can be written as {x,—x,w,—w}, where B
knows x. With probability 50% z will be x or —x
and B reccives no knowledge. With probability 50%,
however, z will be w or —w, in which case
ged(n,x +z) will be a factor of n, allowing B to com-
pute the factorization of n.

Party A cannot cheat by sending back some
cleverly chosen square root z of of n: no matter
what A docs, z€{x,—x} with probability 50% and
2€{w,—w} with probability again 50% and 4 cannot
know which is the case.

Is it clear, however, that B cannot cheat? We
wish it to be the case that at the end of the protocol
B cannot factor with probability (much) bigger than
172, even if B cheats, and we wish to prove this
assuming only that factoring is hard. What happens if
B does not square any x at all, but instcad picks a
particular cleverly chosen square mod n y to send?
Perhaps knowing any square root mod n of y will
allow B to factor n. That is, perhaps there is a poly-
nomial time algorithm that given n produces a "spe-
cial" square mod n vy, and another polynomial time
algorithm that given y,n and any square root of y
mod n factors n. The point is not that we have such
algorithms, but that no onc has proved that the
existence of such algorithms contradicts the assump-
ton that factoring is hard. Hence, the proof that
Rabin’s protocol is correct relics not only on the
assumption that factoring is hard, but on an additional
complicated and unnatural assumption, essentialy that
the above algorithms do not exist.

We have been able to prove that a modified
version of Rabin’s OT is correct. Le. the probability
(taken over the possible choices of n and all possible
random choices of B) that B can factor n in k steps

303

at the end of the protocol, equals 1/2 + the probabil-
ity that B can factor n in k steps before the protocol
starts. The heart of the modified protocol is that in
addition to y, B gives A a minimum knowledge
interactive proof that he possesses a square root of y
following the ideas in section 4.2, In particular, such
interactive proof will not reveal any information
about which square root B knows. Now that we have
made surc that B knows one square root of y, when
A will give him one of them at random, it is easy to
prove that B’s probability of factoring » at the end of
the protocol equals 1/2 + the probability that he had
of factoring n before the start of the protocol.

7. Open Problems

Many open problems arise. We only list a few
of them.

1. Is NP strictly contained in IP?

2. Is KC(0) contained in NP?

3. Is KC(0) contained in /P[1]?

4. Is IP[k] strictly contained in /P[k +1]?

5. Are there NP Complete languages in KC(Q(n))?
6

For what time-bound 7T(n), if

. any,
1Py ginise C1Pry?

Acknowledegements
Mike Sipser greately helped in focusing on this
problem.

We highly benefited from the encouragement
and the ideas of Dena Angluin, Manuel Blum, Steve
Cook, Mike Fischer, Oded Goldreich, Ravi Kannan,
Dick Karp, David Lichtenstein, Albert Meyer, Gary
Miller, Ron Rivest and Paul Weiss.

To all our most sincere thanks.

References

[B] Babai L., Trading Group Theory for Randomness

[BIl} M. Blum, Coin flipping by telephone, 1EEE
COMPCON 1982.

[BI2]) M. Blum, Three applications of the oblivious
transfer, Unpublished manuscript, 1981

[BPT]Berger, Peralta, Tedrick, On fixing the Oblivious
Iransfer, Prescnted in Eurocrypt 1983. These
Proceedings

S.Cook, The Complexity of Theorem-Proving
Procedures”, Proc. of 3rd STOC, 1971.

[DB] D. Dolev, A. Broder, Flipping Coins in Many
Poackets, Proc. of 25th FOCS, 1984.

[EGL]Even, Goldreich Lempel, A randomized protocol
Jor Signing Contracts, Advances in Cryptology:
proceedings of Crypto 1982, Plenum press, 1983,
205-210.

[FHVIR. Fagin, J. Halpern, M. Vardi, A model-

theorctic analysis of knowledge, Proc. of 25th
FOCS, 1984,

[FMR]M. Fischer, S. Micali and C. Rackoff, A Secure
Protocol for the Oblivious Transfer, Eurocrypt
1984,

[HM]J]. Halpern, Y. Moses, Knowledge and Commeon

Knowledge in a Distributed Environment, Proc. of
3rd PODC, 1984.

[H] . Hastad, On Solving A System of Simultaneous
Modilar Polynomial Equations of Low Degree,
In preparation.

[HR} J. Halpern and M.O. Rabin, A Logic to reason
about likehood, Proc. of 15th STOC, 1983.

[HS] J. Hastad, A. Shamir, On the Security of
Linearly Truncated Sequences, this proceedings.

[GM]S. Goldwasser, and S. Micali, Probabilistic
Encryption, JCSS Vol. 28, No. 2, April 1984,

[GM]S. Goldwasser, and S. Micali ,Proofs with
Untrusted Oracles, Unpublished Manuscript
1983.

[GGM]O. Goldreich, S. Goldwasser, and S. Micali,
How to Construct Random Function, 25th FOCS,
1984.

L.ALevin, Universal Sequential Search Problems,
Probl. Inform. Transm. 9/3 (1973), pp. 265-266.

C. Papadimitriou, Games against nature, Proc.
24th ann. Symp. on Foundations of Computer
Scienéq, 1983, pp 446-450.

[PS] Papadimitriou and Sipser,

[C]

(L]
[P]

Communication

i)

304

Complexity, 14th STOC, 1982.

A.C. Yao, Some Complexity Questions Related to
Distributive Computing, Proc. of 1lth STOC,
1979,

A.C.-Yao, They and Applications of Trapdoor
Functions, Proc. of 23rd FOCS, 1982.

