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ELLIPTIC CURVES 1

INTRODUCTION

An elliptic curve over a field k is a nonsingular complete curve of genus 1 with a distin-
guished point. If chark # 2,3, it can be realized as a plane projective curve

Y27 = X3 +aXZ*+ 023, 4a® 4+ 27b* # 0,

and every such equation defines an elliptic curve over k. As we shall see, the arithmetic
theory of elliptic curves over Q (and other algebraic number fields) is a rich a beautiful
subject. Many important phenomena first become visible in the study elliptic curves, and
elliptic curves have been used solve some very famous problems that, at first sight, appear
to have nothing to do with elliptic curves. I mention three such problems.

Fast factorization of integers. There is an algorithm for factoring integers that uses
elliptic curves and is in many respects better than previous algorithms. See [K2, VI.4],
[ST,IV.4], or [C2, Chapter26]. People have been factoring integers for centuries, but recently
the topic has become of practical significance: given an integer n which is the product n = pq
of two (large) primes p and ¢, there is a code for which anyone who knows n can encode a
message, but only those who know p, ¢ can decode it. The security of the code depends on
no unauthorized person being able to factor n.

Congruent numbers. A natural number n is said to be congruent if it occurs as the area
of a right triangle whose sides have rational length. If we denote the lengths of the sides by
x,y, z, then n will be congruent if and only if the equations

1
x2+y2:z2, nzixy

have simultaneous solutions in Q. The problem was of interest to the Greeks, and was
discussed systematically by Arab scholars in the tenth century. Fibonacci showed that 5 and
6 are congruent, Fermat that 1,2, 3, are not congruent, and Euler proved that 7 is congruent,
but the problem appeared hopeless until in 1983 Tunnell related it to elliptic curves.

Fermat’s last theorem. Recently Wiles proved that all elliptic curves over Q (with a mild
restriction) arise in a certain fashion from modular forms. It follows from his theorem, that
for an odd prime p # 3, there does not exist an elliptic curve over Q whose equation has the
form

V2= X(X +a)(X —b)

with a, b, a + b all p'* powers of integers, i.e., there does not exist a nontrivial solution in Z
to the equation

XP 4+ YP = 7°;

—VFermat’s Last Theorem is proved!

The course will be an introductory survey of the subject—often proofs will only be
sketched, but I will try to give precise references for everything.

There are many excellent books on subject—see the Bibliography. Silverman [S1,52] is
becoming the standard reference.
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1. REVIEW OF PLANE CURVES

Affine plane curves. Let k be a field. The affine plane over k is A%(k) = k2.

A nonconstant polynomial f € k[X,Y], assumed to have no repeated factor in k*[X, Y],
defines a plane affine curve C'y over k whose points with coordinates in any field K D k are
the zeros of f in K?:

Ci(K) ={(x,y) € K* | F(z,y) = 0}.

The curve C' is said to be irreducible if f is irreducible, and it is said be geometrically
irreducible if f remains irreducible over k¥ (equivalently, over any algebraically closed field
containing k).

Since k[X, Y] is a unique factorization domain, we can write any f as above as a product
f= fifs--- fr of distinct irreducible polynomials, and then

Cy=CpU---UCY,
with the CY, irreducible curves. The CY, are called the irreducible components of C'.

Example 1.1. (a) Let f1(X,Y) be an irreducible polynomial in Q[v/2][X,Y], no constant
multiple of which lies Q[X, Y], and let f1(X,Y) be its conjugate over Q (i.e., replace each
V2 with —v/2). Then f(X,Y) =4 f1(X,Y)fi(X,Y) lies in Q[X,Y] because it is fixed by
the Galois group of Q[v/2]/Q. The curve C is irreducible but not geometrically irreducible.

(b) Let k be a field of characteristic p. Assume k is not perfect, so that there exists an
a €k, ad¢kP. Consider

FX,Y) = XP + aY?.

Then f is irreducible in k[ X, Y], but in k[ X, Y] it equals (X +aY)? where o = a (remember,
the binomial theorem takes on a specially simple form for p'* powers in characteristic p).
Thus f does not define a curve.

We define the partial derivatives of a polynomial by the obvious formulas.

Let P = (a,b) € Cy(K), some K D k. If at least one of the partial derivatives g—)’;, g—{; is

nonzero at P, then P is said to be nonsingular, and the tangent line to C' at P is

(%)P(X—a) + (%{)P(Y—b) — 0.

A curve C' is said to be nonsingular if all the points in C'(k*) are nonsingular. A curve or
point that is not nonsingular said to be singular.

Aside 1.2. Let f(z,y) be areal-valued function on R%. In Math 215 one learns that V f =4
(g—)f(, g—é) is a vector field on R? that, at any point P = (a,b) € R?, points in the direction
in which f(z,y) increases most rapidly (i.e., has the most positive directional derivative).

Hence (V f)p is normal to any level curve f(z,y) = ¢ through P, and the line
(Vf)p (X—a,Y—b) =0

passes through P and is normal to the normal to the level curve. It is therefore the tangent
line.
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Example 1.3. Consider the curve
C: Y*’=X3+aX+0b.
At a singular point of C'
2Y =0, 3X?’4a=0, Y?=X>+aX+0.

Assume char k # 2. Hence Y = 0 and X is a common root of X3 4+ aX + b and its
derivative, i.e., a double root of X3 4 aX 4+ b. Thus C is nonsingular <= X3 +aX +b has
no multiple root (in k%) <= its discriminant 4a® + 27b* is nonzero.

Assume char k = 2. Then C always has a singular point (possibly in some extension field
of k), namely, (o, 3) where o +a =0 and 32 = a® + aa + b.

Let P = (a,b) € C¢(K). We can write f as a polynomial in X — a and Y — b with
coefficients in K, say,

fX,)Y)=filX —a,Y =b)+ -+ fu(X —a,Y =)

where f; is homogeneous of degree i in X —a and Y — b (this the Taylor expansion of f!).
The point P is nonsingular if and only if f; # 0, in which case the tangent line to C; at P
has equation f; = 0.

Suppose that P is singular, so that
f(X,Y) = fr(X —a,Y — b) + terms of higher degree,

where f,, # 0, m > 2. Then P is said to have multiplicity m on C, denoted mp(C). If
m = 2, then P is called a double point. For simplicity, take (a,b) = (0,0). Then (over k')

fm(X,Y) =[] L§

where each L; is a homogeneous polynomial ¢; X +d;Y of degree one with coefficients in &?'.
The lines L; = 0 are called the tangent lines to Cy at P, and r; is called multiplicity of L;.
The point P is said to be an ordinary singularity if the tangent lines are all distinct, i.e.,
r; = 1 for all 7. An ordinary double point is called a node.

Example 1.4. The curve Y? = X3 4 aX? has a singularity at (0,0). If a # 0, it is a node,
and the tangent lines at (0,0) are Y = +4/aX. They are defined over k if and only if a is a
square in k.

If a = 0, the singularity is a cusp. (A double point P on a curve C'is called a cusp if there
is only one tangent line L to C' at P, and, with the notation defined below, I(P,LNC) = 3.)

Consider two curves Cy and C, in A?%(k), and let P € C;(K) N Cy(K), some K D k.
Assume that P is an isolated point of Cy N Cy, ie., Cf and Cy do not have a common
irreducible component passing through P. We define the intersection number of Cy and C|,
at P to be

I(P,Cy 1 Cy) = dimi KIX, Y] ix—ay—/(f.9)

(dimension as K-vector spaces).

Remark 1.5. If 'y and C, have no common component, then
Y. I(P.CrNCy) = dimya k[X,Y]/(f, 9).
PeC(k)NC(ka)

This is particularly useful when C'y and Cy intersect at a single point.
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Example 1.6. Let C be the curve Y? = X3 and let L : Y = 0 be its tangent line at
P =(0,0). Then
[(P,LNC) = dimy k[X, Y]/(Y, Y2 — X*) = dimy k[X]/(X?) = 3.

Remark 1.7. (a) The intersection number doesn’t depend on which field K the coordinates
of P are considered to lie in.

(b) As expected, I(P,CND) = 1if and only if P is nonsingular on both C' and D, and the
tangent lines to C' and D at P are distinct. More generally, I(P,C N D) > mp(C)-mp(D),
with equality if and only if C' and D have no tangent line in common at P.

Projective plane curves. The projective plane over k is

P*(k) = {(z,y,2) € K | (z,y,2) # (0,0,0)}/ ~

where (x,y, z) ~ (2/,y/, 2’) if and only if there exists a ¢ # 0 such that (2/, ¢/, 2’) = (cx, cy, cz).
We write (z : y : 2) for the equivalence class® of (z,y, z). Let P € P?(k); the triples (z,y, 2)
representing P lie on a single line L(P) through the origin in k3, and P + L(P) is a bijection
from P?(k) to the set of all such lines.

Projective n-space P" (k) can be defined similarly for any n > 0.
Let Uy ={(z:y:2} | 2#0}, and let Loo(k) = {(z:y : 2) | # = 0}. Then
(z,y)— (z:y:1): A%(k) — Uy
is a bijection, and
(z:y) = (z:y:0): PY(k) — Lo(k)
is a bijection. Moreover, P?(k) is the disjoint union
P2(k) = Uy U Loo(k)
of the “affine plane” U, with the “line at infinity” L.,. A line
aX +0Y +¢cZ =0

meets Lo, at the point (=b:a:0) = (1: —%,0). Thus we can think of P?(k) as being the
affine plane with exactly one point added for each family of parallel lines.

A nonconstant homogeneous polynomial F' € k[X,Y, Z], assumed to have no repeated
factor in k', defines a projective plane curve Cr over k whose points in any field K D k are
the zeros of F in P?(K):

Cr(K)={(z:y:2)| F(z,y,2) = 0}.
Note that, because F'is homogeneous,
F(cx,cy,cz) = 8T F(x,y, 2),

and so, although it doesn’t make sense to speak of the value of F' at a point of P?, it does
make sense to say whether or not F' is zero at P. Again, the degree of F' is called the
degree of the curve C, and a plane projective curve is (uniquely) a union of irreducible plane
projective curves.
The curve
V?Z = X+ aXZ*+02°

'The colon is meant to suggest that only the ratios matter.
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intersects the line at infinity at the point (0 : 1 : 0), i.e., at the same point as all the vertical
lines do. This is plausible geometrically, because, as you go out the affine curve

Y2=X34+aX+b

with increasing z and y, the slope of the tangent line tends to oo.

Let Uy ={(x:y:z}|y#0}, and let Uy = {(x : y : z)|x # 0}. Then U; and U, are again,
in a natural way, affine planes; for example, we can identify U; with A%(k) via

(x:1:2) < (z,2).
Since at least one of x, y, or z is nonzero,
P2(k) = Uy WU, U Us.
A plane projective curve C' = CF is the union of three curves,
C=CuUCiucC,, C=0CnU,.

When we identify each U; with A%(k) in the natural way, then Cy, C;, and Cy become
identified with the affine curves defined by the polynomials F(X,Y,1), F(X,1,7), and
F(1,Y, Z) respectively.
The curve
C: Y Z=X3+aXZ*+0b7?
is unusual, in that it is covered by two (rather than 3) affine curves

Co: Y?’=X34+aX+b

and
C,: Z=X*+aXZ?>+07°.

The notions of tangent line, multiplicity, etc. can be extended to projective curves by

noting that each point P of a projective curve C will lie on at least one of the affine curves
C;.

Exercise 1.8. Let P be a point on a plane projective curve C' = Cr. Show that P is
singular, i.e., it is singular on the plane affine curve C; for one (hence all) ¢ if and only if

F(P)=0= (g—i)P = (2—5)]3 = (g—g)P. If P is nonsingular, show that the plane projective

OF OF OF
) X+(=) VY (=) z=0
(%), 7+ (), (52),

has the property that L N U; is the tangent line to the affine curve C' N U; for i =0, 1, 2.

line

Theorem 1.9 (Bezout). Let C and D be plane projective of degrees m and n respectively
over k, and assume that they have no irreducible component in common. Then they intersect
over k™ in exactly mn points, counting multiplicities, i.e.,

> I(P,C N D)=mn.
PeC(kah)nD (k)

Proof. See [F] p112, or many other books. O
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For example, a curve of degree m will meet the line at infinity in exactly m points, counting
multiplicities. Our favourite curve

C: Y Z=X3+aXZ*+0b7?
meets Lo at a single point P = (0:1:0), but I(P, Lo, N C) = 3. [Exercise: Prove this!] In
general, a nonsingular point P on a curve C'is called a point of inflection if the intersection
multiplicity of the tangent line and C' at P is > 3.

Suppose k is perfect. Then all the points of C'(k*) N D(k*) will have coordinates in some
finite Galois extension K of k, and the set

C(K)NnD(K) Cc P*(K)
is stable under the action of Gal(K/k).

Remark 1.10. (For the experts.) Essentially, we have defined an affine (resp. projective)
curve to be a geometrically reduced closed subscheme of A? (resp. P%) of dimension 1. Such
a scheme corresponds to an ideal of height one, which is principal, because polynomial rings
are unique factorization domains. The polynomial generating the ideal of the scheme is
uniquely determined by the scheme up to multiplication by a nonzero constant. The other
definitions in this section are standard.

References: The best reference for what little we need from algebraic geometry is [F].

2. RATIONAL POINTS ON PLANE CURVES.

Let C' be a plane projective curve over Q (or some other field with an interesting arith-
metic), defined by a homogeneous polynomial F'(X,Y, 7). The two fundamental questions
in diophantine geometry then are:

Question 2.1. (a) Does C have a point in Q, that is, does F'(X,Y, Z) have a nontrivial zero
in Q7

(b) If the answer to (a) is yes, can we describe the set of common zeros?

There is also the question of whether there is an algorithm to answer these questions.
For example, we may know that a curve has only finitely many points without having an
algorithm to actually find the points.

For simplicity, in the remainder of this section, I’ll assume that C' is absolutely irreducible,
i.e., that F(X,Y, Z) is irreducible over Q.

Here is one observation that we shall use frequently. Let K be a finite (of even infinite)
Galois extension of @, and let

fX,Y)=>a;X'Y? € QX,Y].
If (a,b) € K? is a zero of f(X,Y), then so also is (ca,ob) for any o € Gal(K/Q), because

0=o0f(a,b)=c(d>_ aia't’) = a;(oca)(ob) = f(oa,ob).

Thus Gal(K/Q) acts on C(K), where C is the affine curve defined by f(X,Y). More
generally, if C1,Cy, ... are affine curves over Q, then Gal(K/Q) stabilizes the set C1(K) N
Cy(K)---. On applying this remark to the curves f(X,Y) = 0, g—)f((X, Y)=0, g—{:(X, Y)=0,
we see that Gal(K/Q) stabilizes the set of singular points in C'(K'). Similar remarks apply
to projective curves.
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Curves of degree one. First consider a curve of degree one, i.e., a line,
C:aX+bY +cZ=0, a,bcinQ and not all zero.

It always has points, and it is possible to parameterize the points: if, for example, ¢ # 0, the
map

(s:t)H(s:t:—%s—gt)

is a bijection from P!(k) onto C'(k).

Curves of degree two. In this case F'(X,Y, Z) is a quadratic form in 3 variables, and C'is a
conic. Note that C' can’t be singular: if P has multiplicity m, then (according to (1.7b)) a
line L through P and a second point ) on the curve will have

I(P,LNC)+1(Q,LNC)>2+1=3,

which violates Bezout’s theorem.
Sometimes it is easy to see that C(Q) = (). For example,

X2 4Y?24 72
has no nontrivial zero because it has no nontrivial real zero. Similarly,
X?+Y? 327

has no nontrivial zero, because if it did it would have a zero (x,y, z) with z,y,z € Z and
gcd(z,y, z) = 1. The only squares in Z/3Z are 0 and 1, and so

22 +y*=0 mod 3

implies that z =0 =y mod 3. But then 3 must divide z, which contradicts our assumption
that ged(r,y,2) = 1. This argument shows, in fact, that X? + Y2 — 372 does not have a
nontrivial zero in the field Q3 of 3-adic numbers.

These examples illustrate the usefulness of the following statement: a necessary condition
for C' to have a point with coordinates in QQ is that it have a point with coordinates in R
and in Q, for all p. A theorem of Legendre says that the condition is also sufficient:

Theorem 2.2 (Legendre). A quadratic form F(X,Y,Z) with coefficients in Q has a non-
trivial zero in Q if and only if it has a nontrivial zero in R and in Q, for all p.

Remark 2.3. (a) This is not quite how Legendre (1752-1833) stated it, since p-adic numbers
are less than 100 years old

(b) The theorem does in fact give a practical algorithm for showing that a quadratic form
does have a nontrivial rational zero—see (2.11) below.

(¢) The theorem is true for quadratic forms F'( Xy, Xo, ..., X)) in any number of variables
over any number field K (Hasse-Minkowski theorem). There is a very down-to-earth proof
of the original case of the theorem in [C2]—it takes three lectures. A good exposition of
the proof for forms over Q in any number of variables is to be found in Serre, Course on
Arithmetic. The key cases are 3 and 4 variables (2 is trivial, and for > 5 variables, one uses
induction on n), and the key result needed for its proof is the quadratic reciprocity law.
For number fields K other Q, the proof requires the Hilbert reciprocity law, which is best
derived as part of class field theory (see Math 776 for class field theory), but there is a more
direct proof of Hilbert’s reciprocity law in Chapter 7 of O’Meara, Introduction to Quadratic
Forms (which proves the Hasse-Minkowski theorem in full generality).



8 J.S. MILNE

(d) If for a class of polynomials (better algebraic varieties), it is known that each polyno-
mial (or variety) has a zero in Q if and only if it has zeros in R and all Q,, then one says
that the Hasse, or local-global, principle holds for the class.

Now suppose C has a point P with coordinates in Q. Can we describe all the points? Yes,
because each line through Py will (by Bezout’s theorem, or more elementary arguments) meet
the curve in exactly one other point, except for the tangent line. Since the lines through F,
in P? form a “P!”, we obtain in this way a bijection between C(Q) and P'(Q). For example,
take Py to be the point (—1:0: 1) on the curve C': X2 +Y? = Z2. The line bX — aY +bZ,
a,b € Q, of slope & through Py meets C at the point (a* —b? : 2ab : a® +b?). In this way, we
obtain a parametrization (a : b) — (a®—b? : 2ab : a®+b*) of the points of C' with coordinates

in Q.

Curves of degree 3. Let C' : F(X,Y,Z) = 0 be a plane projective curve over Q of degree
3. If it has a singular point, then Bezout’s theorem shows that it has only one, and that
it is a double point. A priori the singular point Py may have coordinates in some finite?
extension K of Q, which we may take to be Galois over Q, but Gal(K/Q) stabilizes the set
of singular points in C'(K), hence fixes Py, and so Py € C(Q). Now a line through Py will
meet the curve in exactly one other point (unless it is a tangent line), and so we again get
a parametrization of the points (with finitely many exceptions).

Nonsingular cubics will be the topic of the rest of the course. We shall see that the Hasse
principle fails for nonsingular cubic curves. For example,

3X3 +4Y3 =5Y3

has points in R and Q, for all p, but not in Q. However, it is conjectured that the Hasse
principle fails only by a “finite amount”, and that the failure is “measured” by a certain
group, called the Tate-Shafarevich group.

Let C' be a nonsingular cubic curve over Q. From two points P, 2 € C(Q) we can
construct® a third as the point of intersection of C'(Q) with the chord through P, and Py—
by Bezout’s theorem, there exists exactly one such point, perhaps with coordinates in a
Galois extension K of QQ, but by the observation at the start of this section, it must be fixed
by Gal(K/Q) and therefore lie in C(Q). Similarly, the tangent line at a point P € C'(Q) will
meet C' at exactly one other point (unless P is a point of inflection), which? will lie in C(Q).

In a famous paper, published in 1922/23, Mordell proved the following theorem:

Theorem 2.4 (Finite basis theorem). Let C be a nonsingular cubic curve over Q. Then
there exists a finite set of points on C with coordinates in Q from which every other such
point can be obtained by successive chord and tangent constructions.

2] should explain why the singular point has coordinates in a finite extension of Q. I claim that if
F(X,Y,Z) has a singular point with coordinates in some big field 2, e.g., C, then it has a singular point
with coordinates in Q* (hence in a finite extension of Q). Pass to an affine piece of the curve, and consider
a (nonhomogeneous) cubic f(X,Y). If the curve f(X,Y) = 0 has a singular point with coordinates in €,
then f, g—)f(, g—{; have a common zero in 2, and so the ideal they generate is not the whole of Q[X,Y]. This
implies that the ideal they generate in Q*![X, Y] is not the whole ring, and the Hilbert Nullstellensatz then
implies that they have a common zero in (Q*)2.

3This construction goes back to Diophantus (3rd century A.D)

4This observation was first made by Newton (1642-1727).
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In fact, C(Q), if nonempty, can be made into an abelian group, and the finite basis theorem
says that C'(Q) is finitely generated. There is as yet no proven algorithm for finding the rank
of the group.

Curves of genus > 1. Mordell conjectured, in his 1922/23 paper, and Faltings proved, that
a nonsingular plane projective curve of degree > 4 has only finitely many points coordinates
in Q.

More generally, define the geometric genus of a plane projective curve C' to be

d—1)(d—2
p(c)= TIN5y,
where d is the degree of C, the sum is over the singular points in C'(Q), and §p = %”_1)
if P is an ordinary singularity of multiplicity mp. Then C(Q) is finite if C' has geometric
genus > 1.

Remark 2.5. (a) Let P € P?(Q). Choose a representative (a : b : ¢) for P with a,b,c
integers having no common factor, and define the height h(P) of P to be max(|al,|b],|c|).
The biggest remaining problem in the theory of curves of genus > 1 over Q is that of giving
an upper bound H(C), in terms of the polynomial defining C, for the heights of the points
P € C(Q). With such an upper bound H(C), one could find all the points on C' with
coordinates in Q by a finite search.

(b) There is a heuristic explanation for Mordell’s conjecture. Let C' be a curve of genus
g > 1 over Q, and assume that C(Q) # 0. It is possible to embed C' into another projective
variety J of dimension g (its Jacobian variety). The Jacobian variety J is an abelian variety,
i.e., it has a group structure, and a generalization of Mordell’s theorem (due to Weil) says that
J(Q) is finitely generated. Hence, inside the g-dimensional set J(C) we have the countable
set J(Q) and the (apparently unrelated) one-dimensional set C'(C). If g > 1, it would be
an extraordinary accident if the second set contained more than a finite number of elements
from the first set.

Hensel’s lemma.

Lemma 2.6. Let f(X1,...,X,) € Z[Xy,...,X,], and let a € Z™ have the property that,
for some m >0,
f(@)=0 mod p*™*!

but, for some 1,

af m—+1
(aX)(@)%‘O mod p™*.

Then there exists a b € Z" such that

b=a modp™! (= (5;;)(@)%0 mod p™ 1)

and
f(b)=0 mod p*™*2.

Proof. Consider the (trivial) Taylor expansion

" (0
f(X1, 0, X)) = flay, ... an) + ) (8){' ) (Xi — a;) + terms of higher degree.
i=1 ¢
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Set b; = a; + hipm“, h; € Z. Then

0
f1y.nybn) = flar, ... an) + > (8)?) hip™ ! + terms divisible by p?™*2.

We have to choose the h; so that

of

Co LAy hip™tt

floro 0+ X (55 o

is divisible by p . From the assumption, we know that there is a k& < m such that p*

divides (dd—)’;) for all i but p**! doesn’t divide all of them. Any h;’s satisfying the following
equation will suffice:

2m—+2

ot
ooty y —(d;,;)ﬁhi 0 mod p

O
Remark 2.7. If, in the lemma, a satisfies the condition
f(@)=0 mod p*™*"

for some r > 1, then the construction in the proof gives a b such that

m-+r

b=a modp

and
f(b) =0 mod p*™t 1,

Theorem 2.8 (Hensel’s Lemma). Under the hypotheses of the lemma, there exists a b €
Zy such that f(b) =0 and b= a mod pmtL

Proof. On applying the lemma, we obtain an ay,,,, € Z" such that as, s = @ mod p™**
and f(agm4y2) =0 mod p*™ 2. On applying the remark following the lemma, we obtain an
Aomis € 2™ such that @y, 5 = opmye mod p™ 2 and f(agm43) =0 mod p?™ 3. Continuing
in this fashion, we obtain a sequence a, @o, 12, @213, - - - of n-tuples of Cauchy sequences.

Let b be the limit in Z7. The map f : Z" — Z is continuous for the p-adic topologies, and so

f(é> = f(lilng2m+r> = 1171111 f(@2m+r> = 0
U

Example 2.9. Let f(X) € Z[X], and let f(X) € F,[X] be its reduction mod p. Here

F, = Z/pZ. Let a € Z be such that @ € F, is a simple root of f(X). Then j—)/z(d) # 0, and
so the theorem shows that @ lifts to a root of f(X) in Z,.

Example 2.10. Let f(X,Y,Z) be a homogeneous polynomial in Z[X,Y,Z], and let
(a,b,c) € Z3 be such that (a,b,¢) € IF;; is a nonsingular point of the curve C' : f(X,Y,Z) =0
over [F,. Then, as in the previous example, (@, b,¢) lifts to a point on the curve C' :
f(X,Y,Z) = 0 with coordinates in Z,.
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Example 2.11. Let f(X,Y,Z) be a quadratic form with coefficients in Z, and let D # 0
be its discriminant. If p does not divide D, then f(X,Y,Z) is a nondegenerate quadratic
form over F,, and it is known that it has a nontrivial zero in F,. Therefore f(X,Y,Z)
has a nontrivial zero in Q, for all such p. If p divides D, then Hensel’s lemma shows that
f(X,Y, Z) will have a nontrivial zero in Q, if and only if it has an “approximate” zero.

A brief introduction to the p-adic numbers. Let p be a prime number. Any nonzero
rational number a can be expressed a = p"™* with m,n € Z and not divisible by p. We then
write ord,(a) = r, and |al, = z%' We define |0], = 0. Then:

(a) |a|, = 0 if and only if a = 0.

(b) |abl, = [alp|b]p-

(¢) la+bl, <max{lal,, [bl,} (< |al, + [by])-
These conditions imply that

dp(a,b) =4 |a—bl,

is a translation-invariant metric on Q. Note that, according to this definition, to say that a

and b are close means that their difference is divisible by a high power of p. The field Q, of
p-adic numbers is the completion of Q for this metric. We now explain what this means.

A sequence (a,) is said to be a Cauchy sequence (for the p-adic metric) if, for any € > 0,
there exists an integer N(g) such that
| — anlp, < € whenever m,n > N(eg).

The sequence (a,) converges to a if for any € > 0, there exists an N (&) such that

|a, — al, < e whenever n > N(e).

Let R be the set of all Cauchy sequences in Q (for the p-adic metric). It becomes a ring
with the obvious operations. An element of R is said to be a null sequence if it converges to
zero. The set of null sequences is an ideal [ in R, and Q) is defined to be the quotient R/I.

If & = (a,)nen is a Cauchy sequence, then one shows that |a,|, becomes constant for large
n, and we set this constant value equal to |a|,. The map a +— |a, : R — Q factors through
Qp, and has the properties (a), (b), (c) listed above. We can therefore talk about Cauchy
sequences etc. in Q,.

Theorem 2.12. (a) Q, is a field, and it is complete, i.e., every Cauchy sequence in Q, has
a unique limit in Q,.

(b) The map sending a € Q to the equivalence class of the constant Cauchy sequence
ala) = a,a,a,... is an injective homomorphism Q — Q,, and every element of Q, is a
limit of a sequence in Q.

Remark 2.13. (a) The same construction as above, but with | - |, replaced with the usual
absolute value, yields R instead of Q.

(b) Just as real numbers can be represented by decimals, p-adic numbers can be represented
by infinite series of the form

anp "+ tatapttapp” +-0 0<a; <p—1.
The ring of p-adic integers Z, can be variously defined as:

(a) the closure of Z in Q,;
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(b) the set of elements o € Q, with |af, < 1;
(c) the set of elements of @, that can be represented in the form

ap+ap+---+app" +--- 0<aq; <p-—1
(d) the inverse limit lim Z/p™Z.

Some history. Hilbert and Hurwitz showed (in 1890) that, if a curve of genus zero has one
rational point, then it has infinitely many, all given by rational values of parameter. Poincaré
wrote a long article on the rational points on curves in 1901, and is usually credited with
introducing the group law on E(Q) and with conjecturing that E(Q) is finitely generated
(the finite basis theorem). According to Schappacher (MathReviews 92¢:14001), neither is
true: although Poincaré was familiar with the use of chords and tangents to construct new
rational points from old, he did not define the group law, and he didn’t conjecture the finite
basis theorem, he simply assumed it was true. In his remarkable 1922/23 paper, Mordell
proved the finite basis theorem, and, in a rather off-handed way, conjectured that all curves
of genus > 1 over Q have only finitely many rational points (the Mordell conjecture). He did
this without realizing E(Q) is a group, which complicates his proof, since he has to prove
that F(Q)/2FE(Q) is finite. The Mordell conjecture was proved by Faltings in 1983 (that
year’s “theorem of the century”). For an interesting discussion of Mordell’s famous paper,
and related history, see Cassels, Mordell’s finite basis theorem revisited, Math. Proc. Camb.
Phil. Soc. (1986), 100, 31-41.

Exercise 2.14. (a) Let
F(X,Y,Z)=5X>+3Y’+8Z°+6(YZ + ZX + XY).
Find (a,b,c) € Z3, not all divisible by 13, such that
F(a,b,c)=0 mod 132

(b) Consider the plane affine curve C' : Y2 = X3 + p. Prove that the point (0,0) on the
reduced curve over I, does not lift to ZI%. Why doesn’t this violate Hensel’s lemma?

3. THE GrouP LAw ON A CuBIiC CURVE

Let C' be a nonsingular projective plane curve of degree 3 over a field k, which, for sim-
plicity, we assume to be perfect. We are especially interested in the case k = Q.

As we discussed in Section 2, Bezout’s theorem (or more elementary arguments) show
that the line through two points P and @) on C' with coordinates in k£ will meet the curve in
exactly one other point, which will also have coordinates in k. We write P(Q) for this third
point. In special cases, this has to interpreted appropriately: if P = @), then P(Q) is the point
of intersection of the tangent line at P with the cubic; if the line through P and @ is tangent
to the cubic at @), then PQ = (); and if P is a point of inflection, then PP = P.

If C(k) is empty, then it is not a group. Otherwise we choose a point O € C(k), which
will be the zero element for the group, and for any pair P,Q € C(k), we define
P+Q=0(PQ),

i.e., if the line through P and @) intersects C' again at R, then P + () is the third point of
intersection with C' of the line through O and R.
[[Diagram omitted]]
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Theorem 3.1. The above construction makes C(k) into a commutative group.

In this section, we sketch an elementary geometric proof of this, which is very beautiful,
at least if one ignores the degenerate cases (as we shall). In the next section, we shall give
a different proof based on the Riemann-Roch theorem.

First note that the definition doesn’t depend on the order of P and (); thus
P+Q=Q+P
Second note that
O+ P =df O(OP) =P

Given P € C(k), define P' = P(OO), i.e., if the tangent line at O intersects C' at R, then
P’ is the third point of intersection of the line through P and R. Then PP’ = OO, and
O(PP") = 0O(00) = O, and so

P+ P =0.
[[Diagram omitted]]

Thus the law of composition is commutative, has a zero element, and every element has a
negative. It remains to check that it is associative, i.e., that

(P+Q)+R=P+(Q+R).
Consider the following diagram, in which

¢y = the line through P and @;

¢y = the line through ) and R;

¢35 = the line through O and PQ;

¢y, = the line through O and QR;

¢5 = the line through P + ) and R;

lg = the line through @ + R and P.

[[diagram omitted]]
Let
S=(P+Q)R, T=PQ+R).

Then (P+ Q)+ R=0S and P+ (Q + R) = OT. We shall show that S = T, which implies
that (P+ Q)+ R=P+ (Q + R).

We first need a lemma from linear algebra.

Lemma 3.2. Let P, ..., B be 8 points in P*(k) in “general position™. Then there exists a
ninth point Py such that any cubic curve (not necessarily irreducible or nonsingular) passing
through Py, ... , Py also passes through Py.

Proof. A cubic form
F(X,Y,Z) = a1 X? + s X?Y + -+ + a0 Z*

has 10 coefficients ai,...,ajp. The condition that F(P;) = 0 is a linear condition on
ai, ... ,ay, namely, if P, = (z; : y; : z;), then it is the condition

3 2 3
a1r; + QX y; + - -+ a1p2; = 0.

5This is the old geometers way of saying “and satisfying whatever additional conditions are needed to
make the proof work”.
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If the vectors (23, 2%y;,... ,23), 4 =1,...,8 are linearly independent, then the cubic forms

having the P; as zeros form a 2-dimensional space, and so there exist two such forms F' and
G such that any other such form can be written

AF +uG, \p€ k.

Now F' and G have a ninth zero in common (by Bezout), and every form A\F' + uG passes
through it. O

Remark 3.3. In order for the proof to work, we need that the points P;,..., Py impose
linearly independent conditions on the coefficients of the cubic forms. According to [C2],
this means that no 7 lie on a conic, and no 4 on a line.

We now complete the proof of the theorem. Consider the cubic curves:
C, llyls =0, Uyls3ls =0.

All three pass through the 8 marked intersection points in the above diagram, and the
last two also pass through the unmarked intersection point. Therefore, if the 8 marked
intersection points are in “general position”, then the unmarked intersection point is the 9th
point through which all cubics must pass. In particular, C' passes through the unmarked
intersection point, which implies that S = T, as required.

Remark 3.4. To give a complete proof, one needs to consider the case that the 8 points are
not in general position. There is a detailed elementary proof of this along the lines of the
above proof in [Kn], pp67-74.

Alternatively, those who know a little algebraic geometry will be able to complete the
proof as follows. We have two regular maps of projective varieties

Cx(CxC—C,
namely,
(P,Q,R)— (P+ Q)+ R and (P,Q,R)— P+ (Q+ R).

The above argument shows that they agree on an open subset of C' x C' x C', which is
nonempty because it contains (O, 0, 0). Because C' is separated, the set where the two
maps is closed, and so is all of C' x C' x C.

Remark 3.5. The above construction of the group law makes it obvious that the coordinates
of P+ () can be expressed as polynomials in the coordinates of P and ). For special cubics,
we shall find these polynomials later. Also, it is clear that we get the same P + ) whether
we consider P and @ as elements of C'(k) or of C'(K) for some K D k.

4. FUNCTIONS ON ALGEBRAIC CURVES AND THE RIEMANN-ROCH THEOREM

Assume (initially) that & is algebraically closed.
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Regular functions on affine curves. Let C' be an affine plane curve over k defined by an
irreducible polynomial f(X,Y). A polynomial g(X,Y") € k[X, Y] defines a function

(a,b) — g(a,b): C(k) — k

and the functions arising in this manner are called the regular functions on C.

Clearly, any multiple of f(X,Y') in k[ X, Y] defines the zero function on C, and the Hilbert’s
Nullstellensatz ([F] p21) shows that the converse is true (using that f irreducible implies
(f(X)) is a prime ideal). Therefore the map sending ¢ to the function (a,b) — g(a,b) on C
defines an isomorphism

kX, Y]/(f(X)) = {ring of regular functions on C'}.
Write
KIC] = KX, Y]/(f(X)) = klz, y].

Then x and y can be interpreted as the coordinate functions P +— z(P), P — y(P) on C,
and k[C] is the ring of polynomials in x and y. Note that a nonzero regular function on C
will have only finitely many zeros on C, because a curve g(X,Y) = 0 will intersect C' in only
finitely many points unless f(X,Y)|g(X,Y).

Because (f(X)) is irreducible, k[x,y] is an integral domain, and we let k(C') = k(z,y) be
its field of fractions. An element ¢ = ¥ € k(x,y) defines a function

g(a,b)
h(a,b)

We call ¢ a meromorphic function % on C, regular on C'\ {zeros of h}.

(a,b) — : C(k) \ {zeros of h} — k.

Example 4.1. (a) Let C be the X-axis, i.e., the affine curve defined by the equation Y = 0.
Then k[C] = k[X,Y]/(Y) = k[X] and k(C) = k(X). The meromorphic functions on C are

9(X)

n(X)" and such a function is regular outside the finite set of zeros

just the rational functions
of h(X).
(b) Let C' be the curve defined by the equation
Y? = X34 aX +b.
Then k[C] = k[z,y] = k[X,Y]/(Y? — X* —aX —b). Thus the regular functions on C' are
the polynomials in the coordinate functions x and y, which satisfy the relation

y? = 2° + ax + b.

Regular functions on projective curves. Let C be a plane projective curve over k
defined by an irreducible homogeneous polynomial F/(X,Y, 7). If G(X,Y,Z) and H(X,Y, Z)
are homogeneous polynomials of the same degree and H is not a multiple of F'; then
G(a,b,c)

. b : <
(a ¢y H(a,b,c)

is a well-defined function on C(k) \ {zeros of H}. Such a function is called a meromorphic
function on C. More precisely, let

klx,y,z) = k[X,Y, Z]/(F(X,Y, Z)).

6Note that this is an abuse of language since ¢ is not in fact a function on all of C'(k).
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Because F' is homogeneous, there is a well-defined decomposition
k[l', Y, Z] = @dk[ﬂf, Y, Z]d

where k[z,y, z]4 consists of the elements of k[x,y, z] having a representative in k[X,Y, 7]
that is homogeneous of degree d. Define

k(C) =k(x,y,2)= {% € k(z,y,2) | 3d such that g, h € k[z,y, z]a}.

It is a subfield of k(z,y, 2), and its elements are called the meromorphic functions on C. A
meromorphic defines a(n honest) function on the complement of a finite set in C'(k). Let U
be the complement of a finite set in C'(k); then a function ¢ : U — k is said to be regular if
there exists a meromorphic function without poles in U and agreeing with ¢ on U.

Remark 4.2. Recall that we have a bijection

A2K) —  Upk) < P(k)
(2,2) «— (a:b:c)

To avoid confusion, write k[X’, Y”] for the polynomial ring associated with A% and k[X,Y, 7]
for the polynomial ring associated with P?. A polynomial g(X’,Y’) defines a function
A%(k) — k, and the composite
Uy — A2 L2500
is
a b g*(a,b,c)

(a:b:c>'_>g(zag>: cdegg

where ¢*(X,Y,Z) = g(, %) - Z%89 (in other words, g*(X,Y, Z) is g(X,Y) made homoge-
neous by using the smallest number of Z’s). Thus g(X’,Y”) as a function on A? 2 U, agrees

with £EY2) - Ope see easily that the map

zdegg
g(X'\Y") g (XY, Z)  Zdsh .
k(XY k(X,Y,Z
WXy Tz we(X,YZ) PV o MY Z)
is an injection, with image the subfield k(X,Y, 7)o of k(X,Y,Z) of elements that can be
expressed as the quotient of homogeneous polynomials of the same degree.

Now let C' be an irreducible curve in P2, and assume that C N Uy # 0, i.e., that C is not
the “line at infinity” Z = 0. Then the map

g(r',y') 9" (z,y, 2) zieeh
H
h(z',y") zdegg  h*(z,y, 2)
is a bijection from the field of meromorphic functions on the affine curve Uy N C to the field

of meromorphic functions on C. Moreover, if ¢' — ¢, then p(a : b : ¢) = ¢/(%,2) for any
point (a :b:c) € C(k)N Uy at which ¢ is defined.

Ck(2y) — k(x,y, 2)o

Example 4.3. (a) The meromorphic functions on P! are the functions

G(a,b)

H(a,b)

where G(X, Z) and H(X, Z) are homogeneous polynomials of the same degree.

(a:b)—

(b) Let C be a nonsingular projective curve over C. Then C(C) has the structure of a
compact Riemann surface, and the meromorphic functions on C(C) in the sense of complex
analysis are exactly the same functions as those defined above. For example, P'(C) is the
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Riemann sphere, and, written inhomogeneously, the meromorphic functions in both cases

are the functions zgg with each of ¢g(z) and h(z) polynomials.

It is not true that the two notions of meromorphic function coincide for an affine curve:
every meromorphic function in the above sense is also meromorphic in the sense of complex
analysis, but there are more of the latter, for example, e*.

The Riemann-Roch theorem. Let C be the nonsingular projective curve over a field k
(still assumed to be algebraically closed) defined by a polynomial F'(X,Y, 7). One tries to
understand the meromorphic functions on a C' in terms of their zeros and poles.

The group of divisors Div(C') on C' is the free abelian group on the set C'(k). Thus an
element of Div(C) is a finite sum

D=> np[P], npeZ, PeC(k).

The degree of D is - np.
There is a partial ordering on Div(C):

> np[P] >> mp[P] <= np > mp for all P.

In particular, > np[P] > 0 if and only if all the n, are nonnegative.

Let ¢ be a meromorphic function on C. By definition, ¢ is defined by a quotient g((););?)

of two polynomials of the same degree, say m, and F' doesn’t divide H. Assume ¢ # 0—
we may then suppose that F' doesn’t divide G(X,Y,Z) (recall that k[X,Y, Z] is a unique
factorization domain). By Bezout’s theorem

(deg F)m = Y I(PCn{G=0}) = > I(P,Cn{H = 0}).

F(P)=0=G(P) F(P)=0=H(P)

Define the divisor of ¢ to be
dive= Y IP.CN{G=0D[P|— ¥ I(P.CA{H=0})P]
G(P)=0=F(P) H(P)=0=F(P)

The [P] occurring in dive with positive coefficient are called the zeros of ¢, and those
occurring with negative coefficient are its poles. Note the divyp has degree zero, and so ¢ has
as many zeros as poles (counting multiplicities). Also, note that only the constant functions
will have no zeros or poles.

Given a divisor D, we define
L(D) = {¢|dive+ D > 0} U {0}.

For example, if D = [P] + 2[Q], then L(D) consists of those meromorphic functions having
no poles outside { P, @} and having at worst a single pole at P and a double pole at (). Each
L(D) is a vector space over k, and in fact a finite-dimensional vector space. We denote its
dimension by ¢(D).

Theorem 4.4 (Riemann-(Roch)). There exists an integer g such that for all divisors D
(D) >degD+1—g,
with equality for deg D sufficiently large (in fact, equality for deg D > 2g — 2).

Proof. See [F] Chapter 8. O
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The integer defined by the theorem is the genus of C.

Example 4.5. Let ay,... ,a, € k= A'(k) C P'(k), and let D = 3 r;[a;] € Div(P'), r; > 0.
The meromorphic functions ¢ on A! with their poles in {a1,... ,a,} and at worst a pole of
order r; at a; are those of the form

. F(X)
(X _ a1>r1 R (X _ am)rm’

f(X) € K[X].

The function ¢ will not have a pole at oo if and only if deg f < Y r; = deg D. The dimension
of L(D) is therefore the dimension of the space of polynomials f of degree < deg D, which
is deg D + 1. This is as expected, because P* has genus 0.

The group law revisited. The divisor of a meromorphic function on C' is said to be
principal. Two divisors D and D’ are said to be linearly equivalent, D ~ D', if they differ
by the divisor of a function.

We have groups
Div(C) > Div'(C) > P(O)

where Div?(C') is the group of divisors of degree 0 on C', and P(C) is the group of principal
divisors. Define Picard groups:

Pic(C) = Div(C)/P(C), Pic’(C) = Div’(C)/P(C).

Remark 4.6. We are interested in these groups when C' is a projective curve, but the
number theorists may be interested to note that when C'is a nonsingular affine curve, k[C]
is a Dedekind domain, and Pic(C) is its ideal class group.

Consider now a nonsingular projective curve of genus 1-—according to the formula on p9, a
nonsingular plane projective curve will have genus 1 if and only if it has degree 3. According
to the Riemann-Roch theorem,

(D) = degD if degD > 1.

Proposition 4.7. Let C' be a nonsingular projective curve of genus 1, and let O € C(k).
The map

P+ [P] —[O] : C(k) — Pic’(C)
18 bijective.

Proof. We define an inverse. Let D be a divisor of degree 0. Then D + [O] has degree 1, and
so there exists a meromorphic function ¢, unique up to multiplication by a nonzero constant,
such that div(p)+ D + [O] > 0. The only divisors > 0 of degree 1 are of the form [P]. Hence
there is a well-defined point P such that D + [O] ~ [P], i.e., such that D ~ [P] — [O]. O

Thus we have a canonical bijection C'(k) — Pic?(C'), from which C'(k) inherits the struc-
ture of an abelian group. Note that this group structure is determined by the condition:
P+ @ = S if and only if [P] + [Q] ~ [S] + [O].

I claim that this is the same structure as defined in the last section. Let P,@Q € C(k), and
suppose P + @Q = S with the law of composition in §3. Let L; be the line through P and
@, and let Ly be the line through O and S. From the definition of S, we know that L; and



ELLIPTIC CURVES 19

Ly have a common point R as their third points of intersection. Regard L; and Lo as linear
forms in XY, Z, and let ¢ = f—; Then ¢ has zeros at P, @), R and poles at O, S, R, and so

div(p) = [Pl + [Q] + [R] = [0] = [S] = [R] = [P] + [@] - [5] = [O].

Henc [P] 4 [Q] ~ [S] 4 [O], and P + @ = S according to the group structure defined by the
bijection.

Perfect base fields. Let C' be a nonsingular absolutely irreducible plane projective curve
over a perfect field k (e.g., a field of characteristic zero or a finite field), and let F'(X,Y, Z)
be the polynomial defining C'. We can again form k[z,y, 2] = k[X,Y, Z]/(F(X,Y, Z))—it is
an integral domain, and remains so even when tensored with k*—and the field k(z,y, 2)o C
k(x,y,z). We define k(x,y, z)o to be the field of meromorphic functions of C. We can no
longer identify its elements with functions on C'(k) \ {finite set}, because, for example, C'(k)
may be empty. However, we can identify its elements with functions on C'(k*) \ {finite set}.
From another perspective, we can say that a meromorphic function ¢ on C(k*), i.e., an
element of k! (z,y, 2)o, is defined over (or rational over) k if it lies in the subfield k(z, y, 2)o
of kal(xa Y, Z)O-

The Galois group I' = Gal(k*/k) acts on C(k*). Its orbits are finite because every
P € C(k¥) has coordinates in some finite extension of k. We deduce an action of I' on
Div(C(k™)): 7(Xnp[P]) = S ny[rP]. A divisor D is said to be defined over (or rational
over) k if it is fixed by this action. Thus D is rational over k if and only if all P in each
I-orbit have the same coefficients np in D.

For a divisor D on C rational over k, we can define L(D) to be the set of all meromorphic
functions on C rational over k such that divp+ D > 0 (together with 0). Then the Riemann-
Roch theorem continues to hold, and there is a bijection

P+ [P]—[0]: C(k) — Pic’(C)

where Pic?(C) = (Pic®(C(k™))L, i.e., it is the group of divisor classes of degree zero (over
k') fixed by the action of I'. Unfortunately, such a class need not be represented by a divisor
fixed by the action of I'.

Exercise 4.8. Find a necessary and sufficient condition for the line L : Y = ¢X + d to be
an inflectional tangent to the affine curve C' : Y? = X34 aX +b, i.e., to meet C at a point P
with I(P, L N C) = 3. Hence find a general formula for the elliptic curves in canonical form
having a rational point of order 3.

5. DEFINITION OF AN ELLIPTIC CURVE

Definition 5.1. Let k be a field. An elliptic curve over k can be defined, according to taste,
as:

(a) A complete nonsingular curve E of genus 1 over k together with a point O € E(k).
(b) A nonsingular plane projective E of degree 3 together with a point O € E(k).
(c¢) A nonsingular plane projective curve E of the form

Y2Z 4+ a1 XY Z +a3YZ? = X3+ apyX?Z + ay X 7% + as 2
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The relation between these definitions is as follows. Let E be as in (c¢). Then E(k) contains
a canonical element O = (0 : 1 : 0), and the pair (F, O) satisfies the other two definitions.
This is obvious for (b), and (a) follows from the formula on p9.

Let (E,O) be as in (a). Then (see below) there is an isomorphism from F onto a curve
as in (c) sending O to (0:1:0).
Let (E,0) be as in (b). Then (see below) there is a change of variables transforming E

into a curve as in (c¢) and O into (0 : 1:0) (and if O is a point of inflection, the change of
variables can be taken to be linear).

Plane projective cubic curves with a rational inflection point. Let (£,0) be a
nonsingular cubic curve in P?(k). In this subsection, I assume that O is a point of inflection,
and I show that:

(a) after a linear change of variables (with coefficients in k), the point O will be (0 : 1 : 0)
and its tangent line will be L, : Z = 0;

(b) if (0:1:0) € E(k) and the tangent line to E at (0:1:0) is Lo : Z = 0, then the
equation of E has the form (5.1c).

Proof of (a). Let (a:b:c) € P?(k), and assume b # 0. The map
(x:y:z)— (br—ay:by:bz—cy)
is well-defined for all (x : y : z) € P*(k) and sends (a : b :¢) to (0:0?:0)=(0:1:0). If
b =0, but ¢ # 0, we first interchange the y and z coordinates.
Consider a line

L:aX+4+0Y +cZ =0, a,bcek, notalla,b,czero.

Choose A = (a;;) to be an invertible 3 x 3 matrix whose first two columns are orthogonal to
(a,b,c), and define a change of variables

X' X
AlY | =Y
A Z
With respect to the variables X', Y’, Z’, the equation of the line L becomes
X X' X'
0=(a,b,e)| Y | =(a,b,c0)A| Y' | =(0,0,d)| Y' | =dZ".
Z A A

Moreover, d # 0, and so we may take the equation of the line to be Z’ = 0.
This completes the proof of (a).
Proof of (b). The general cubic form is F'(X,Y, Z):
aX?+ XY + 3 XPZ 4+ e XY? P+ s XY Z + 6 X 2%+ 7Y + Y2 Z + oY 72 + c102°.

Let E be the curve FI(X,Y,Z) = 0. We assume that F is nonsingular; in particular, this
implies that F'is absolutely irreducible.

If O=(0:1:0) lies on E, then .

Recall that Uy = {(x : y : 2) | y = 1}, and we identify U; with A% via (z:1:2) < (z: 2).
The curve C'N U is an affine curve with equation F(X, 1, Z):

X2 4+ o X2 4 3 X2 Z +eaX + 5 XTZ + s XZ?+ s Z + coZ% + c107°.
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The tangent line at (0:1:0) < (0,0) is
C4X + CgZ = 0.

If this is Lo, : Z = 0, then . Since E' is nonsingular, we must have .

According to (1.5), the intersection number
1(0, Lo N E) < dimy k[X, Z]/(Z, F(X, 1, Z)).

But
kX, 2))(Z, F(X,1,2)) = k[X]/(c2X? + 1. X?).

If O is a point of inflection, then (O, Lo, N E) > 3, and so .

On combining the boxed statements, we find that our equation has become
X3+ 3 X2 4+ s XY Z 4+ c6 X224+ cgY*Z 4+ oY Z? 4+ c102°, ¢ # 0.

Moreover, ¢; # 0 because otherwise the polynomial is divisible by Z. Finally, after dividing
through by c¢; and replacing Z with _ch, we obtain an equation of the same form as that in
(5.1c).

Remark 5.2 (Remedial math.). " The Hessian of a homogeneous polynomial F(X,Y, 7)

is the matrix

9°F  9°F O°F

7 Ay Ao

A 7

- A

X o X

X0z 09YdoZ  0Z°

Assume char k # 2. Then a nonsingular point (a : b : ¢) on the curve C' : F' = 0 is a point of
inflection if and only if det H(a, b, ¢) = 0 ([Kn] p38). This fact can be used to find a point of
inflection over k on a cubic curve (when it exists), and once one has such a point, the above

procedure allows one to find an equation for the curve in the form (5.1c) (ibid. 3.1).

If F has degree d, then det H has degree 3(d — 2). Thus, an irreducible cubic curve has at
least one point of inflection over k%!, and at most 3. Unfortunately, it may have no point of
inflection with coordinates in k.

H(X,)Y,Z) =

General plane projective curves. As we just noted, a plane projective cubic curve may
not have a point of inflection with coordinates in k. An invertible linear change of variables
will not change this (it will only multiply the Hessian by a nonzero constant). However,
if the curve has some point with coordinates in k, then there is a method (due to Nagell,
1928/29) that transforms the equation by a nonlinear change of variables so that the point
becomes a point of inflection, still with coordinates in k ([C2], p34).

Complete nonsingular curves of genus 1. Here we assume some algebraic geometry.
Let E be a complete nonsingular curve of genus 1 over a field k and let O € E(k). According
to the Riemann-Roch theorem, the meromorphic functions on F having no poles except at
O and having at worst a pole of order m > 1 at O, form a vector space of dimension m over
k, i.e., L(m[O]) has dimension m for m > 1.

The constant functions lie in L(]O]), and according to the Riemann-Roch theorem, there
are no other. Thus 1 is a basis for L([O]).

Choose x so that {1,x} is a basis for L(2[0]).

"These are topics that were once taught in high school, but are no longer taught anywhere, well, hardly
anywhere.
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Choose y so that {1,z,y} is a basis for L(3]0]).

Then {1,z,y, 2%} is a basis for L(4[O]). (If it were linearly dependent, then 22 would have
to be a linear combination of 1, z,y, but then it couldn’t have a quadruple pole at O.)

And {1, z,y, 2% zy} is a basis for L(5[0]).
The subset {1, z,y, 2% zy, 23, y*} of L(6[0]) contains 7 elements, and so must be linearly
dependent: there exist constants a; such that

aoy® + a1zy + azy = apr® + asX? + as X + ag

(as regular functions on E \ {O}). Moreover, ay and af, must be nonzero, because the
set with either 2% or y? omitted is linearly independent, and so, after multiplying through
by a constant and making a change of variables, we can suppose both equal 1. The map
P (z(P),y(P)) sends E \ {O} onto the plane affine curve

C: Y 4+ a XY +a3Y = X3+ 4o X? + ay X + a.

The function x has a double pole at O and no other pole, and so it has only two other zeros.
Therefore, the composite

EN{O} = C = A, P (a(P),y(P)) — z(P)

has degree 2, i.e., it is 2 : 1 on points with coordinates in k* (at least, if the characteristic
is zero). Similarly, the composite

E\N{O} - C — Al, P (z(P),y(P)) — y(P)

has degree 3. The degree of E'\ {O} — C divides both 2 and 3, and therefore is 1. In fact,
it is an isomorphism, and it extends to an isomorphism of E onto the Zariski closure of C'
in P2 i.e., onto the curve given by an equation of the form (5.1c).

The canonical form of the equation. Thus, however we define it, an elliptic curve is
isomorphic to a curve of the form
E:YZ+aXYZ+asYZ? = X3 +au X?Z + as X 2% + ag 23,

and, conversely, every nonsingular such F is an elliptic curve. This is usually referred to as
the canonical or Weierstrass equation of the curve, but how canonical is it? One can show
that it is canonical up to a change of variables of the form:

X = *X' +r
Y = @Y +sulX 4t
with u,r,s,t € k and u # 0.
Everything becomes simpler if we assume that chark # 2,3. A change of variables

X' = X, Y’:Y+%X, 7=
will eliminate the XY Z term, and a change of variables

xzx+%,wzy+%,zzz

will then eliminate the X? and Y terms. Thus we arrive at the equation:

Y27 = X3 +aXZ?+07°.
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Theorem 5.3. Assume char k # 2, 3.

(a) The curve
E(a,b):Y?Z = X*+aXZ* +bZ° a,bek,
is nonsingular, and hence (together with O = (0 :1:0)) defines an elliptic curve over k, if
and only if 4a® + 27b% # 0.
(b) Every elliptic curve over k is isomorphic to one of the form E(a,b).

(¢c) Two elliptic curves E(a,b) and E(a’',b") are isomorphic if and only if there exists a
c € kX such a’ = c*a, b’ = cSb; the isomorphism is then

(:y:2)— (Fa:ly:2).
Proof. (a) We proved in (1.3) that the affine curve
Y2=X*4aX+b
is nonsingular if and only if 4a® + 270? # 0. The point (0 : 1 : 0) is always nonsingular.

(b) This was discussed above.
(c) The “if” is obvious. We omit the “only if” (see, for example, [S1] pp64-65). O

Remark 5.4. For an elliptic curve E, define
. 1728(4a
IE) = 5505 : )2
4da3 + 27b

if £ ~ E(a,b). Since the expression on the right is unchanged when (a,b) is replaced by
(c*a, ), this is well-defined, and F ~ E' = j(E) = j(E'). Conversely, j(E) = j(E') =
E =~ E’ when k is algebraically closed (see later), but not otherwise. For example, if ¢ is not
a square in k, then

Y27 = X3+ ac’?X 7% + b2 23

has the same j invariant as E(a,b), but it is not isomorphic to it.

The group law for the canonical form. The point at oo is the zero for the group law.
The group law is determined by:

P+Q+ R=0 <= P Q,R lie on a straight line;

if P=(x:y:z),then —P=(x:—y:z2).

In particular, —P = P, i.e., P has order 2 if and only if y = 0. The points of order two are
the points (x : 0 : 1) where x is a root of X3 + aX +b.

6. REDUCTION OF AN ELLIPTIC CURVE MODULO p
Consider an elliptic curve
E:Y?Z=X3+aXZ>+07%, a,bcQ, A=4a>+270*#0.

After a change of variables we may suppose a,b € Z, and so we may look at them modulo
p to get a curve over F, =4 Z/pZ. In this section, we examine what curves we get in this
fashion.
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Algebraic groups of dimension 1. Let k£ be an arbitrary perfect field. The following
is a complete list of connected algebraic curves over k having group structures defined by
polynomial maps.

Elliptic curves. These are the only projective curves having a group structure defined by
polynomial maps.

The additive group. The affine line A! is a group under addition:
AYR)=Fk, (z,y)—z+y: kxk—k

We sometimes write G, for A! endowed with this group structure.

The multiplicative group. The affine line with the origin removed is a group under multipli-
cation:

AT\ {(0)} =K%, (2,9) — 2y k™ x k™ — k~.

We sometimes write G,, for A!\ {(0)} endowed with this group structure. Note that the
map x — (z,z7!) identifies G,, with the plane affine curve XY = 1.

Twisted multiplicative groups. Let a € k\ k?, and let L = k[y/a]. There is an algebraic group
G over k such that

G(k) ={y €L [Nmp/y=1}.

Let o = \/a, so that {1,a} is a basis for L as a k-vector space. Then Nm(z + ay) = 22 — ay?
and (z + ay)(2’' + ay') = za’' + ayy’ + a(zy’ + 2'y). We define G to be the plane affine curve
X? —aY? =1, with the group structure

(z,y) x (2, y) = (22" + ayy’, vy’ + 2'y).

We denote this group by G,,[a]. For example, when & = R and a = —1, we get the circle
group X? +Y?=1.

Note that a change of variables transforms G,,[a] into G,,[ac?], any ¢ # 0, and so, up to
a change of variables, G,,[a] depends only on the field k[y/a]. The equations defining G,,[al
still define an algebraic group when a is a square in k, say a = o2, but then X? — aY? =
(X +aY)(X —aY), and so the change of variables X’ = X +aY, Y’ = X —aY transforms
the group into G,,. In particular, this shows that G,,[a] becomes isomorphic to G,, over
k[v/a], and so it can be thought of a “twist” of G,,.

Remark 6.1. Let £ =F,, the field with g-elements. Then G, (k) has g-elements, G,, (k) has
q — 1 elements, and G,,[a|(k) has ¢ + 1 elements (here a is any nonsquare in k). Only the
last is not obvious. From the definition of G,,[a], we know there is an exact sequence

0 — Gpla](Fy) — (IFCJQ)X - F; — 0.

Nm

The second map is surjective (because a quadratic form in at least three variables over a
finite field always has a nontrivial zero (Serre, Course on Arithmetic)), and so

4Gla](F,) = (¢ = 1)/(a—1) = g+ 1.
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We make a few remarks concerning the proofs of the above statements. We have seen that
if a nonsingular projective curve has genus 1, then its has a group structure, but why is the
converse true? The simplest explanation (for the case k = C) comes from topology. The
Lefschetz fixed point theorem® says that, if M is a compact oriented manifold, then for any
continuous map o : M — M,

(A-To) = (—1)Trace(a|H (M, Q)).

Here A is the diagonal in M x M and T, is the graph of «, so that (A-T',) is the number of
“fixed points of o counting multiplicities”. Let L(a) be the integer on the right. If M has a
group structure, then the translation map 7, = (z +— z 4+ a), a # 0, has no fixed points, and
SO

L(m,) = (A-T,) =0.

But a — L(7,) : M — Z is continuous, and hence constant on each connected component.
On letting a tend to zero, we find that L(7p) = 0. But 79 is the identity map, and so

L(ro) = > (=1)' Tr(id |[H (M, Q)) = Y (—1)" dimg H' (M, Q).

Thus, if M has a group structure, its Euler-Poincaré characteristic must be zero. The Euler-
Poincaré characteristic of a complex curve of genus g is 1 —2g+1 =2 —2¢g, and so g = 1
the curve has a continuous group structure.

A similar argument works over any field. One proves directly that for the diagonal A in
CxC,

(A-A)=2-2g9, (A-T,)=0, a#0,
and then “by continuity” that (A-A) = (A-T',,).

The proof that G, and G,, are the only affine algebraic groups of dimension one can
be found in most books on algebraic groups when k is algebraically closed (see for example,
Borel, Linear Algebraic Groups, 10.9, who notes that the first published proof is in an article
of Grothendieck). The extension to nonalgebraically closed fields is an easy exercise in Galois
cohomology.

Singular cubic curves. Let E be a singular plane projective curve over a perfect field k
of characteristic # 2. As we noted on p8, it will have exactly one singular point S, and
S will have coordinates in k. Assume E(k) contains a point O # S. It is a curious fact
that exactly the same definition as in the nonsingular case turns E(k) \ {S} into a group.
Namely, consider the line through two nonsingular points P and ). According to Bezout’s
theorem and (1.7), it will intersect the curve in exactly one additional point R, which can’t
be singular. Define P + ) to be the third point of intersection of the line through R and O
with the cubic. We examine this in the three possible cases.

Cubic curves with a cusp. The plane projective curve
E:Y*Z =X

has a cusp at S = (0 : 0 : 1) because the affine curve Y? = X3 has a cusp at (0,0). Note
that S is the only point on the projective curve with Y-coordinate zero, and so E(k) \ {S}
is equal to the set of points on the affine curve EN{Y # 0}, i.e., on the curve

E,: 7= X3

8See, for example, Greenberg, Lectures on Algebraic Topology.
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The line Z = aX + 3 intersects E; at the points P, = (21, 21), P» = (22, 22), P5 = (x3, 23)
with x1, 2o, x3 roots of
X3 —aX - 3.
Because the coefficient of X? in this polynomial is zero, the sum x; + x5 + x3 of its roots is
zero. Therefore the map
P x(P): Ey(k) — k
has the property that
PP+P+P=0— l'(pl)—i‘l'(pQ)—i‘l'(pg) =0.

Since O = (0,0), the map P + —P is (x,z) +— (—z,—2), and so P — x(P) also has the
property that

z(—P)=—P.
These two properties imply that P +— x(P) : E1(k) — k is a homomorphism. In fact, it is

an isomorphism. In summary: the map P — ;Eg : E(k)\ S — Gg(k) is an isomorphism.

Cubic curves with a node. The curve
Y27 = X34 ¢cX?Z, c¢#0,
has a node at (0:0: 1) because the affine curve
Y2=X3+cX? c#0,
has a node at (0,0). The tangent lines at (0,0) are given by the equation
Y?—cX?=0.
If ¢ is a square, this factors as

(Y — VeX)(Y 4+ eX) =0

and we get two tangent lines. In this case the tangent lines are said to be rational (i.e.,
defined) over k. When endowed with its group structure, F \ {singular point} becomes
isomorphic to G,,.

If ¢ is not a square, so the tangent lines are not rational over k, then E'\ {singular point} ~
Gum[c]. See [Cy], Chapter 9.

Criterion. We now derive a criterion for deciding which of the above cases the curve
E:Y’Z=X*+aXZ?+0b27% a,bek, A=4a>+270*=0

falls into. We assume char k # 2, 3. Since the point (0 : 1 : 0) is always nonsingular, we only
need to study the affine curve

Ey:Y?=X"+aX +b.
We try to find a t such that equation is
Y2 = (X —t))(X +2t)
= X3 312X + 23
For this, we need to choose ¢ so that

b
tr=——, tP=_.
2

a
37
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%/23 = —%S Using that A = 0, one checks that this works.

Now, we can rewrite the equation as

Hence t =

V2=3HX —t)* + (X —t)°.

This has a singularity at (¢,0), which is a cusp if 3t = 0, a node with rational tangents if 3t
is a nonzero square in k, and a node with nonrational tangents if 3¢ is a nonzero nonsquare.
Note that

—2ab = —2(—3t%)(2t%) = (2t*)*(3t)

and so 3t is zero or nonzero, a square or a nonsquare, according as —2ab is.

Reduction of an elliptic curve. Consider an elliptic curve
E:Y?Z=X3+aXZ>+07%, a,bcQ, A=4a>+270*+#0.

We make a change a variables X +— X/c? Y +— Y/ with ¢ chosen so that the new a, b are
integers and |A| is minimal-—such an equation is said to be minimal. The equation

E:Y*Z=X*+aXZ*+b73

where @ and b are the images of a and b in [F, is called the reduction of E modulo p.
There are three cases to consider (and two subcases).

(a) Good reduction. If p # 2 and p does not divide A, then E is an elliptic curve over
F,. For a point P = (x : y : z) on E, we can choose a representative (x,y, z) for P with
r,y,z € Z and having no common factor, and then P =4 (Z : § : Z) will be a well-defined
point on E. Since (0 : 1 : 0) reduces to (0 : 1 : 0) and lines reduce to lines, the map
E(Q) — E(F,) is a homomorphism, and Hensel’s lemma implies that E(Q,) — E(F,) is
surjective (see 2.10). The Riemann hypothesis (see later) shows that

#EF,) —p— 1] < 2/p.

(b) Cuspidal reduction. Here the reduced curve has a cusp as singularity. For p # 2,3, it
occurs exactly when plda® + 270 and p| — 2ab.

(¢) Nodal reduction. Here the reduced curve has a node as singularity. For p # 2,3, it
occurs exactly when p|4a® 4+ 27b% and p does not divide —2ab. The tangents at the node are
rational over F), if and only if —2ab mod p is a square in [F,,.

The following table summarizes our results (p # 2,3, N is the number of nonsingular
points on E with coordinates in F,,).

Reduction A mod p | —2ab mod p Ers N
good £ 0 E IN-p—1/<2/p
cusp 0 0 G, P
node; rational tangents 0 0 G p—1
node; nonrational tangents 0 # 0 G |—2ab] p+1

Other names:

cuspidal = additive;

nodal with rational tangents = split multiplicative;

nodal with nonrational tangents = nonsplit multiplicative.
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Semistable reduction. If £ has good or nodal reduction, then the minimal equation re-
mains minimal after replacing the ground field (here Q) by a larger field. This is not so for
cuspidal reduction. Consider, for example, the curve

E:Y*Z = X3+ pXZ2+pZ3,

After passing to a larger extension, in which p is a sixth power, say, ¢® = p, we can make a
change of variables so that the equation becomes

E:Y*Z =X +3X7Z*+ 7°.
This reduces to
Y27 = X34+ 73,
which is nonsingular. In fact, for any curve E with cuspidal reduction at p, there will exist a

finite extension of the ground field such that E will have either have good or nodal reduction
at the primes over p.

In summary: good and nodal reduction are not changed by a field extension (in fact,
the minimal model remains minimal) but cuspidal reduction always becomes good or nodal
reduction in an appropriate finite extension (and the minimal model changes). For this
reason, a curve is often said to have semistable reduction at p if it has good or nodal
reduction there.

Reduction modulo 2 and 3. When considering reduction at 2 or 3, one needs to consider
the full equation

Y2Z 4+ a XY Z +a3YZ* = X3+ ayX?Z + ay X Z* + ag 2

because it may be possible to find an equation of this form that is “more minimal” for 2 or
3 than any of the form

Y?Z = X° +aXZ?+bZ°
For example, it may be possible to find one of the first form that gives a nonsingular curve
over [Fy, whereas all equations of the second form become singular over Fy (see 1.3).

Other fields. Throughout this section, we can replace Q and Z with Q, and Z,, or in fact
with any local field and its ring of integers. Also, we can replace Q and Z with a number field
K and its ring of integers, with the caution that, for a number field K with class number
# 1, it may not be possible to find an equation for the elliptic curve that is minimal for all
primes simultaneously.

Exercise 6.2. (a) Find examples of elliptic curves £ over Q such that
(i) E has a cusp S which lifts to a point in E(Q,);
(ii) £ has a node S which lifts to a point in E(Q,);
(iii) F has a node S which does not lift to a point in E(Q,).

Here F is the reduction of the curve modulo a prime p # 2,3. The equation you give for
E should be a minimal equation of the standard form Y27 = X3 + aXZ?% + bZ3.

(b) For the example you gave in (a)(i), decide whether it acquires good or nodal reduction
in a finite extension of Q.
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7. ELLipTIC CURVES OVER Q,

Notation: A nonzero rational number a can be written a = p™~ with r and s not divisible
by p. We then set ord,(a) = m. The following rule is obvious:
ord,(a + b) > min{ord,(a), ord,(b)}, with equality unless ord,(a) = ord,(b).

Similarly, for an a € Q,, we set ord,(a) = m if a € p™Z, \ p™*'Z,. The same rule holds,
and the two definitions of ord, agree on Q. In both cases, we set ord,(0) = co. Note that
ord, is a homomorphism Q —Z.

Consider a curve
E:Y?Z =X +aXZ*+bZ°, a,beQ,, 4a*+ 270" #0.
After a change of variables X +— X/c Y Y/c3_, Z +— Z, we may suppose that a,b € Z,.
As in the last section, we obtain from E a curve E over [, and a reduction map
P P E(Q,) — E(F,).
We shall define a filtration

E(Q,) D E(Q,) > EY(Q,) D -+ D E*(Q,) D ---

and identify the quotients. First, define
E°(Q,) = {P | P is nonsingular}.
It is a subgroup because, as we observed on p26, a line through two nonsingular points on a
cubic (or tangent to a nonsingular point), will meet the cubic again at a nonsingular point.
Write E™ for £\ {any singular point}. The reduction map

P+ P: E°Q,) — E™(F,)

is a homomorphism, and we define £'(Q,) be its kernel. Thus E*(Q,) consists of the points
P that can be represented as (z : y : z) with x and z divisible by p but y not divisible by p.
In particular, P € E'(Q,) = y(P) # 0.
Define P)
x
E"(Q,) ={P € E'Q,) | ==~ € p"Z,}.
(@) ={ ( p)!y(p) p}

Theorem 7.1. The filtration E(Q,) D E°(Q,) D F'(Q,) D --- D E"(Q,) D --- has the
following properties:

(a) the quotient E(Q,)/E°(Q,) is finite;

(b) the map P+ P defines an isomorphism E°(Q,)/EY(Q,) — E(F,);

(c¢) forn>1, E"(Q,) is a subgroup of E(Q,), and the map P — p™™" igg mod p is an
isomorphism E™(Q,)/E"(Q,) — Fy;

(d) the filtration is ezhaustive, i.e., N, E™(Q,) = {0}.

Proof. (a) We prove that £(Q,) has a natural topology with respect to which it is compact
and E°(Q,) is an open subgroup. Since E(Q,) is a union of the cosets of E°(Q,), it will
follow that there can only be finitely many of them.

Endow Q, x Q, x Q, with the product topology, Q;’)\{(O, 0,0)} with the subspace topology,

and P*(Q,) with the quotient topology via @3\ {(0,0,0)} — P*(Q,). Then P*(Q,) is the
union of the images of the sets Z) X Zy, X Zy, Zp X Ly X Ly, Ly X Ly X L, , each of which is
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compact and open. Therefore P*(Q,) is compact. Its subset E(Q,) is closed, because it is
the zero set of a polynomial. Relative to this topology on P?(Q,) two points that are close
will have the same reduction modulo p. Therefore E°(Q,) is the intersection of F(Q,) with
an open subset of P?(Q,).

(b) Hensel’s lemma implies that the reduction map E°(Q,) — E(F,) is surjective, and we
defined E'(Q,) to be its kernel.

(c) We assume (inductively) that E"(Q,) is a subgroup of £E(Qp). f P=(x:y:1)liesin
F'Y(Q,), then y ¢ Z,. Set x = p~™zy and y = p~™ yo with 2o and yo units in Z,. Then

p2 Yo =p mad + ap ™xo + b
On taking ord, of the two sides, we find that —2m' = —3m. Since m’ and m are integers,
this implies that there is an integer n such m = 2n and m’ = 3n; in fact, n = ordp(g).

The above discussion shows that if P = (z:y:z) € E"(Q,) \ E"™(Q,), n > 1, then

{ ord,(z) = ordy(z) —2n
ord,(y) = ord,(z) — 3n.

Hence P can be expressed P = (p"xg : yo : p*"20) with ord,(yo) = 0 and o, 2 € Z,. In fact,
this is true for all P € E"(Q,). Since P lies on E,

p?’”ygzo p?’”xg + ap xozo + bpgnzg,

and so Py =4 (Zo : Yo : Zo) lies on the curve
Ey:Y*Z = X3,

As yo # 0, Py is not the singular point of Fy. From the description of the group laws in
terms of chords and tangents, we see that the map

P By: E"(Q,) — Ey(F))

is a homomorphism. Its kernel is E"*!(Q,), which is therefore a subgroup, and it follows
from Hensel’s lemma that its image is the set of nonsingular points of Ey(F,). We know

(see p27) that @ — ﬁgg is an isomorphism FEy(FF,) \ {singularity} — F,. The composite

PHPOHﬁ—]%isPH% mod p.

(d) If P € NE™(Q,), then z(P) = 0, y(P) # 0. This implies that either z(P) = 0 or
Y? = bZ? but the second equation would contradict P € E'(Q,). Hence z(P) = 0 and
P=(0:1:0). O

Remark 7.2. In the above, Q, can be replaced with any local field.

Remark 7.3. It is possible to say much more about the structure of E(Q,). A one-
parameter commutative formal group over a (commutative) ring R is a power series
F(X,Y) € R[[X, Y]] satisfying the following conditions:

) F(X,Y)=X+Y + terms of degree > 2;

) F(X.F(Y,2)) = F(F(X,Y), Z);

) F(X,Y) = F(Y, X);

) there is a unique power series i(7") € R|[[T]] such that F(T,i(T)) = 0.
) F(X,0)=X and F(0,Y) =Y
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In fact, (a) and (b) imply (d) and (e). If F' is such a formal group over Z,, then the series
F(a,b) converges for a,b € pZ,, and so F' makes pZ, into a group. One can show ([S1]
Chapter 1V) that an elliptic curve E over Q, defines a formal group F' over Z,, and that
there are power series z(7") and y(T") such that ¢ — (x(¢) : y(¢) : 1) is an isomorphism of
pZ, (endowed with the group structure provided by F') onto E'(Q,). This is useful because
it allows us to derive results about elliptic curves from results about formal groups, which
are generally easier to prove.

An algorithm to compute intersection numbers. For f(X,Y),g(X,Y) € k[X,Y],set I(f,g) =
I(origin, {f = 0} N {g = 0}). We explain how to compute I(f,g) using only the following
properties of the symbol: 1(X,Y) = 1; I(f,g) = I(g, f); I(f.gh) = I(f,q) + I(f,h)
I(f,g+ hf)=1(f,g) forall h; I(f,g) =0 if g(0,0) # 0. Regard f(X,Y) and ¢g(X,Y) as
elements of k[X][Y]. The theory of resultants allows us to construct polynomials a(X,Y)
and b(X,Y) such that af 4+ bg = r(X) with r(X) € k[X] and degy (b) < degy (f), degy (a) <
degy (g). Now

Continue in this fashion until Y is eliminated from one of the polynomials, say, from g, so
that g = g(X) € k[X]. Write g(X) = X™go(X) where ¢go(0) # 0. Then

1(f,9) = mlI(f,X).

After subtracting a multiple of X from f(X,Y’), we can assume that it is a polynomial in
Y. Write f(Y) =Y"fo(Y) where f5(0) # 0. Then

I(f,X)=n.
This algorithm is practical on a computer, but if the polynomials are monic when regarded

as polynomials in Y, the following method is faster. If degy (g) > degy (f), we can divide f
into ¢ (as polynomials in Y) and obtain

g=fh+r, degyr<degy forr=0.

Moreover,
I(f,9) =1(f,7).

Continue in this fashion until one of the polynomials has degree 1 in Y, and apply the
following lemma.

Lemma 7.4. If f(0) = 0, then I(Y — f(X),g(X,Y)) = m where X™ is the power of X
dividing g(X, f(X)).
Proof. We divide Y — f(X) into g(X,Y’) (as polynomials in Y') to obtain
from which it follows that

IY = f(X),9(X,Y)) = I(Y — f(X),g(X, f(X)) = mI(Y — f(X), X).
Xh(X
— (Y, X

, and so

Finally, since we are assuming f(0) = 0, f(X)
) =1.

)
I(Y = f(X), X )

O
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8. TORSION POINTS

Throughout this section, £ will be the elliptic curve
E:Y’Z=X}+aXZ?+0b27% a,beZ, A=4a®>+270*+#0,
except that in second half of the section, we allow a,b € Z,.

Theorem 8.1 (Lutz-Nagell). If P = (z:y: 1) € E(Q)tors, then z,y € Z and either y =0
or y|A.

Remark 8.2. (a) The theorem provides an algorithm for finding all the torsion points on
E: for each pair (x,y) € Z with y = 0 or y|A, check to see whether (z :y : 1) is on E and
whether it is a torsion point. It is not essential, but it helps, if the equation of E is chosen
so that A is minimal among those with integer coefficients.

(b) The converse of the theorem is not true: a point P = (z : y : 1) € E(Q) can satisfy
the conditions in the theorem without being a torsion point.

(¢) The theorem can often be used to prove that a point P € E(Q) is of infinite order:
compute multiples nP of P until you arrive at one whose coordinates are not integers, or
better, just compute the z-coordinates of 2P, 4P, 8P, using the duplication formula (see
the end of this section).

The theorem will follow from the next two results: the first says that if P and 2P have
integer coordinates (when we set z = 1), then either y = 0 or y|A; the second implies that
torsion points (hence also their multiples) have integer coordinates.

Lemma 8.3. Let P = (x1:y1: 1) € E(Q). If P and 2P have integer coordinates (when
we set z = 1), then either y; = 0 or y1|A.

Proof. Assume y; # 0, and set 2P = (23 : y2 : 1). Then 2P is the second point of intersection
of the tangent at P to the affine curve

Y?=f(X), f(X)=X>+aX+0.
The tangent line at P is

dY f/(l'l)
Y =aX h =-—=] = .
aX + [, where « (dX)P o

To find where this line intersects the affine curve, substitute for Y in the equation of the
curve to obtain:

(aX +3)*=X>+aX +b.
Thus the X-coordinates of the points of intersection are the roots of the cubic:
X4 aX+b—(aX+B)?=X-a?X>+ ...
But we know that the X-coordinates of these points are x1, x1, x5, and so
1+ 21+ 22 = o’
Since x; and x5 are integers, so also are o? and o = f;(;l). Thus y1|f'(x1), and directly from

the equation y? = f(z1) we see that yi|f(z1). Hence y; divides both f(x1) and f'(x1). The
theory of resultants (see [Cy], Chapter on Remedial Mathematics) shows that

A = r(X)f(X) + s(X)f'(X), r(X),s(X) € Z[X],
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and so this implies that y;|A. [In our case, 7(X) = —27(X? + aX — b) and s(X) = (3X? +
4a)(3X? 4+ a).] O

Proposition 8.4. The group E*(Q,) is torsion-free.

Before proving the proposition, we derive some consequences.

Corollary 8.5. IfP=(x:y:1) € E(Qp)iors, then x,y € Z,,.

Proof. Recall that P is obtained from P by choosing primitive coordinates (z : y : 2)
for P (i.e., coordinates such that x,y,z € Z, but not all of z,y,z € pZ,), and setting
P=(z:7:%),and that EY(Q,) ={P € E(Q,) | P=(0:1:0)} IfP=(zx:y:1)
with z or y not in Z,, then any primitive coordinates (z' : ¢/ : 2’) for P will have 2’ € pZ,.
Hence z(P) = 0, which implies P = (0 : 1: 0), and so P € E'(Q,). We have proved (the
contrapositive of) the statement:

ifP=(x:y:1) ¢ E'(Q,), then z,y € Z,.
The proposition shows that if P is a nonzero torsion point, then P ¢ E*(Q,). O
Corollary 8.6. IfP=(z:y:1) € E(Q)os, then z,y € Z.

Proof. This follows from the previous corollary, because if a rational number r is not an
integer, then ord,(r) < 0 for some p, and so r ¢ Z,. O

Corollary 8.7. If E has good reduction at p (i.e., p # 2 and p does not divide A), then the
reduction map

E(Q)tors — E(Fy)
18 injective.

Proof. Because E has good reduction, E°(Q,) = E(Q,). The reduction map E(Q,) — E(Q,)
has kernel E*(Q,), which intersects F(Q)iops in {O}. O

Remark 8.8. This puts a very serious restriction on the size of F(Q)tos. For example, if £
has good reduction at 5, then, according to the Riemann hypotheses, E will have at most
5+ 1+ 2v/5 points with coordinates in F5, and so E will have at most 10 torsion points with
coordinates in Q.

We now prove Proposition 8.4. In one case this follows directly from the results of Section
7. Let P € E'(Q,) be a torsion point of order m not divisible by p. If P # 0, then®
P € E"(Q,) \ E™(Q,) for some n. But we have an isomorphism (of abelian groups)

—nL P n n ~
Py ) B Q) /B @) S T
y(P)

(Theorem 7.1c). By assumption, the image of P under this map is nonzero, which implies
that m times the image will also be nonzero. This contradicts the fact that mP = 0.

To prove the general case, where p may divide the order of P, we have to analyze the
filtration more carefully.

For P € E'(Q,), we have y(P) # 0, which suggests that we look at the affine curve

En{(z:y:z}|y#0}:
E :7Z=X+aXZ*+ 075

94\” is “setminus”, so this means P € E"(Q,), P ¢ E"1(Q,).
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z) on E has coordinates x'(P) =4 %, 2'(P) =g % on F;. For
example, O = (0 : 0) becomes the origin on Ej, and so P — —P becomes reflection in
the origin (2, 2') — (—2',—2'). Just as on E, P+ @Q + R = 0 if and only if P,Q, R lie on a

line.

A point P = (z:y:
1

In terms of our new picture,
E"Qy) ={P € El(Qp) | #'(P) € p"Zy}.

Thus the E™(Q,)’s form a fundamental system of neighbourhoods of the origin in E;(Q),).
The key lemma is following:

Lemma 8.9. Let Pl,PQ,Pg c E(Qp> be such that P1 + P2 + Pg = 0. [f pl,pg € En(@p))
then Py € E™(Q,), and
Z'/(pl) + Jj'l(pg) + Jj'/(pg) c pSan.

Before proving the lemma, we explain why it implies the proposition. For P € E™(Q,),
let Z(P) = 2/(P) mod p°"Z,. The lemma shows that the map

P 3(P): E"(Qp) — p"Ly/p™" Ly
has the property:
P1—|—P2—|—P3:O eSS f(p1)+i'(p2>+i'(p3>:0

Since z(—P) = —z(P), it is therefore a homomorphism of abelian groups. Suppose that
P € E'(Q,) has order m divisible by p. Then Q =4 2P will also lie in F'(Q,) and will

have order p. Since @ # 0, for some n, @ € E"(Q,)\ E"™(Q,). Then z(Q) € p"Z, \p""'Z,
mod p*"Z, , and so

z(pQ) = p7(Q) € p" ' Z, \ p"**Z, mod p""Z,.

This contradicts the fact that pQ) = 0.

We now prove the lemma. We saw in Section 7 that if P = (z : y : 1) € E"(Q,)\ E"™(Q,),
then ord,(z) = —2n, ord,(y) = —3n. In terms of homogeneous coordinates P = (x : y : 2),
this means that

P e E(Q)\ B +1(Q ) ord, zgﬁi = —2n ord,, i?i = n
(@) v ord, y(g) —3n ord, 22 3n
z y(P)

Thus
Pe E"Q,) = 2/(P)€p"Z,, 2 (P)e€pZ,
Let P, = (x}, 2}), i = 1,2,3. The line through Py, P, (assumed distinct) is Z = aX + 3 where

17 71

2y — 2} oy + hal 4+ 2% + az)?
a= =...=
xh — ) 1 —ax)(2h + 21) — b(252 + 2{2z2 + 212)

€ p*"Zy.
Moreover
B =2 —ax) € p*Z,.
On substituting aX + § for Z in the equation for E;, we obtain the equation
aX + B =X +aX(aX +B)*+blaX + ).
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We know that the solutions of this equation are x!, 2}, 24, and so

, 2a03 + 3ba?f o

x’1+x’2+x3—1+a&2+b&3 z

D-

The proof when P, = P, is similar. For full details, including the elementary calculation
omitted for a, see [ST] p50-54.

Remark 8.10. When Q is replaced by a number field K, the above argument may fail to
show that torsion elements of E(K') have coordinates that are algebraic integers (when z is
taken to be 1). Let m be a prime element in K,. The same argument as above shows that
there is an isomorphism

E"(K,)/E(K,) — "0, /7" O,.

However, if p is a high power of 7 (i.e., the extension K/Q is highly ramified v) and n is
small, this no longer excludes the possibility that E"(K,) may contain an element of order

p-
Formulas. We give formulas for the addition and doubling of points on the curve
E:Y’=X*+aX+0b, abek A=4da®+270>#0.

As above, the strategy for deriving the formulas is to first find the z-coordinate of the point
sought by using that the sum of the roots of a polynomial f(X) is —(coefficient of Xd&/~1).

Addition formula. Let P = (x,y) be the sum of P; = (z1,y1) and Py = (22,y2). If Po = — P,
then P = O, and if P, = P, we can apply the duplication formula. Otherwise, x; # x5, and
(x,y) is determined by the following formulas:

x(xr — 332)2 = 331333 + 33%3?2 — 2y1y2 + a(xy + x2) + 2b
and
y(a1 — x2)° = Ways — Wiy
where

Wi = 3wxya5+ 75 + a(w; + 3z9) +4b
Wy = 32wy +2° + a(3x; + 29) + 4b.

Duplication formula. Let P = (x,y) and 2P = (x2,y2). If y = 0, then 2P = 0. Otherwise
y # 0, and (z2,y2) is determined by the following formulas:

(322 4 a)® —8xy®  a" — 2a2® — 8bx + a?

To =

42 A3 +az+b)
28 + baxt + 20023 — ba’x? — 4abx — a® — 8b?
Yo = 3 .
(2y)

Exercise 8.11. For four of the following elliptic curves (including at least one of the last
four), compute the torsion subgroups of F(Q). (Include only enough details to convince the
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grader that you really did work it out.)

Y2 = X342
Y2 = X+ X
Y2 = X344

Y? = X3 44X
Y24+Y = X3 - X?
Y2 = X*+1
Y2 - XY +2Y = X®+42X?
Y24+7XY —6Y = X°®—6X2
Y243XY +6Y = X3 +6X2
Y2 -7XY —36Y = X3 —18X?
Y? 4+ 43XY —210Y = X% —210X°2
Y2 = X*-X
Y2 = X345X%24+4X
Y24+5XY —6Y = X3-3X2
Y? = X3 4+337X2 +20736X

Solution to Exercise 4.8. No vertical line is an inflectional tangent, and so we may assume
¢ # 0. The line L : Y = ¢X + d intersects the curve at the points whose X-coordinates
satisfy

(X +d)?=X?+aX +0.

By Bezout’s theorem, L be an inflectional tangent to E if and only if it meets the projective
curve in a single point. This will be so if and only if

X%~ X2+ (a—2cd)X +b— d°

has a triple root (which will automatically lie in Q). Hence there must exist an r € Q such
that
—3r=—c 3’=a—2cd, —1°=b-d.

When we use the first equation to eliminate r from the remaining two, we find that

4 C6

c
a=2cd+ —, b=d*— .
* 3’ 27
Conversely, if these equations hold, then r = ¢?/3 is a triple root of the above polynomial,
and so L is an inflectional tangent.

Note that 3P = 0 if and only if 2P = —P, i.e., if and only if the tangent line at P is an
inflectional tangent. Only the line Lo, : Z = 0 is an inflectional tangent at O. Thus E will
have a rational point of order 3 if and only if a, b can be expressed as above in terms of two
rational numbers ¢, d. Therefore the general form of an elliptic curve having a rational point
of order 3 is

4 6 4 6

Y2Z = X% 4 (2¢d + %)X (- S, 4(2ed+ %)3 or(d — &

27 2_7> 7 0.
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9. NERON MODELS

Consider an elliptic curve over Q,
E:Y?Z =X +aXZ*+bZ° a,bcQ, A=4a>+270*#0.

After making a change of variables X +— X/c* Y — Y/ Z — Z, we can suppose that
a,b € Z, and ord,(A) is minimal. We can think of £ as defining a curve over Z,, which will
be the best “model” of E over Z, among plane projective curves when p # 2,3. However,
when p = 2 or 3 we may be able to get a better model of E over Z, by allowing a more
complicated equation. Moreover, Néron showed that if we allow our models to be curves
over Z, that are not embeddable in P2 then we obtain models that are better in some senses
than any plane model. I'll attempt to explain what these Néron models are in this section.
Unfortunately, this is a difficult topic, which requires the theory of schemes for a satisfactory
explanation' and so I'll have to be very superficial. The only good treatment of Néron
models is in Chapter IV of [S2].

Weierstrass minimal models. As we noted in (1.3), a curve of the form
V2=X"+aX +0b
is always singular in characteristic 2. However, the curve
V2+Y =X - X? - 10X - 20

has good reduction at 2 (and, in fact, at all primes except 11). In general we should allow
equations for E of the form

E:YZ4+a XYZ+asYZ? = X3+ a0, X?Z +ay X 7%+ ag 23,

and changes of variables of the form

X = u*X' +r

Y = @Y +sulX 4t
with u,r,s,t € Q, and v # 0. One can attach to such a curve a discriminant
A(ay, as, as, agas), which is a complicated polynomial in the a;’s, and which is zero if and
only if F is singular. Moreover, one can choose a change of variables which makes the a; € Z,
and is such that ord,(A) is minimal. The equation (or rather the curve it defines over Z,,) is

called the Weierstrass minimal model of E. If p # 2,3, this agrees with the model defined
in the first paragraph above.

The work of Kodaira. Before considering Néron models, we look at an analogous situation,
which was a precursor.

Consider an equation
Y27 = X3+ a(T)XZ*+0(T)Z%, a(T),b(T) € C[T], A(T)=4a(T)*+ 27b(T)* # 0.
We can view this in three different ways:

(a) as defining an elliptic curve E over the field C(7T);
(b) as defining a surface S in A'(C) x P?(C);
(c) as defining a family of (possibly degenerate) elliptic curves E(T") parametrized by 7.

10N¢éron himself didn’t use schemes, but rather invented his own private version of algebraic geometry
over discrete valuation rings, which makes his papers almost unreadable.
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By (c) we mean the following: for each ¢, € C we have a curve
E(to) : Y?Z = X? +a(to)) X Z? + b(te) Z*, alty),b(te) € C,

with discriminate A(tp). This is nonsingular, and hence an elliptic curve, if and only if
A(tg) # 0. Otherwise, it will have a singularity, and we view it as a degenerate elliptic
curve. Note that the projection map A'(C) x P?(C) — A'(C) induces a map S — A'(C)
whose fibres are the curves E(t). We can view S as a “model” of E over C[T] (or over
A!(C)). We should choose the equation of E so that A(T') has minimum degree and there
are as few singular fibres as possible.

For the sake of simplicity, we now drop the Z, and consider the equation
Y2=X*+a(T)X +b(T), a(T),b(T) e C[T),

—strictly, we should work with the family of projective curves.
Let P = (z,y,t) € S(C), and let f(X,Y,T) = X3 + a(T)X + b(T) — Y2. Then P is
singular on E(t) if and only if it satisfies the following equations:

g—gj = 2V =0
2L = 3X2+a(T)=0.

It is singular in .S if on addition it satisfies the equation

9f _

or
Thus, if P is singular in S, then it is singular in its fibre E(¢), but the converse is need not
be true.

d(T)X +V/(T) = 0.

Example 9.1. (a) Consider the equation
V?2=X*-T.

The origin is singular (in fact, it is a cusp) when regarded as a point on E(0) : Y? = X3,
but not when regarded as a point on S : Y? = X? — T'. In fact, the tangent plane to S at
the origin is the X, Y-plane, T' = 0.

(b) Consider the equation

Y?=X3 -T2

In this case, the origin is singular when regarded as a point on E(0) and when regarded as
a point on S.

(c) Consider the equation

V2 = (X —-14+T)(X-1-T)(X+2)
X3~ (34+T*HX +2— 217
The discriminant is
A(T) = —324T? + 727" — 4T°.
The curve E(0) is
V?2=X?-3X+2=(X-1)*X+2),
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which has a node at (1,0). Replace X — 1 in the original equation with X in order to
translate (1,0,0) to the origin. The equation becomes

V2 = (X+T)(X -T)(X +3)
= (X?—TH(X +3)
= X34 3X?-T2X — 372

This has surface has a singularity at the origin (because the equation has no linear term).

Kodaira showed (Collected Works [51], [52], 1960) that, by blowing up points, and blowing
down curves, etc., it is possible to obtain from the surface

S:Y?Z = X3+ a(T)XZ*+b(T)Z%, a(T),b(T) € C[T], A[T]#0
a new surface S’ endowed with a map S’ — A! having the following properties:

(a) S’ is nonsingular;

(b) S” regarded as a curve over C(7') is equal to S regarded as a curve over C(T") (for the
experts, the maps S — A! and S’ — A! have the same generic fibres);

(c) the fibres E’(to) of S’ over A'(C) are all projective curves; moreover E'(ty) = E(to)
if the points of E(ty) are nonsingular when regarded as points on S (for example, if
E(to) itself is nonsingular);

(d) S” has a certain minimality property: if S” is a second surface with the above prop-
erties, then any regular map S — S” is an isomorphism.

Moreover, Kodaira showed that S is unique, and he classified the possible fibres of S — Al

“Blowing up” a point P in a variety V' leaves the variety unchanged except that it replaces
the point P with the projective space of lines through the origin in the tangent space T'gt p(V')
to V at P. A curve C in V| when regarded as a point in the blown-up variety, meets the
projective space at the point corresponding to the tangent line to the curve. Even when
V C P™, the blown-up variety doesn’t have a natural embedding into a projective space.

Example 9.2. To illustrate the phenomenon of “blowing up”, consider the map
ok =k, (1,y)~ (v,77).

Its image omits only the points on the Y-axis where Y # 0. A point in the image is the
image of a unique point in k2 except for (0,0), which is the image of the whole of the Y-axis.
Thus the map is one-to-one, except that the Y-axis has been “blown down” to a point.

The line
C:Y=aX
has inverse image equal to the union of the Y-axis and the line Y = a. The curve
Y2 = X34 aX?
has as inverse image the union of the Y-axis and a nonsingular curve that meets the Y-axis

at the points (0, £+/«), i.e., at the same points that its tangents do.

In the above map, (0,0) in A?(k) was blown up to an affine line. In a true blowing-up,
it would be replaced by a projective line, and the description of the map would be more
complicated.
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The complete Néron model. Néron proved an analogue of Kodaira’s result for elliptic
curves over Q,. To explain his result, we need to talk about schemes. For the nonexperts, a
scheme & over Z, is simply the object defined by a collection of polynomial equations with
coefficents in Z,. The object defined by the same equations regarded as having coefficients
in Q, is a variety E over Q, called the generic fibre of £/Z,, and the object defined by the
equations with the coefficients reduced modulo p is a variety E over F, called the special
fibre of £/Z,. For example, if £ is the scheme defined by the equation

Y2Z +ar XY Z +a3YZ? = X2+ axX?Z + auXZ* + a6 2>, a; € 7y,

then E is the elliptic curve over Q, defined by the same equation, and E is the elliptic curve
over [,

Y2Z +ar XY Z+a3YZ? = X3 + e X?Z + auXZ* + asZ®, a; €T,

Given an elliptic curve E/Q,, Néron constructs a scheme &£ over Z, having the following
properties:

(a) & is a regular scheme; this means that all the local rings associated with £ are regular
local rings (for a variety over an algebraically closed field, this condition is equivalent
to the variety being nonsingular);

(b) the generic fibre of £ is the original curve F;

(c) & is proper over Z,; this simply means that both £ and E are complete curves (this
is a compactness condition: affine curves aren’t complete; projective curves are).

(d) € has a certain minimality property sufficient to determine it uniquely: if & is a
second scheme over Z, having the properties (a), (b), (c), then any regular map
& — &' is an isomorphism.

Moreover, Néron classified the possible special fibres, and obtained essentially the same list
as Kodaira.

The complete Néron model has some defects: unlike the Weierstrass minimal model, not
every point in E(Q),) need extend to a point in £(Z,); it doesn’t have a group structure;
it’s special fibre F may be singular. All three defects are eliminated by simply removing all
singular points and multiple curves in the special fibre. One then obtains the smooth Néron

minimal model, which however has the defect that it not complete.
Given an elliptic curve E over Q, with now have three models over Z,:

(a) £, the Weierstrass minimal model of E;
(b) &, the complete Néron minimal model of E;
(c) &', the smooth Néron minimal model of E.

They are related as follows: to get £ from &£ remove all multiple curves and singular points;
when we remove from £’ all connected components of the special fibre except that containing
O, we obtain the Weierstrass model with the singular point in the closed fibre removed.

Example 9.3. We describe three of the possible eleven different types of models. Some of
the statements below are only valid when p # 2,3. We describe the special fibre over Iﬁ‘gl
rather than F,. For example, in (b), over I, the zero component of G may be a twisted G,
and not all n points in the quotient G/G° need have coordinates in F,.

(a) For an elliptic curve F with good reduction, all three models are the same.
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(b) For an elliptic curve E which has nodal reduction, and ord,(A) = n, the special fibres
for the three models are: (a) a cubic curve with a node; (b) n curves, each of genus
0, each intersecting exactly two other of the curves; (c) an algebraic group G such
that the connected component G° of G' containing zero is G,,, and such that G/G"
is a cyclic group of order n.
[[Diagram omitted]]
(c) For an elliptic curve £ which has cuspidal reduction and ord,(A) = 5, the special
fibres for the three models are: (a) a cubic curve with a cusp; (b) five curves of genus
0, one with multiplicity 2, intersecting as below; (b) an algebraic group G whose zero
component is G, and such that G/G° is a group of order 4 killed by 2.
[[Diagram omitted.]]

Finally, the mysterious quotient F(Q,)/E°(Q,) is equal to G(F,)/G°(F,) where G is the
special fibre of the smooth Néron model and G° is its zero component. In the above three
examples, it is (a) the trivial group; (b) a subgroup of a cyclic group of order n (and equal
to a cyclic group of order n if F has split nodal reduction); (c) a subgroup of (Z/27).

Summary. [[The top three E’s are E’s|]

| Minimal Model || Weierstrass | complete Néron | smooth Néron |

Plane curve Yes Not always Not always
Regular? Not always | Yes Yes
E complete? Yes Yes Not always
E nonsingular? || Not always | Not always Yes
E a group? Not always | Not always Yes
E(Z,) = E(Q,)? | Yes Not always Yes

Tate has given an algorithm for determining the Néron model of an elliptic curve.

10. ErLipTiC CURVES OVER THE COMPLEX NUMBERS
In this section, we review some of the theory of elliptic curves over C.

Lattices and bases. A lattice in C is the subgroup generated by two complex numbers
linearly independent over R: thus

A= Zw1 + ZCUQ.

Since neither wy nor ws is a real multiple of the other, we can order them so that &(w; /wa) >
0. If {w],w)} is a second pair of elements of A, then

W) = awy + bwe, wy = cwy +dwy, a,b,c,d € Z,

(£)=4(2),

WQ w2

with A a 2 x 2 matrix with integer coefficients. The pair (w],w)) will be a basis for A if and
only if A has determinant +1, and ¥(w}/wh) > 0 if and only if det A > 0. Therefore, if we
let SLy(Z) be the group of matrices with integer coefficients and determinant 1, then SLy(Z)

acts transitively on the set of bases (w1, ws) for A for which $(wy/we) > 0. We have proved
the following statement:

that is,
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Proposition 10.1. Let M be the set of pairs of complex numbers (wi,ws2) such that
S(wi/wa) > 0, and let L be the set of lattices in C. Then the map (w1,ws) — Zwy + Zws
mduces a bijection

SLo(Z)\M — L.

Here SLo(Z)\ M means the set of orbits in M for the action
a b wi \ [ aw; + bws
c d wy |\ cwy + dws
Let H be the complex upper half-plane:

H={zeC|S3() >0}

Let z € C* act on M by the rule z(wy,ws) = (2w1, 2w2) and on L by the rule zA = {2z |
A € A}. The map (wy,ws) — wy/we induces a bijection M/C* — H. The action of SLy(7Z)

on M corresponds to the action
a b at +b
( c d ) E—
on H. We have bijections
L/C*  «—— SLy(Z)\M/C* «— SLy(Z)\H.
Zr+7 (1,1) T

For a lattice A, the interior of any parallelogram with vertices zq, zo+w1, zo+w2, 2o+wi+ws,
where {w1,ws} is a basis for A, is called a fundamental domain or period parallelogram D
for A. We usually choose D to contain 0.

Quotients of C by lattices. . Let A be a lattice in C. Topologically the quotient C/A ~
R?/Z?, which is a one-holed torus (the surface of a donut).

Write 7 : C — C/A for the quotient map. Then C/A can be given the structure of a
Riemann surface (i.e., complex manifold of dimension 1) such that a function ¢ : U — C on
an open subset U of C/A is holomorphic (resp. meromorphic) if and only if the composite
pom:w (U) — C is holomorphic (resp. meromorphic) in the usual sense. It is the unique
structure for which 7 is a local isomorphism of Riemann surfaces.

We shall see that, although any two quotients C/A, C/A’ are homeomorphic, they will be
isomorphic as Riemann surfaces only if A’ = zA for some z € C.

Doubly periodic functions. Let A be a lattice in C. According to the above discussion,
a meromorphic function on C/A is simply a meromorphic function f(z) on C such that

f(z4+w) = f(z) for all w € A.
This condition is equivalent to

flz+w) = f(2), flz4+w)=f(2)

for {w1,w2} a basis for A. Such a meromorphic function on C is said to be doubly periodic
for A.

Proposition 10.2. Let f(z) be a doubly periodic function for A, not identically zero, and
let D be a fundamental domain for A such that f has no zeros or poles on the boundary of
D. Then
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(a) Xpep Resp(f) =0;
(b) Xpepordp(f) = 0;
(¢) Xpepordp(f)- P =0 mod A.

The first sum is over the points in D where f has a pole, and the other sums are over the
points where it has a zero or pole (and ordp(f) is the order of the zero or the negative of the
order of the pole). Each sum is finite.

Proof. According to the residue theorem,

/ f(2)dz = 27i( Y Resp(f)),

r PeD

where I' is the boundary of D. Because f is periodic, the integrals of it over opposite sides of
D cancel, and so the integral is zero. This gives (a). For (b) one applies the residue theorem
to f'/f, noting that this is again doubly periodic and that Resp(f'/f) = ordp(f). For (c)
one applies the residue theorem to z - f’(z)/f(z). This is no longer doubly periodic, but the
integral of it around I" lies in A. O

Corollary 10.3. A nonconstant doubly periodic function has at least two poles.

Proof. A holomorphic doubly periodic function is bounded on the closure of any fundamental
domain (by compactness), and hence on the entire plane (by periodicity). It is constant by
Liouville’s theorem. It is impossible for a doubly periodic function to have a single simple
pole in a period parallelogram, because by (a) of proposition the residue at the pole would
have to be zero there, which contradicts the fact that it has a simple pole there. [

The holomorphic maps C/A — C/A’. Let A and A’ be lattices in C. The map 7 :
C — C/A realizes C as the universal covering space of C/A. Since the same is true of
7' : C — C/A’, a continous map ¢ : C/A — C/A’ such that ¢(0) = 0 will lift uniquely to a
continuous map ¢ : C — C such that ¢(0) = 0:

c % cC
| |
C/A 5 C/N

(see, for example, Greenberg, Lectures on Algebraic Topology, 5.1, 6.4). The map ¢ will
be holomorphic (i.e., a morphism of Riemann surfaces) if and only if @ is holomorphic.
[Nonexperts can take this as a definition of a holomorphic map ¢ : C/A — C/A’]

Proposition 10.4. Let A and A’ be lattices in C. A complex number o such that aA C N
defines a holomorphic map
[z] — [az] : C/A — C/N

sending 0 to 0, and every holomorphic map C/A — C/N' is of this form (for a unique o).

Proof. 1t is obvious that « defines a holomorphic map C/A — C/A’. Conversely, let ¢ :
C/A — C/A’ be a holomorphic map such that ¢(0) = 0, and let ¢ be its unique lifting to a
holomorphic map C — C sending 0 to 0. For any w € A, z — ¢(z + w) — ¢(2) takes values
in A’ ¢ C. But a continuous map from a connected set to a set with the discrete topology
is constant, and so the derivative of this function is zero:

Bz +w) = F2).
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Therefore ¢'(z) is doubly periodic. As it is holomorphic, it must be constant, say ¢'(z) = «
for all z. On integrating, we find that ¢(z) = az+ 3, and g = ¢(0) =0. O

Corollary 10.5. The Riemann surfaces C/A and C/A" are isomorphic if and only if N =
al for some a € C*.

Proof. This is obvious from the proposition. [

The proposition shows that'!

Hom(C/A,C/A) = {a e C|aA C A},
and the corollary shows that there is a one-to-one correspondence
{C/A} =~ &5 £/Cx.

The Weierstrass o function. Let A be a lattice in C. We don’t yet know any nonconstant
doubly periodic functions'? for A. When G is a finite group acting on a set S, then it is easy
to construct functions invariant under the action of GG : take f to be any function f : .S — C,
and define
F(s)=>_ f(gs):
geG

then F'(g's) = > e f(9'9s) = F'(s), and so F' is invariant (and all invariant functions are of
this form, obviously). When G is not finite, one has to verify that the series converges—in
fact, in order to be able to change the order of summation, one needs absolute conver-
gence. Moreover, when S is a Riemann surface and f is holomorphic, to ensure that F' is
holomorphic, one needs that the series converges absolutely uniformly on compact sets.

Now let ¢(z) be a holomorphic function C and write

O(z) =) plz+w).
w€EA
Assume that as |z| — 00, ¢(z) — 0 so fast that the series for ®(z) is absolutely convergent
for all z for which none of the terms in the series has a pole. Then ®(z) is doubly periodic
with respect to A; for replacing z by z + wp for some wy € A merely rearranges the terms
in the sum. This is the most obvious way to construct doubly periodic functions; similar
methods can be used to construct functions on other quotients of domains.

To prove the absolute uniform convergence on compact subsets of such series, the following
test is useful.

Lemma 10.6. Let D be a bounded open subset of the complex plane and let ¢ > 1 be constant.
Suppose that V(z,w), w € A, is a function that is meromorphic in z for each w and which
satisfies the condition: there are constants A and B such that

(2, mw; + nws)| < B(m® +n?)~¢

whenever m?* +n? > A. Then the series Y ca V(2,w), with finitely many terms which have
poles in D deleted, is uniformly absolutely convergent in D.

1T use X ~ Y to mean that X and Y are isomorphic, and X = Y to mean that they are isomorphic by
a canonical (or given) isomorphism.
12For a lattice A in C*, n > 1, there frequently won’t be any nonconstant holomorphic functions on C"/A.
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Proof. That only finitely many terms can have poles in D follows from the condition. To
prove the lemma it suffices to show that, given any € > 0, there is an integer N such that
S < ¢ for every finite sum S = Y |¢(z, mw; + nwy)| in which all the terms are distinct and
each one of them has m? 4+ n? > 2N2. Now S consists of eight subsums, a typical member
of which consists of the terms for which m > n > 0. (There is some overlap between these
sums, but that is harmless.) In this subsum we have m > N and v < Bm ™%, assuming as
we may that 2N? > A: and there are at most m + 1 possible values of n for a given m. Thus

S< > Bm*(m+1)< B N**

m=N

for a suitable constant Bj, and this proves the lemma. [

We know from Corollary 10.3 that the simplest possible nonconstant doubly periodic
function is one with a double pole at each point of A and no other poles. Suppose f(z)
is such a function. Then f(z) — f(—z) is a doubly periodic function with no poles except
perhaps simple ones at the points of A. Hence it must be constant, and since it is an odd
function it must vanish. Thus f(z) is even, and we can make it unique by imposing the
normalization condition f(z) = 272 + O(2?) near z = 0—it turns out to be convenient to
force the constant term in this expansion to vanish rather than to assign the zeros of f(z).
There is such an f(z)—indeed it is the Weierstrass function p(z)—but we can’t define it
by the method at the start of this subsection because if ¢(z) = 272, the series ®(z) is not
absolutely convergent. However, if ¢(z) = —2273, we can apply this method, and it gives
¢, the derivative of the Weierstrass gp-function. Define

/ /
O (2 A) = ' (zrw1,we) = =)
WEE:A (z —w)3
and
1 1 1
=e x (1)
22 we%;J#O (z —w)? w?
They are both meromorphic doubly periodic functions on C, and @' = %’.

Eisenstein series. Let A be a lattice in C, and consider the sum
1

weA, w#0 w"
The map w +— —w : A — A has order 2, and its only fixed point is 0. Therefore A \ {0} is a
disjoint union of its orbits, and it follows that the sum is zero if n is odd. We write

1
weA, w#0 w
and we let Gy(7) = Gx(ZT + Z), T € H.

Proposition 10.7. For all integers k > 2, G(T) converges to a holomorphic function on
H.

Proof. Apply Lemma 10.6. [

The functions Gi(A) and Gi(7) and are called Eisenstein series. Note that Gi(cA) =
¢ *G(A) for c € C*.
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The field of doubly periodic functions. Let A be a lattice in C. The doubly periodic
functions for A form a field, which the next two propositions determine.

Proposition 10.8. There is the following relation between @ and ¢':
0'(2)* = 4p(2)° — g29(2) — g3
where ga = 60G2(A) and g3 = 140G3(A).

Proof. We compute the Laurent expansion of p(z) near 0. Recall (from Math 115) that for
t] <1,

1 2
—— =1ttt

1—1
On differentiating this, we find that
1
= nt" ' =>"(n+ 1)t".
(1 - t) n>1 n>0
Hence, for |z| < |w|,
1 1 1 1 2"
- = — 1] = 1 .
(z—w)? w2 W (1_5)2 nzz:l(n-l- )w”+2

On putting this into the definition of p(z) and changing the order of summation, we find
that for |z] < |w|
ZTL

p(z) = %"‘ Z Z(n—l— 1)wn+2

n>1 w#0

1

k>1

1
= ?+3G2z2—|—5G3z4+~-.

This last expression contains enough terms to show that the Laurent expansion of
0'(2)? — 4p(2)® + 60Gs2(A)p(2) + 140G3(A)

has no nonzero term in z" with n < 0. Therefore this function is holomorphic at 0 and
takes the value 0 there. Since it is doubly periodic and has no other poles in a suitable
fundamental domain containing 0, we see that it is constant, and in fact zero. O

Proposition 10.9. The doubly periodic functions for A are precisely the rational functions
of p(z) and ¢'(2), i.e., if f is doubly periodic, then there exist F(X,Y),G(X,Y) € C[X,Y],
G #0, such that f(z) = F(p(2),¢'(2))/G(p(2), ¢'(2)).

Proof. Omitted. [

Proposition 10.8 shows that (X,Y") — (p(2), ¢'(2)) defines a homomorphism
Cla,y] =4 CIX,Y]/(Y* —4X" + g2 X + g3) — Clp, ¢,

where Clp, ¢] is the C-algebra of meromorphic functions on C generated by ¢ and ¢'. 1
claim!® that the map is an isomorphism. For this, we have to show that a polynomial

3Those who know some commutative algebra will be able to give a simpler proof.
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g(X,Y) € C[X,Y] for which g(p,¢’) = 0 is divisible by f(X,Y) =4 Y? — X3 4+ g2 X + gs.
The theory of resultants (see the end of this section) shows that for any polynomial g(X,Y),
there exist polynomials a(X,Y") and b(X,Y’) such that

a(X,Y)F(X,Y) 4+ b(X,Y)g(X,Y) = R(X) € C[X]

with degy (b(X,Y)) < degy (f(X,Y)). Hence if g(p, ¢') = 0, then R(p) = 0, but it is easy
to see that p is transcendental over C (for example, it has infinitely many poles). Therefore
R =0, and so f(X,Y) divides b(X,Y)g(X,Y). Any polynomial with the form of f(X,Y)
is irreducible, and so f(X,Y’) divides either b(X,Y) or g(X,Y"). Because of the degrees, it
can’t divide b, and so it must divide g.

The isomorphism Clz, y] — C|gp, ¢'] induces an isomorphism of the fields of fractions

C(z,y) — Clp, ¢').
Proposition 10.9 shows that C(gp, ¢') is the field of all double periodic functions for A.

The elliptic curve E(A). Let A be a lattice in C.
Lemma 10.10. The polynomial f(X) = 4X3 — go(A)X — g3(A) has distinct roots.

Proof. The function ¢/(z) is odd and doubly periodic, and so

Ny Yy
Hence ©/(z) has a zero at w;/2, and so Propositiion 10.8 shows that p(w;/2) is a root of
f(X). The same argument shows that p(ws/2) and p((w1 +w2)/2) are also roots. It remains

to prove that these three numbers are distinct.

The function p(z) — p(w1/2) has a zero at w; /2, which must be a double zero because its
derivative is also 0 there. Since p(z) — p(w1/2) has only one (double) pole in a fundamental
domain D containing 0, Proposition 10.2 shows that w; /2 is the only zero of p(z) — p(w1/2)
in D, i.e., that p(z) takes the value p(w;/2) only at z = wy/2 within D. In particular,
©(w1/2) is not equal to p(we/2) or p((wr +w2)/2). O

From the lemma, we see that
E(A):Y?Z =4X3 — go(M) X Z* — g3(N) 2

is an elliptic curve. Recall that ¢*ga(cA) = g2(A) and cg3(cA) = g3(A) for any ¢ € C*, and
so cA defines essentially the same elliptic curve as A.

Proposition 10.11. The map

2 (p(2)  9'(2) - 1)
0— (0:1:0) $C/A— E(A)

s an isomorphism of Riemann surfaces.

Proof. 1t is certainly a well-defined map. The function p(z) is 2 : 1 in a period parallelogram
containing 0, except at the points %, 2, “””LTWQ, where it is one-to-one. Since the function
(x:y:1)— x: E(A)\{O} — C has the same property, and both maps have image the
whole of C, this shows that the map in z — (p(2) : ¢'(2) : 1) is one-to-one. Finally, one can

verify that it induces isomorphisms on the tangent spaces. [
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The addition formula. Consider p(z+2'). It is a doubly periodic function of z, and therefore
it is a rational function of p and g’. The next result exhibits the rational function.

Proposition 10.12. The following formula holds:

N_L[PE=0@O
ol ) =1 { 2= 2E o0 o)

Proof. Let f(z) denote the difference between the left and the right sides. Its only possible
poles (in D) are at 0, or +2', and by examining the Laurent expansion of f(z) near these
points one sees that it has no pole at 0 or z, and at worst a simple pole at z’. Since it is
doubly periodic, it must be constant, and since f(0) = 0, it must be identically zero. O

Corollary 10.13. The map z — (p(z) : ¢'(2) : 1) : C/A — E(A) is a homomorphism of
groups.

Proof. The above formula agrees with the formula for the x-coordinate of the sum of two
points on F(A). [Let Y = mX + ¢ be the line through the points P = (x,y) and P' = (2/,¢')
on the curve Y? = 4X3 — go X — g3. Then the x, 2/, and z(P + P’) are the roots of the
polynomial

(mX +¢)* —4X° + g2 X + g3,

and so

x(P+P’)+x+x’:m2:<y y/) ]
T—x

U
Classification of elliptic curves over C.

Theorem 10.14. Ewvery elliptic curve E over C is of the form E(A) for some lattice A.

Proof. This follows from the next two lemmas. []

Lemma 10.15. Two elliptic curve
E:Y?Z=X3+aXZ2+0b2% abek
and
E:YZ=X}+dXZ*+VZ d,bek
over an algebraically closed field k of characteristic # 2,3 are isomorphic if and only if

J(E) = j(E).

Proof. According to Theorem 5.3, F and E’ are isomorphic if and only if there exists a ¢ € k*

such that @’ = ¢*a and b = %b. Since j(E) = }lgi(g?;), it is clear that £ ~ F' = j(E) =

J(E"). Conversely, suppose j(F) = j(E'). Note first that

a=0 <<= j(E)=0 < j(E)=0 = d =0.
Hence we may suppose that a and @’ are both nonzero. After replacing (a, b) with (ca, c®0)

where ¢ = /% we will have that a = a’. Now j(E) = j(E') => b= +b'. A minus sign can
be removed by a change of variables with ¢ = +/—1. O



ELLIPTIC CURVES 49

For any lattice A in C, the curve
BE(A) : Y2Z = 4X? — go(A)X 22 — g3 2
has discriminant A(A) = g2(A)? — 27¢3(A)? and j-invariant

. 1728ga (A)?
i) = G2(A) — 27g5(A)2

For c € C*, ga(cA) = ¢ ga(A) and g3(cA) = ¢ Og3(A), and so the isomorphism class of E(A)
depends only on A up to scaling. Define

J(r)=3(Zr + 7).

Then, for any ( (CL 2 ) € SLy(Z),

S = o).

Hence j defines a function on the quotient space SLo(Z)\H.
Lemma 10.16. The function j defines an isomorphism SLo(Z)\H — C.

Proof. We omit the proof (and hope to return to it later). O

Summary. For any subfield k of C, we have the diagram:

1:1 1:1

{Elliptic curves/C}/~ <5 £/C* L SLy(Z)\H L C
i | i
{Elliptic curves/k}/~ = k
The bottom map is surjective, because for any j # 0, 1728, the curve

27 ' 27 '
vig=xt-2L_J xpr o2l J
4 57— 1728 4 57— 1728
has j-invariant j. The left hand vertical map and the bottom map are injective if k is
algebraically closed.

Aside 10.17. The above picture can be made a little more precise. Consider the isomor-
phism
2 (p(2):9'(2): 1) : C/A — E(C).
Since r = p(z) and y = ¢'(2),
/

ICI

y ()
Thus the differential dz on C maps to the differential dj” on E(C). Conversely, from a
holomorphic differential w on E(C) we can obtain an realization of E as a quotient C/A as
follows. For P € E(C), consider p(P) = [} w € C. This is a not well defined because it
depends on the choice of a path from O to P. However, if we choose a Z-basis (v1,72) for
H,(E(C),Z), and set wy = [, w, wo = [, w, then A = Zw, + Zw, is a lattice in C, and
P +— ¢(P) is an isomorphism E(C) — C/A. In this way, we obtain a natural one-to-one
correspondence between £ and the set of isomorphism classes of pairs (E,w) consisting of
an elliptic curve E over C and a holmorphic differential w on F.
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Torsion points. Frequently, I write X,, = {x € X | nz = 0}. For an elliptic curve E over
C, from E(C) = C/A we see that

1 b
lﬂ@nzgm%:{%u+gm]mbeZHﬂu+Zm.
This is a free Z/nZ-module of rank 2. Because of this description over C, torsion points on
elliptic curves are often called division points.

Theorem 10.18. For any elliptic curve E over an algebraically closed field k of character-
istic zero, E(k), is a free Z/nZ-module of rank 2.

Proof. There will exist an algebraically closed subfield kg of finite transcendance degree over
Q such that E arises from a curve Ey over ky. Now kg can be embedded into C, and so we
can apply the next lemma (twice). O

Lemma 10.19. Let E be an elliptic curve over an algebraically closed field k, and let  be an
algebraically closed field containing k. Then the map E(k) — E(QQ) induces an isomorphism
on the torsion subgroups.

Proof. Let E be the curve Y2Z = X3 +aX Z%?+bZ3. There are inductively defined universal
polynomials ¥,,,(X,Y") € Z[X, Y] (depending on a, b), such that for any point P = (z :y : 1)
of B, mP = (X}, — Y12 ¥ms1 © 5%om : ). See for example [C] p133. Therefore
P € E(k),, if and only if ¢, (z,y) = 0. Thus this lemma follows from the next. O

Lemma 10.20. Let k C Q be algebraically closed fields. If F(X,Y),G(X,Y) € k[X,Y] have
no common factor, then any common solution to the equations
FX,Y) = 0
GX,)Y) = 0
with coordinates in §2 in fact has coordinates in k.

Proof. From the theory of resultants, we know that there exist polynomials a(X,Y), b(X,Y),
and R(X) with coefficients in & such that

a(X,Y)F(X,Y)+b(X,Y)G(X,Y) = R(X)

and R(zo) = 0 if and only if F(zo,Y) and G(x,Y) have a common zero. In other words,
the roots of R are the z-coordinates of the common zeros of F'(X,Y) and G(X,Y). Since
R(X) is a polynomial in one variable, its roots all lie in k. Moreover, for a given xy € k, all
the common roots of F'(xg,Y) and G(x¢,Y) liein k. O

Remark 10.21. (a) Theorem 10.18 holds for elliptic curves over algebraically closed fields
of characteristic p # 0 if (and only if) n is not divisible by p.

(b) In contrast to E(Q), the torsion subgroup of E(Q) is quite small. It was conjectured
by Beppo Levi at the International Congress in 1906 and proved by Mazur in 1975 that the
E(Q)tors is isomorphic to one of the following groups:

Z/mZ for m=1,2,...,10,12;
7)27 x Z/mZ for m =2,4,6,8.
The 15 curves in Exercise 8.11 exhibit all possible torsion subgroups (in order). The fact

that F(Q)iers is so much smaller than E(Q);,s shows that the image of the Galois group
in the automorphism group of F(Q"); is large.
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Endomorphisms. A field K of finite degree over Q is called an algebraic number field.
Each a € K satisfies an equation,

Q"+ a4 a, =0, a; €Q.

If it satisfies such an equation with the a; € Z, then « is said to be an (algebraic) integer of
K. The algebraic integers form a subring O of K, which is a free Z-module of rank [K : Q].
(Experts in commutative algebra will recognize O as being the integral closure of Z in K.)
For example, if K = Q[v/d] with d € Z and square-free, then

On — Z1+ZVd d#1 mod 4
B Z1 4z d=1 mod 4.

Proposition 10.22. Let A = Zwy + Zws be a lattice in C with T = wy/wy € H. The ring
End(C/A) = Z unless [Q[r] : Q] = 2, in which case R = End(C/A) is a subring of Q[] of
rank 2 as a Z-module.

Proof. Let A = Zwy + Zwy with 7 =4 wi/ws € H, and suppose that there exists an a € C,
a ¢ Z, such that aA C A. Then
aw; = awy + bws

awy = cwy + dws,
with a,b, c,d € Z. On dividing through by wy we obtain the equations

ar = at+b
a = c1+d.

Asa ¢ Z,c#0.
On eliminating o from between the two equations, we find that

e’ 4+ (d—a)T+b=0.

Therefore Q[7] is of degree 2 over Q.
On eliminating 7 from between the two equations, we find that

o — (a+d)a+be = 0.
Therefore « is integral over Z, and hence is contained in the ring of integers of Q[7]. O

Example 10.23. (a) Consider F : Y?Z = X3 +aXZ? Then (z:y:2) — (—z iy : 2) is
an endomorphism of E of order 4, and so End(F) = Z[i]. Note that E has j-invariant 1728.

(b) Consider E: Y2Z = X3+ bZ?, and let p = e*™/3. Then (z:y: 2) — (pr:y:2z)is an
endomorphism of E of order 3 of E. In this case, £ has j-invariant is 0.

Aside 10.24. (For the experts.) Recall that a complex number « is said to be algebraic
if it is algebraic over Q, and is otherwise said to be transcendental. There is a general
philosophy that a transcendental meromorphic function f should take transcendental values
at the algebraic points in C, except at some “special” points, where it has interesting “special
values”. We illustrate this for two functions.
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(a) Define e(z) = €?™=. If z is algebraic but not rational, then e(z) is transcendental. [More
generally, if & and 3 are algebraic, o # 0,1, and (3 is irrational, then o is transcendental —
Hilbert stated this as the seventh of his famous problems, and Gelfond and Schneider proved!*
it in 1934. It implies our statement because e(z) = (e™)?? ]

On the other hand, if z € Q, then e(z) is algebraic—in fact, it is a root of 1, and so Q[e(z)]
is a finite extension of Q with abelian Galois group (see Math 594). It is a famous theorem
(the Kronecker-Weber theorem) that every such extension of Q is contained in Q[e(L1)] for
some m (see Math 776).

Let 7 € H be algebraic. If 7 generates a quadratic extension of Q, then j(7) is algebraic,
and otherwise j(7) is transcendental (the second statement was proved by Siegel in 1949).

In fact, when [Q[7] : Q] = 2, one can say much more. Assume that Z[7] is the ring of
integers in K =4 Q[7]. Then j(7) is an algebraic integer, and

QU= Q = [K[(7)]: K] = hx
where hg is the class number of K. Moreover, K[j(7)] is the Hilbert class field of K (the

largest unramified abelian extension of K).

Appendix: Resultants. Let f(X) = s0X™ + s1X™ ' + -+ + s, and g(X) = £, X" +
t; X" ! + ... + ¢, be polynomials with coefficients in a field k. The resultant Res(f,g) of f
and ¢ is defined to be the determinant

So S1 ... Sm

So ... Sm
to 4 tn

tO tn

There are n rows of s’s and m rows of ¢’s, so that the matrix is (m +n) x (m +n); all blank
spaces are to be filled with zeros. The resultant is a polynomial in the coefficients of f and

g.
Proposition 10.25. The resultant Res(f, g) = 0 if and only if
(i) both so and to are zero; or

(ii) the two polyomials have a common root in k®.

Proof. If (i) holds, then the first column of the determinant is zero, and so certainly
Res(f, g) = 0. Suppose that « is a common root of f and g, so that there exist polynomials
f1 and gy in k*[X] of degrees m — 1 and n — 1 respectively such that

f(X) =X -a)fi(X),  g(X) = (X —a)g(X).

From these equations we find that
f(X)g1(X) — g(X) f1(X) = 0. (%)

14 At about the time he stated his problems (1900), Hilbert gave a lecture in which he said that he expected
the Riemann hypothesis to be proved within his lifetime, that Fermat’s last theorem would be proved within
the lifetimes of the youngest members of his audience, but that no one in the audience would see his seventh
problem proved. He was close with Fermat’s last problem.
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On equating the coefficients of X™+~1 X 1 in (*) to zero, we find that the coefficients
of fi and ¢; are the solutions of a system of m + n linear equations in m 4+ n unknowns. The
matrix of coefficients of the system is the transpose of the matrix

So S1 ... Sm

So ... Sm
to t1 ty

to ty

The existence of the solution shows that this matrix has determinant zero, which implies
that Res(f,g) = 0.

Conversely, suppose that Res(f, g) = 0 but neither sy nor ¢, is zero. Because the above
matrix has determinant zero, we can solve the linear equations to find polynomials f; and
g1 satisfying (*). If « is a root of f, then it must also be a root of f; or g. If the former,
cancel X — « from the left hand side of (*) and continue. As deg f1 < deg f, we eventually
find a root of f that is not a root of fi, and so must be a root of g. [

Let c1, ..., ¢man be the columns of the above matrix. Then

XM Hf(X)
Xm_2f

f(X) = X" e+ 1eman,

and so
Res(f,g) =qr det(co, - .. , Cmin) = det(co, - -+, Cmin_1,C)
where c is the vector on the left of the above equation. On expanding out this last determi-
nant, we find that
Res(f, g) = a(X)f(X) + b(X)g(X)
where a(X) and b(X) are polynomials of degrees < n — 1 and < m — 1 respectively.

Remark 10.26. If the f(X) and g(X) have coefficients in an integral domain R, for exam-
ple, Z or k[Y], then Res(f, g) € R, and the polynomials a(X) and b(X) have coefficients in
R.

For a monic polynomial f(X) = X™ 4+ --- 4+ s,,, the resultant of f(X) and f/(X) is called
the discriminant of f (apart possibly for a minus sign).

The resultant of homogeneous polynomials F'(X,Y) = $oX™ + s:X™ 'Y + -+ + 5, Y™
and G(X,Y) = toX" + XY + -+ 4+, Y™ is defined as for inhomogeneous polynomials.

Proposition 10.27. The resultant Res(F,G) = 0 if and only if F' and G have a nontrivial
zero in PH(k).

Proof. The nontrivial zeros of F(X,Y) in P*(k¥) are of the form:
(i) (a:1) with a a root of F(X,1), or
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(ii) (1:0) in the case that sy = 0.

Since a similar statement is true for G(X,Y), this proposition is a restatement of the previous
proposition. []

Clearly, the statement is more pleasant in the homogeneous case.

Maple can find the resultant of two polynomials in one variable: for example, entering
“resultant((x + a)®, (z + b)®, x)” gives the answer (—a + b)?°. Explanation: the polynomials
have a common root if and only if a = b, and this can happen in 25 ways.

Aside 10.28. There is a geometric interpretation of the last proposition. Take k to be
algebraically closed, and regard the coefficients of F' and G as indeterminants. Let V' be the
subset of A"t 2 x P! where both F(sq,...,8m,; X,Y) and G(ty, ... ,t,; X,Y) vanish. The
proposition says that the projection of V on A™™*2 is the set where Res(F, G), regarded
as a polynomial in the s; and t;, vanishes. In other words, the proposition tells us that
the projection of the particular Zariski-closed set V' is the Zariski-closed set defined by the
resultant of F' and G.

Elimination theory does this in general. Given polynomials P;(T1,... ,Tm; Xo,. .. , Xn),
homogeneous in the X;, it provides an algorithm for finding polynomials R;(71, ... ,T;,) such
that the P;(ai,...,am; Xo,...,X,) have a common zero if and only if R;(as,...,a,) =0
for all . See, for example, Cox et al, Ideals, Varieties, and Algorithms, p388.

Exercise 10.29. (a) Prove that, for all z, 29,

(1) ' (21) 1
(22) ©'(22) 1|=0.
o(z1+22) —¢'(21+22) 1

(b) Compute sufficiently many initial terms for the Laurent expansions of ¢'(z), ¢'(2)?,
etc., to verify the equation in Proposition 10.8.

11. THE MORDELL-WEIL THEOREM: STATEMENT AND STRATEGY

We state the Mordell-Weil (or finite basis) theorem, and outline the strategy for proving
it.

Theorem 11.1 (Mordell-Weil). For any elliptic curve E over a number field K, E(K) is
finitely generated.

The theorem was proved by Mordell (1922) when K = Q, and for all number fields by
Weil in his thesis (1928). Weil in fact proved a much more general result, namely, he showed
that for any nonsingular projective curve C' over a number field K, the group Pic’(C) is
finitely generated. As we noted in (4.7), for an elliptic curve C(K) = Pic’(C). The theorem
was proved for all abelian varieties over number fields by Taniyama in 1954.

The first step in proving the theorem is to prove a weaker result:

Theorem 11.2 (Weak Mordell-Weil Theorem). For any elliptic curve E over a num-
ber field K and any integer n, E(K)/nE(K) is finite.
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Clearly, for an abelian group M,
M finitely generated =— M /nM finite for all n > 1,

but the converse statement is false. For example, Q regarded as a group under addition has
the property that Q = nQ and so Q/nQ = 0, but the elements of any finitely generated
subgroup of Q will have bounded denominators, and Q is not finitely generated.

We assume now that E(Q)/2E(Q) is finite, and sketch how one deduces that E(Q) is
finitely generated. Recall that the height of a point P € P?(Q) is H(P) = max(|al,|b],|c|)
where P = (a:b: c) and a, b, c have been chosen to be integers with no common factor. For
points P and @ on an elliptic curve E, not necessarily distinct, we shall relate H(P + @) to
H(P) and H(Q).

Let Pp,...,P; € E(Q) be a set of representatives for the elements of F(Q)/2E(Q). Then
any @ € F(Q) can be written

Q=P +2¢

for some ¢ and for some @' € F(Q). We shall show that, H(Q') < H(Q), at least provided
H(Q) is greater than some fixed constant Hy. If H(Q') > Hy, we can repeat the argument
for Q', etc., to obtain

Q=P +2Q =P, +2(P +2Q") = --- .

Let Q1,...,Q+ be the set of points in F(Q) with height < Hy. Then the above equation
exhibits @) as a linear combination of P;’s plus a @);, and so the P,’s and );’s generate E(Q).

Remark 11.3. The argument in the last paragraph is called “proof by descent”. Fermat
is generally credited with originating this method in his proof of Fermat’s last theorem for
the exponent 4 (which was short enough to fit in the margin). However, in some sense it
goes back to the Greeks. Consider the proof that Y2 = 2X? has no solution in integers.
Define the height of a pair (m,n) of integers to be max(|m/|, |n|). One proves that if (m,n)
is one solution to the equation, then there exists another of smaller height, which leads to a
contradiction.

12. GROUP COHOMOLOGY

In proving the weak Mordell-Weil theorem, and also later in the study of the Tate-
Shafarevich group, we shall use a little of the theory of the cohomology of groups.

Cohomology of finite groups. Let G be a finite group. A G-module is an abelian group
M together with an action of G, i.e., a map G x M — M such that

(a) a(m+m') =om+om for all o € G, m,m' € M;
(b) (o1)(m) = o(rm) for all o,7 € G, m € M,
(¢) Im =m for all m € M.

Thus, to give an action of G on M is the same as to give a homomorphism G — Aut(M)
(automorphisms of M as an abelian group).

Example 12.1. Let L be a finite Galois extension of a field K with Galois group G, and
let E be an elliptic curve over K. Then L, L*, and E(L) are all G-modules.
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Let M be a G-module. We define
HY(G,M) = M®={meM|om=m,alocG}
For the G-modules in (12.1),
HY(G,L) =K, H°G,L*)=K*, and H(G,E(L)) = E(K).
A crossed homomorphism is a map f : G — M such that

flor) = f(o) +af(1).

Note that the condition implies that f(1) = f(1-1) = f(1)+ f(1), and so f(1) = 0. For any
m € M, we obtain a crossed homomorphism by putting

f(o) =om—m, all o € G.

Such a crossed homomorphism is said to be principal. The sum of two crossed homomor-
phisms is again a crossed homomorphism, and the sum of two principal crossed homomor-
phisms is again principal. Thus we can define

HY(G, M) = {crossed homomorphisms}
"7 {principal crossed homomorphisms}’

There are also cohomology groups H"(G, M) for n > 1, but we won’t need them.

Example 12.2. If G acts trivially on M, i.e., om = m for all 0 € G and m € M, then a
crossed homomorphism is simply a homomorphism, and every principal crossed homomor-
phism is zero. Hence H'(G, M) = Hom(G, M).

Proposition 12.3. Let L be a finite Galois extension of K with group G; then H' (G, L*) =

0, i.e., every crossed homomorphism G — L* is principal.

Proof. Let f be a crossed homomorphism G — L*. In multiplicative notation, this means,

flor) = f(o)-o(f(1)), o,7€QG,

and we have to find a v € L* such that f(o) = o/ for all 0 € G. Because the f(7) are
nonzero, Dedekind’s theorem on the independence of characters (see Math 594) implies that

Zf(T)T:L—>L

is not the zero map, i.e., that there exists an a € L such that

0= Z f(r)Ta # 0.

TG
But then, for o € G,

of = o(f(r))-or(a) =3 flo)™ - flor)-or(a) = f(o)™" >_ flor)or(a) = f(o)~'B,

T€G T€G TG
which shows that f(o) = 8/08=0c(87)/37. O
Proposition 12.4. For any exact sequence of G-modules
0—-M—-N-—P—0,

there 1s a canonical exact sequence

0 — H(G, M) — H°(G,N) — H°(G,P) > H'(G, M) — H'(G,N) — H'(G, P)
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Proof. The map ¢ is defined as follows. Let p € P There exists an n € N mapping
to p, and on —n € M for all 0 € G. The map 0 — on—n : G — M is a crossed
homomorphism, whose class we define to be d(p). Another n' mapping to p gives rise to a
crossed homomorphism differing from the first by a principal crossed homomorphism, and
so 0(p) is well-defined. The rest of the proof is routine. [

Let H be a subgroup of G. The restriction map f — f|H defines a homomorphism
Res: HY(G, M) — HY(H, M).

Proposition 12.5. If G has order m, then m kills H' (G, M).

Proof. In general, if H is a subgroup of G of index m, then there exists a homomorphism
Cor : H'(H, M) — H'(G, M) such that the composite Res o Cor is multiplication by m. The
proposition is proved by taking H = 1. O

Remark 12.6. Let H be a normal subgroup of a group G, and let M be a G-module. Then
M* is a G/H-module, and a crossed homomorphism f : G/H — M defines a crossed
homomorphism G — M by composition:

G - M
! U
G/H I mE,
In this way we obtain an “inflation” homomorphism
Inf: HY(G/H, M") — HY(G, M),
and one verifies easily that the sequence
0— HYG/H,M"T) 25 gY@, M) 2 g (H, M)

is exact.

Cohomology of infinite Galois groups. Let k be a perfect field, and let £2! be an algebraic
closure of k. The automorphisms of k¥ fixing the elements of k£ form a group G, which
when endowed with the topology for which the open subgroups are those fixing some finite
extension of k, is called the Galois group of k* over k. The group G is compact, and so any
open subgroup of G is of finite index. Infinite Galois theory says that the intermediate fields
K, k C K C k*, are in natural one-to-one correspondence with the closed subgroups of
G. Under the correspondence intermediate fields of finite degree over k correspond to open
subgroups of G.

A G-module M is said to be discrete if the map G x M — M is continuous when M
is given the discrete topology and G is given its natural topology. This is equivalent to
requiring that

M =ugM*?,  H openin G,
i.e., to requiring that every element of M is fixed by the subgroup of G fixing some finite
extension of k. For example, M = k¥, M = k** and M = E(k*) are all discrete G-modules
because

B =UK, k™ =UK* and E(k") =UFE(K)

where, in each case, the union runs over the finite extensions K of k contained in k.
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For an infinite Galois group G, we define H*(G, M) to be the group of continuous crossed
homomorphisms f : G — M modulo the subgroup of principal crossed homomorphisms.

With this definition
HY(G, M) =lim yH'(G/H, M")
where H runs through the open normal subgroups of G. Explicitly, this means that:
(a) HY(G, M) is the union of the images of the inflation maps Inf : H'(G/H, M*) —
H'(G, M), H an open normal subgroup of G;
(b) an element v € H'(G/H, M") maps to zero in H'(G, M) if and only if it maps to
zero HY(G/H', M™") for some open normal subgroup H’ of G' contained in H.
In particular, the group H*(G, M) is torsion.
Example 12.7. (a) Proposition 12.3 shows that
HY (G, k™) = lim y H(Gal(K/k), K*) = 0.
(b) For a field L, let u,(L) = {¢ € L™ | (" = 1}. From the exact sequence
1 — ,u/n(kal> N kalX i} kalX -1
we obtain an exact sequence of cohomology groups
1 — pn(k) = B 5 B — HY(G, p (k™) — 1,

and hence a canonical isomorphism H'(G, p, (k™)) = k*/k*". Note that for k = Q,
Q*/Q*™ is infinite if n > 1. For example, the numbers

(_1)6(00) H PP
p prime
where £(p) = 0 or 1 and all but finitely many are zero, form a set of representatives for the
elements of Q*/Q*?2, which is therefore an infinite-dimensional vector space over Fs.

(c) If G acts trivially on M, then H'(G, M) is the set of continuous homomorphisms
G — M. This set can be identified with the set of pairs (K, «) consisting of a finite Galois
extension K of k contained in k% and an injective homomorphism « : Gal(K/k) — M.

For an elliptic curve E over k, we abbreviate H'(Gal(k¥ /k), E(k*)) to H'(k, E).

Now consider an elliptic curve E over Q. Let Q* be the algebraic closure of Q in C, and
choose an algebraic closure le for @,. The embedding Q — @, extends to an embedding

Q- Q3

Qal N Qal
T T
Q <= Q.

The action of Gal(Q3'/Q,) on Q* C Q' defines an inclusion

Gal(Q¥/Q,) — Gal(Q/Q).

Hence any crossed homomorphism

Gal(Q"/Q) — E(Q)

induces (by composition) a crossed homomorphism

Gal(Q/Q) — B(Q).
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In this way, we obtain a homomorphism
H'(Q,E) —» H'(Q,, E)

that (slightly surprisingly) is independent of the choice of the embedding Q¥ — Qi A
similar remark applies to the cohomology groups of u, and E,. Later we’ll give a more
natural interpretation of these “localization” homomorphisms.

13. THE SELMER AND TATE-SHAFAREVICH GROUPS

Lemma 13.1. For any elliptic curve E over an algebraically closed field k and any integer
n, the map n: E(k) — E(k) is surjective.

Proof. The simplest proof uses algebraic geometry. The map of varieties n : F — FE has
finite fibres (because F(k), is finite and it is a homomorphism) and has Zariski-closed image
(because E' is complete) of dimension one (because its fibres have dimension 0). Hence it is
surjective as a morphism of algebraic varieties.

Alternatively, let P = (z : y : 1) € E(k). To find a point Q = (2' : ¢ : 1) such that nQ = P
one has to solve a pair of polynomial equations in the variables X, Y. In characteristic zero,
these equations can’t be inconsistent, because n : E(C) — FE(C) is surjective, and so, by the
Hilbert Nullstellensatz, they have a solution in k. In characteristic p one has to work a little
harder. O

From the lemma we obtain an exact sequence
0 — E,(Q") — B(Q") =~ E(Q") — 0
and a cohomology sequence
0— E,(Q) — E(Q) = E(Q) — H(Q,Ex) — H(Q,E) = H'(Q, E),
from which we extract the sequence
0— E(Q)/nEQ) — H'(Q, En) — H'(Q, E), — 0.

Here, as usual, H'(Q, E),, is the group of elements in H'(Q, E),, killed by n. If H(Q, E,)
were finite, then we could deduce that E(Q)/nE(Q) is finite, but unfortunately, it isn’t.
Instead, we proceed as follows. When we consider E as an elliptic curve over Q, we obtain
a similar exact sequence, and there is a commutative diagram:

0 — E(Q)/lnE(Q) — Hl(Qi,En) — Hl(Qi,E)n — 0
0 — EQ)/nEQ,) — Hl(@paEn> - Hl(QpaE)n — 0.

We want replace H'(Q, E,,) by a subset that contains the image of F(Q)/nF(Q) but which
we’ll be able to prove finite. We do this as follows: if v € H'(Q, E,,) comes from an element
of E(Q), then certainly its image v, in H'(Q,, E,,) comes from an element of £(Q,). This
suggests defining!®

S"(E/Q)

{y € HY(Q, E,) | Vp, 7, comes from E(Q,)}
= Ker(H'(Q, E,) — [[ H'(Q,, E)).

15Tn the definitions of both the Selmer and Tate-Shafarevich groups, we should require that the elements
become zero also in H*(R, E). We ignore this for the present.
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The group S™(E/Q) is called the Selmer group. In the same spirit, we define' the Tate-
Shafarevich group to be

TS(E/Q) = Ker(H'(Q, E) — I_IH1 Qp, E)).

It is a torsion group. Later we shall give a geometric interpretation of T'S(F/Q) which shows
that it provides a measure of the failure of the Hasse principle for curves of genus 1. One can
similarly define Selmer and Tate-Shafarevich groups for elliptic curves over number fields.

The next lemma is as trivial to prove as it is useful.

Lemma 13.2. From any pair of maps of abelian groups (or modules etc.)
A Bl o
there 1s an exact sequence
0 — Ker(a) — Ker(f o a) = Ker(8) — Coker(a) — Coker(3 o a) — Coker(3) — 0.
When we apply the lemma to the maps
HY(Q, En) — HY(Q, E)n — [[H'(Qp, E)n,
p

we obtain the fundamental exact sequence

0 — BE(Q)/nE(Q) — S™(E/Q) — TS(E/Q)n — 0

We shall prove £(Q)/nE(Q) to be finite by showing that S (E/Q) is finite.

14. THE FINITENESS OF THE SELMER GROUP

Theorem 14.1. For any elliptic curve E over a number field L and any integer n, the
Selmer group S™(E/L) is finite (and, in fact, computable).

Lemma 14.2. Let E be an elliptic curve over Q, with good reduction, and let n be an integer
not divisible by p. A point P € E(Q,) is of the form nQ for some QQ € E(Q,) if and only if
P € E(F,) is of the form nQ for some Q € E(F,).

Proof. Clearly P = n(Q. = P = n(Q. For the converse, we make use of the filtration
defined in Section 7:

E(Qp) ) El(@p) D En(@p> ) En+1(@p) DR
BE(Q,)/E'(Q,) = E(F,), E™(Q,)/E"(Q,) =F
By hypothesis there exists a Qg € E(Q,) such that
nQo =P mod E'(Q,).

Consider P — nQo € E'(Q,). Because E'(Q,)/E?*(Q,) ~ F, and p doesn’t divide n, multi-
plication by n is an isomorphism on E*(Q,)/E?(Q,). Therefore there exists a Q1 € E'(Q,)
such that

P — TLQ() = an mod E2(Qp)

16The name, I believe, is due to Cassels, who certainly knows the alphabet. Recently, it has become
fashionable to reverse the order of the names. In the absence of an argument for doing this, I prefer to follow
Cassels. In the original, the initial Russian letter of Shafarevich was used for TS.
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Continuing in this fashion, we find a sequence Qo, @1, ... of points in E(Q,) such that

Qi € E'(Q,), P-n Z Qi € E™H(Qy).

The first condition implies that > @; converges to a point in F(Q,) (recall that E(Q,) is
compact), and the second condition implies that its limit ¢ has the property that P =
n@. O

We now need a result from algebraic number theory.

Lemma 14.3. For any finite extension k of Fy, there exists an extension K of Q, with the
following properties:

(a) [K:Qp] = [k:TFp;
(b) the integral closure R of Z, in K is a principal ideal domain with p as its only prime
element (up to associates), and R/pR = k.

Proof. Omitted. [

The field K in the lemma is unique (up to a unique isomorphism inducing the identity
map on the residue fields). It is called the unramified extension of Q, with residue field k.

Because R is a principal ideal domain with p as its only prime element and K is the field of
fractions of R, every element o in K can be written uniquely in the form up™ with u € R*.
Define ord,(«) = m. Then ord, is a homomorphism K* — Z extending ord, : Q* — Z.

Remark 14.4. Let K D R — k be as in the lemma. Then pR is the unique maximal ideal
of R, and Hensel’s lemma (Theorem 2.8) holds for R, and so all the roots of X9 — X in k
liftt to R. Therefore, K contains the splitting field of X? — X, and, in fact, is equal to it.

The theory in Section 7 holds, word for word, with Q, replaced by an unramified
extension'” K, except that now

E(K)/ENK) = E(k), E"(K)/E""(K) = .

Therefore, Lemma 14.2 is also valid with Q, replaced by K.

Consider an elliptic curve E over Q, and an n satisfying the hypotheses of Lemma 14.2.
Let P € E(Q,). According to Lemma 14.2, P = n(@) for some ¢ with coordinates in a field
K 5 Q,, which we may choose to be of finite degree over Q,, and which (the generalization
of) (14.2) allows us to take to be unramified over Q,. We have proved:

Lemma 14.5. Let E and n satisfy the hypotheses of Lemma 14.2, and let P € E(Q,). Then
there ezists a finite unramified extension K of Q, such that P € nE(K).

Proposition 14.6. Let E be an elliptic curve over Q, and let T' be the set of primes dividing

2nA. For any v € S™(Q) and any p ¢ T, there evists a finite unramified extension K of
Q, such that v maps to zero in H'(K, E,).

7In fact, it holds even for a ramified extension.
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Proof. From the definition of the Selmer group, we know that there exists a P € E(Q,)
mapping to vy, € H(Q,, E,). Since p does not divide 2A, E has good reduction at p, and so
there is an unramified extension K of Q, such that P € nE(K). Now the following diagram
shows that v maps to zero in H' (K, E,):

EQ = EQ - HY(QE)

! ! !
E(Qy) - EQ,) — o (Qp, En)
! ! !

B(K) & B(K) — HYK, E,).
0

Proof of the finiteness of the Selmer group in a special case. We prove that
S@(E/Q) is finite in the case that the points of order 2 on E have coordinates in Q.
This condition means that the equation for E has the form:

Y?Z = (X —aZ)(X = BZ)(X —7Z), a,f,7€Q.
It implies that
Ey(Q") = Ex(Q) = (Z/22)* = (2)?,
all with the trivial action of Gal(Q*/Q), and so
HY(Q, Br) ~ H'(Q, 12)* = (Q°/Q**)%.
Let v € S@(E/Q) ¢ HY(Q, E;). For any prime py not dividing 2A, there exists a finite
unramified extension K of QQ,, such that 7 maps to zero under the vertical arrows:
HI(Q,E2> ~ (QX/QXZ)Z
|

!
HY(K, E»)

Q

(KX/KXZ)Z'

Suppose
v o (F) @, ()T "), 0<ep),e(p) <1.

ordy, (=17 T]p*®) = e(po),

and so if (—1)°C) [T p*®) is a square in K, then £(py) = 0. Therefore the only p that can
occur in the factorizations are those dividing 2A. This allows only finitely many possibilities
for ~.

Remark 14.7. It is possible to prove that £(Q)/2E(Q) is finite in this case without men-
tioning cohomology groups. Consider an elliptic curve

Y?Z = (X —aZ)(X = B2)(X =72), a,B,v€L.
Define o : E(Q)/2E(Q) — Q/Q*? by

Now

(z/z — a)Q*? 2#0, w#az;
Yollr:y:2)) = (o —B)(a—7)Q* z2#0, r=oaz
Q* (z:y:2)=(0:1:0).

One can prove directly that ¢, is a homomorphism, that the kernel of (¢q,¢g) @ E(Q) —
(Q*/Q*?)? is 2E(Q), and that ¢, (P) and ¢s(P) are represented by + a product of primes
dividing 2A (see [Kn] pp85-91).
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Proof of the finiteness of the Selmer group in the general case. In the above proof
we made use of the following facts:

(a) @ contains a primitive square root of 1;
(b) E(Q): = E(@Q)2;

(c) for any finite set 7" of prime numbers, the kernel of
7 (ordy(r) mod 2) : Q*/Q** — P Z/2Z
p¢T
is finite.

For some finite extension L of QQ, L will contain a primitive nth root of 1 and E(L) will
contain all the points of order n on E(Q). The next lemma shows that, in order to prove
that S (E/Q) is finite, it suffices to prove that S(™(E/L) is finite.

Lemma 14.8. For any finite Galois extension L of Q and any n, the kernel of
SM(E/Q) — S™(E/L)
18 finite.

Proof. Since S™(E/Q) and S™(E/L) are subgroups of H'(Q, E,,) and H'(L, E,) respec-
tively, it suffices to prove that the kernel of

HY(Q,E,) — H'(L, E,)

is finite. But (cf. 12.6), this kernel is H'(Gal(L/Q), E,, (L)), which is finite because both
Gal(L/Q) and E,(L) are finite. O

It remains to consider (c¢). The proof of its analogue for L requires the three fundamental
theorems in any course on algebraic number theory. We review their statements.

Review of algebraic number theory. In the following, L is a finite extension of Q and R is
the ring of all algebraic integers in L (see p53).

Every element of R is a product of irreducible (i.e., “unfactorable”) elements, but this
factorization may not be unique. For example, in Z[v/—5] we have

6=2-3=(1++-5)(1—+-5)

and 2, 3, 1++/—5, 1 —+/—5 are irreducible with no two associates. The idea of Kummer and
Dedekind to remedy this problem was to enlarge the set of numbers with “ideal numbers”,
now called ideals, to recover unique factorization. For ideals a and b, define

ab = {Z a;b; ’ a; €a, b € b}
It is again is an ideal.

Theorem 14.9 (Dedekind). Every ideal in R can be written uniquely as a product of prime
1deals.

For example, in Z[v/=5],
(6) = (2,14+v=5)(2,1 —vV=5)(3,1 +v=5)(3,1 — V=5).
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For an element a € R and a prime ideal p in R, let ord,(a) be the exponent of p in the
unique factorization of the ideal (a), so that

(a> _ H pordp(a)'
p

For z = § € L, define ord,(x) = ordy(a) — ord,(b). The ideal class group C of R is defined
to be the cokernel of the homomorphism

L* — @pCR,p primeZ - C — 0
x +—  (ordy(z)).

It is 0 if and only if R is a principal ideal domain, and so C' can be regarded as giving a
measure of the failure of unique factorization of elements in R.

Theorem 14.10 (Finiteness of the class number). The ideal class group C' is finite.

We next need to understand the group U of units in R. For R = Z, U = {1}, but
already for R = Z[\/i], U is infinite because v/2 + 1 is a unit in Z[\/i] One can show that

ZIV2 = {+(1+V2)" |n €L} =~ Z/2Z & Z.

Theorem 14.11 (Dedekind unit theorem). The group U of units of R is finitely gener-
ated.

In fact, the full theorem gives a formula for the rank of U.

As in any commutative ring, a is a unit in R if and only if (a) = R. In our case, this is
equivalent to saying that ord,(a) = 0 for all prime ideals p, and so we have an exact sequence

0—-U—-L"—>&,Z—C—0

with U finitely generated and C finite.

The fundamental theorems of algebraic number theory show, more generally, that, when
T is a finite set of prime ideals in L, the groups Ur and Cr defined by the exactness of

IR a—(ordy (a))

0—Ur— ®pgrZ — Cr — 0

are, respectively, finitely generated and finite.

Completion of the proof of the finiteness of the Selmer group.
Lemma 14.12. Let N be the kernel of

a— (ordy(a) mod n) : Ker(L*/L*") — ®perZ/nZ).
Then there s an exact sequence

0— Ur/Up — N — (Cp),

Proof. Let & € N. Then nford,(«) for all p ¢ 7', and so we can map « to the class ¢ of

(%M) in Cp. Clearly nc = 0, and any element of Cr killed by n arises in this way. If
¢ = 0, then there exists a § € L* such that ord,(3) = ord,(a)/n for all p. Now a/F" lies in
Ur, and is well-defined up to an element of U}. O

Now the argument used in the special case shows that S™(E/L) is finite.
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Remark 14.13. The above proof of the finiteness of the Selmer group is taken from my
book, Etale Cohomology, p133. It is simpler than the standard proof (see [S1] p190-196)
which unnecessarily “translate[s] the putative finiteness of E(K)/mE(K) into a statement
about certain field extensions of K.”

15. HEIGHTS

Let P = (ap : ... : ay,) € P*(Q). We shall say that (ap : ... : ay,) is a primitive
representative for P if
a; € Z, ged(ag, ... a,) = 1.
The height H(P) of P is then defined to be

H(P) = max|a|.
J

Here | * | is the usual absolute value. The logarithmic height h(P) of P is defined to be
log H(P).

Heights on P!. Let F(X,Y) and G(X,Y) be homogeneous polynomials of degree m in
Q[X,Y], and let V(Q) be the set of their common zeros. Then F' and G define a map

e :PHQ\V(Q) - P(Q), (z:y)— (F(z,y): G(z,y)).

Proposition 15.1. If F(X,Y) and G(X,Y) have no common zero in P*(Q%), then there
exists a constant B such that

Ih(p(P)) — mh(P)| < B, all P €PY(Q).

Proof. We may suppose that F' and G have integer coefficients. Let (a : b) be a primitive rep-
resentative for P. Then, for a monomial H(X,Y) = ¢X'Y™ " |H(a,b)| < |¢| max(|a]™, [b|™),
and so

|F(a,b)],|G(a,b)] < C (max({al, [b])™
with

C = (m + 1) max(|coeff. of F or G).
Now

H(p(P)) < max(|F(a,b)],|G(a,b)]) < C(max({al, [b)™ = C - H(P)™.
On taking logs, we obtain the inequality
h(p(P)) < mh(P) + log C.

The problem with proving a reverse inequality is that F'(a,b) and G(a,b) may have a large
common factor, and so the first inequality in the second last equation may be strict. We use
the hypothesis that F' and G have no common zero in Q* to limit this problem.

Let R be the resultant of F' and G—the hypothesis says that R # 0. Consider
Y™"F(X,Y) =F(s,1) and Y "™G(X,Y) = G(3,1). When regarded as polynomials in the
single variable 2, F(s-,1) and G(35,1) have the same resultant as F(X,Y) and G(X,Y),

Y’

and so (see p55), there are polynomials U(35), V(5) € Z[35] of degree m — 1 such that
X X X X
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On multiplying through by Y21 and renaming Y™ 'U(5) as U(X,Y) and Y™ 'V () as
V(X,Y), we obtain the equation
UX,Y)F(X,Y)+V(X,Y)G(X,Y) = RY*" !,
Similarly, there are homogenous polynomials U’'(X,Y) and V'(X,Y) of degree m — 1 such
e UX,Y)F(X,Y)+ V'(X,Y)G(X,Y) = RX*" 1.
Substitute (a,b) for (X,Y") to obtain the equations
Ula,b)F(a,b)+ V(a,b)G(a,b) = Rb*"
U'(a,b)F(a,b)+ V'(a,b)G(a,b) = Ra®™ .
From these equations we see that
ged(F(a,b), G(a, b)) divides ged(Ra®™ ", Rb*™ ') = R.
Moreover, as in the first part of the proof, there is a C' > 0 such that
Ula,b),U'(a,b),V(a,b),V'(a,b) < C (max |al, |b)™ " .
Therefore
2C (max|a, [o])" " (max|F(a,0)|, |G(a,b)|) = |Rlla*" ", |RJb]*"".
Together with ged(F'(a,b), G(a,b))|R, these inequalities imply that

H(@(P) > o ma(|F(a D). Gla.B)) > g H(P)™

On taking logs, we obtain the inequality
h(w(P)) > mh(P) —log2C.
O

There is a well-defined map (special case of the Veronese map)
(a:b),(c:d) v (ac:ad+bc:bd): P! x P! — P2
Let R be the image of (P, Q).

Lemma 15.2.

<

Proof. Choose (a : b) and (c: d) to be primitive representatives of P and ). Then
H(R) < max(|ac], |ad + be], [bd]) < 2max([a], [b]) max(|e], |d]) = 2H(P)H(Q).

If a prime p divides both ac and bd, then either it divides a and d but not b or ¢, or the other
way round. In either case, it doesn’t divide ad + bc, and so (ac : ad + be : bd) is a primitive
representative for R. It remains to show that

max(lacl, lad + bel, [bd|) = - (max(lal, [b]) (max |c[|d]),

N | —

but this is an elementary exercise. [J
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Heights on E. Let E be the elliptic curve
E:Y*Z=X3+aXZ?+027%, a,bcQ, A=4a®>+270°#0.
For P € E(Q), define

H((z(P) : z(P if 2(P)#0
H(P>:{0((<) o ifP(:>(0:1:O).

and
h(P) = log H(P).

Other definitions of h are possible, but they differ by bounded amounts, and therefore lead
to the same canonical height (see below).

Lemma 15.3. For any constant B, the set of P € E(Q) such that h(P) < B is finite.

Proof. Certainly, for any constant B, {P € P'(Q) | H(P) < B} is finite. But for every point
(w0 : 2z0) € PY(Q), there are at most two points (zg : y : 20) € E(Q), and so {P € E(Q) |
H(P) < B} is finite. O

Proposition 15.4. There exists a constant A such that
|h(2P) — 4h(P)| < A.

Proof. Let P = (x : y : z) and 2P = (z2 : Y2 : 22). According to the duplication formula

(p37),
(X2 : 29) = (F(x,2): G(x, 2))

where F'(X,Z) and G(X, Z) are polynomials of degree 4 such that

F(X,1) = (3X?+a)?—8X(X®+ax+0b)
G(X,1) = 4(X®+aX +b).

Since X? +aX + b and its derivative 3X? + b have no common root, neither do F/(X, 1) and
G(X, 1), and so Proposition 15.1 shows that

|h(2P) —4h(P)| < A
for some constant A. O

Theorem 15.5. There exists a unique function h : E(Q) — R satisfying the conditions (a)

and (b):
(a) ( ) = h(P) is bounded;
(b) h(2P) = 4h(P).
In fact,
W(p) = tim "2

and it has the following additional properties:

(c) for any C' >0, the set {P € E(Q) | h(P) < C} is finite;
(d) h(P) >0, with equality if and only if P has finite order.
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Proof. We first prove uniqueness. If b’ satisfies (a) with bound B, then
|n'(2"P) — h(2"P)| < B.

If in addition it satisfies (b), then

W(P) —

n2'P)| B
< 0
4n — 4n

and so h(2"P)/4" converges to h'(P).

To prove the existence, we first verify that h(2"P)/4" is a Cauchy sequence. From Propo-
sition 15.4, we know that there exists a constant A such that

|h(2P) — 4h(P)| < A
for all P. For N > M > 0 and Fy € F(Q),

h(2VPy)  h(2YRy)

e (h(Q”“P) h(2”P0)>‘

4N 4M Nt 4n+1 4n
N—-1 1
< yre |h(2" Py) — 4h(2"Py)|
n=M
N—-1 1
< ;4 A
- A . 1 1
< 4M+1( +4+4—2+ >
A
C3.4M

This shows that the sequence h(2"P)/4" is Cauchy, and we define h(P) to be its limit.
Because H(P) is an integer > 1, h(P) > 0 and h(P) > 0.
When M = 0 the displayed equation becomes

h(2N P) A
P -~
) <5,
and on letting N — oo we obtain (a).
For (b), note that
~ . h(2"TLP) h(27T1P) ~
h(2P) = Jim = =4 lim T 4 - h(P)

The set of P for which ?L(P) < (' is finite, because h has this property and the difference
h(P) — h(P) is bounded.
If P is torsion, then {2"P | n > 0} is finite, so h is bounded on it, by D say, and

h(P) = h(2"P)/4™ < D/4™ for all n. On the other hand, if P has infinite order, then
{2"P | n > 0} is infinite and % is unbounded on it. Hence h(2"P) > 1 for some n, and so
h(P)>4"">0. O
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The function % is called'® the canonical, or Néron-Tate, height. If was defined indepen-
dently by Tate using the above method, and by Néron using a much more elaborate method
which, however, gives more information about h.

Let f: M — K be a function from an abelian group M into a field K of characteristic
# 2. Such an f is called a quadratic form if f(2z) = 4f(x) and

B(z,y) =¢ f(x +y) — f(z) = f(y)
is bi-additive. Then B is symmetric, and it is the only symmetric bi-additive form B :
M x M — K such that f(z) = 1B(x,z). We shall need the following criterion:
Lemma 15.6. A function f : M — K from an abelian group into a field K of characteristic
£ 2 is a quadratic form if and only if it satisfies the parallelogram®® law:

flx+y)+ flx—y)=2f(z) +2f(y) allz,ye M.

Proof. On taking © = y = 0 in the parallelogram law, we find that f(0) = 0, on taking z =y
we find that f(2z) = 4f(z), and on taking x = 0 we find that f(—y) = f(y). By symmetry,
it remains to show that B(z + vy, 2) = B(z, 2) + B(y, z), i.e., that

fety+z)—flety) —fle+2) = fly+2)+ f2) + fly) + f(2) = 0.
Now four applications of the parallelogram law show that:
fla+y+2)+ flaty—2)—2f(x+y)—2f(2) =0
fle—y+2)+ fla+y—2)—2f(x) —2f(y—2)=0
fle—y+2)+fla+y+z)—2f(x+2)-2f(y) =0

2f(y+2) +2f(y —2) —4f(y) —4f(2) = 0.
The alternating sum of these equations is the required equation. [

Proposition 15.7. The height function h: E(Q) — R is a quadratic form.

We have to prove the parallelogram law.
Lemma 15.8. There exists a constant C' such that
H(PL+ P)H(P, — R) <C-H(P,)*H(P)?
for all P, P, € E(Q).
Proof. Let P, + P, = Py and P, — P» = Py, and let P, = (z; : y; : 2;). Then
(33'333'4 P X324 + Ty23 2324) = (Wo : W1 : WQ)
where (see p37)
W() — (X2Z1 - X1Z2)2
Wi = 2(X1Xo+aZ125) (X1 Zo + XoZy) + 47} Zy
Wy = XPX3 —2aX1 X217y — 4b(X1 2075 + XoZ3 Z5) + a*Z3 73
It follows that
HWy: Wy - W) < CH(P)*H(PR)?.

8Unfortunately, there are different definitions of the “canonical” height, which differ by a constant factor.
19Tn elementary linear algebra, the parallelogram law says that, for vectors u and v in R, |Ju + v|* +
llu = ol|* = 2[|ull* + 2]|v]>.
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According to Lemma 15.2,

H(WO : W1 : Wg) 2 H(Pg)H(p4)

DN —

U
Lemma 15.9. The canonical height function h: E(Q) — R satisfies the parallelogram law:
h(P + Q)+ h(P — Q) = 2h(P) + 2h(Q).
Proof. On taking logs in the previous lemma, we find that
h(P+ Q)+ h(P — Q) < 2h(P) + 2h(Q) + B.

On replacing P and @ with 2" P and 2"(Q), dividing through by 4", and letting n — oo, we
obtain the inequality

h(P + Q) + h(P — Q) < 2h(P) + 2h(Q).
Putting P = P+ Q and Q' = P — @ in this gives the reverse inequality:

h(P') +h(Q') < 2h (Pl ; Ql) +2h (Pl 5 Ql) = %ﬁ(P’ +Q)+ %E(P’ - Q).
U

Aside 15.10 (For the experts). Let K be a number field. For each prime v of K, let |- |,
be the normalized valuation, for which the product formula holds:

IIlal, =1, ae K>

Define the height of a point P = (ap:a;y :...: a,) € P*"(K) to be
H(P) = [[max(|ai],)

Because of the product formula, H(P) doesn’t depend on the choice of (ag : ... : ap)
representing P. When K = QQ, we can choose the a; to be integers with no common factor,
which makes max; |a;|, = 1 for all p, and leaves H(P) = max; |a;|.

With this definition, all the above results extend to elliptic curves over number fields.

16. COMPLETION OF THE PROOF OF THE MORDELL-WEIL THEOREM, AND FURTHER
REMARKS

Let Py, ..., Ps be a set of representatives for £(Q)/2E(Q). For any @ € E(Q) there exists
an ¢ such that @ + P, € 2E(Q) for both choices of signs. According to the parallelogram
law,

Q£ ) < h(Q) + h(P)
for (at least) one choice of signs. For that choice, let @Q £ P, = 2Q)’. Then

4h(Q") = h(@Q £ F) < h(Q) + h(F) < h(Q)+C

where C' = maxh(F;). Hence h(Q') < 1h(Q) provided h(Q) > C. Now the argument
sketched in Section 11 shows that E(Q) is generated by Py, ... , Ps and the @ with h(Q) < C.
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The Problem of Computing the Rank of F(Q). According to André Weil, one of the
two oldest outstanding problems in mathematics is that of determining the group E(Q). We
know that E(Q) is finitely generated, say E(Q) ~ E(Q)tors ® Z", and the problem is to find
an algorithm for determining r, or better, for finding a set of generators for £(Q)/E(Q)tors.
Since we know how to compute E(Q)ios, this amounts to being able to find a basis for
E(Q)/2E(Q). We can regard S®(E/Q) as giving a computable upper bound for 7, with
TS(E/Q), as the error. The problem is to determine the image of F(Q) in S®(Q).

Consider the following commutative diagram:

0 — E(Q)/TQE(Q) — SO(E/Q) — TS(E/Q); — 0

I 2

0 — EQ/4E@Q) — SYWE/Q) — TS(E/Qs — 0
1 I 12
| | 2

0 — E@)/2"EQ) — S®N(E/Q — TS(E/Q) — 0.
Define S™(E/Q) to be the image of S?(E/Q) in S (E/Q).
Proposition 16.1. The group
E(Q)/2E(Q) € n.S*"(E/Q),

and is equal to it if and only if TS(E/Q) contains no nonzero element divisible by all powers
of 2, in which case S?™(E/Q) is constant for sufficiently large n.

Proof. Clearly the image of F(Q)/2"E(Q) in S®(E/Q) is independent of n, and is contained
in S@™(E/Q) for all n. Conversely, let v € NS®™(E/Q). By definition, there is, for each
n, an element v, € S?") mapping 7. Let §, be the image of ~, in TS(E/Q)s.. Then
27715, = §; for all n, and so d; is divisible by all powers of 2. If TS(E/Q) contains no such
element other than zero, then + is in the image of E(Q)/2E(Q). It is not difficult to show
that, in this case, the 2-primary component of TS(E/Q) is finite (using that TS(E/Q), is
finite), and the map S@")(Q) — S®(Q) is onto if TS(E/Q)sn = 0. [

This gives a strategy for computing r. Calculate S, and then leave your computer
running overnight searching for points in F(Q). If the subgroup 7'(1) of F(Q) generated
by the points the computer has found maps onto S we have found r, and even a set of
generators for E(Q). If not, calculate S®*), and have the computer run overnight again
finding a bigger group 7'(2) C E(Q). If the image of T(2) in S® is S??) then we have
found r. If not, we compute S . ...

Nightmare possibility: The Tate-Shafarevich group contains a nonzero element divisible
by all powers of 2, in which case the calculation goes on for all eternity. This would happen,
for example, if TS(E/Q) contains a copy of Q/Z.

Conjecture 16.2. The Tate-Shafarevich group is always finite.

When the conjecture is true, then the above argument shows that we have an algorithm
for computing E(Q).

Until the work of Rubin and Kolyvagin about 1987, the Tate-Shafarevich group was not
known to be finite for a single elliptic curve over a number field, and the conjecture is still
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far from being proved in that case. For an elliptic curve E over a function field K in one
variable over a finite field k, I proved that TS(E/K) is finite when j(E) € k in my thesis

(1967). Later (1975) I showed that the curve
27 ' 27 '
BG):Y2z=x3 2 xp2 2L T s
471728 471728

over the field K = F,(j) has finite Tate-Shafarevich group. Not much more is known now.

The Néron-Tate Pairing. We saw in Section 15, that there is a canonical Z-bilinear
pairing
B:E@Q)x EQ) =R, B(x,y) = h(z+y) —h(z) - h(y).
This pairing extends uniquely to an R-bilinear pairing
B EQ®RxEQ)®R —R.

If we choose a Z-basis ey, ..., e, for E(Q)/E(Q)tors, then EF(Q) ® R has R-basis (e; ®
1,...,e, ®1) with respect to which B has matrix

(B(ei, ;)
Theorem 16.3. The bilinear pairing

EQ®RxFEQ®R—-R

defined by h is positive definite (and, in particular, nondegenerate).

This follows from what we have proved already, plus the following result from linear
algebra. By a lattice in a real vector space, I mean a Z-submodule generated by a basis for
V' (sometimes this called a full, or complete, lattice).

Lemma 16.4. Let g : V — R be a quadratic form on a finite-dimensional real vector space
V. If there exists a lattice A in'V such that

(a) ¢(P)=0,PeA, = P=0,

(b) for every constant C, the set {P € A | q(P) < C} is finite,

then q is positive definite on V.

Proof. According to Sylvester’s theorem (see Math 593), there exists a basis for V' relative
to which ¢ takes the form

g(r) =i+ ol —al, — - —gf, t<dimV

Use the basis to identify V' with R™. Let X\ be the length of the shortest vector in A, i.e.,
A =inf{q(P) | P € A, P # 0}.
From (b) we know that A > 0. Consider the set
A
BO) ={(w:) | e+ +ai <3, g+ +ap <6}
The length (using ¢) of any vector in B(9) is < A/2, and so B(d) N A = {0}, but the volume

of B(4) can be made arbitrarily large by taking § large, and so this violates the following
theorem of Minkowski. [
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Theorem 16.5 (Minkowski). Let A be a lattice in R™ with fundamental parallelopiped Dy,
and let B be a subset of R™ that is compact, convex, and symmetric in the origin. If

Vol(B) > 2" Vol(D)
then B contains a point of A other than the origin.

Proof. We first show that a measurable set S in R” with Vol(S) > Vol(Dy) contains distinct
points «, 3 such that a — 3 € A. Clearly

Vol(S) = > Vol(SN D)

where the sum is over all the translates of D by elements of A. The fundamental paral-
lelopiped Dy will contain a unique translate (by an element of A) of each set S N D. Since
Vol(S) > Vol(Dy), at least two of these sets will overlap, and so there exist elements o, 5 € S
such that
a—A=03-XN, some\#\eA.

Then o — =X — XN € A\ {0}.

We apply this to 1B =4 {% | € B}. It has volume 5~ Vol(B) > Vol(Dy), and so there
exist a, € B, a # 3, such that «/2 — /2 € A. Because B is symmetric about the origin,
—( € B, and because it is convex, (o + (—03))/2 € B. O

Remark 16.6. Systems consisting of a real vector space V', a lattice A in V| and a positive-
definite quadratic form ¢ on V' are of great interest in mathematics. By Sylvester’s theorem,
we can choose a basis for V that identifies (V, ¢) with (R", X? + - -+ + X?). Finding a dense
sphere (lattice) packing in R” amounts to finding a lattice A such that

||shortest vector||™

Vol(fundamental parallelopiped)
is large. Many lattices, for example, the Leech lattice, have very interesting automorphism
groups. See Conway and Sloane, Sphere Packings, Lattices and Groups.

From an elliptic curve E over Q, one obtains such a system, namely, V = E(Q) ® R,
A = E(Q)/E(Q)iors, ¢ = h. As far as I know, they aren’t interesting —at present no elliptic
curve is known with rank(E£(Q)) > 19. However, for elliptic curves over function fields in
one variable over a finite field, Elkies, Shioda, Dummigan, and others have shown that one
gets (infinite families of) very interesting lattices.

Computing the rank. Computing the rank r of £(Q) can be difficult (perhaps impossible),
but occasionally it is straightforward. In order to avoid the problem of having to work with
a number field L other than @, we assume that the elliptic curve has all its points of order
2 rational over Q:

E:Y?Z =(X —-aZ)(X - BZ)(X —~Z), «,B, distinct integers.
The discriminant of (X — a)(X — 8)(X — ) is
A= (0= 86— 10y — o)
Proposition 16.7. The rank r of E(Q) satisfies the inequality
r <2 x #{p| p divides 2A}.
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Proof. Since E(Q) ~ T ® Z", T = E(Q)iors, we have E(Q)/2E(Q) ~ T/2T & (Z/2Z)".
Because T is finite, the kernel and cokernel of T 2> T have the same order, and so T /2T =~
(Z/2Z)?. Theorem provides us with an injection F(Q)/2F(Q) — (Q*/Q*?)?, and the image
is contained in the product of the subgroups of Q*/Q*? generated by —1 and the primes
where E has bad reduction, namely, those dividing 2A. O

It is possible to improve this estimate. Let T} be the set of prime numbers dividing A for
which the reduction is nodal, and let T; be the set of prime numbers dividing A for which
the reduction is cuspidal. Thus T} comprises the prime numbers modulo which two of the
roots of

(X —a)(X = B)(X =)
coincide, and 75 comprises those modulo which all three coincide. Let t; and ¢y respectively
be the numbers of elements of 77 and T5.

Proposition 16.8. The rank r of E(Q) satisfies v < t1 + 2ty — 1.
Proof. Define ¢, : F(Q)/2E(Q) — Q*/Q*? as in (14.7):

(2 —a)Q* 2 #0, x=+# az
Yal(z:y:2)) =4 (a=F)a—7)Q* 2#0, z=oaz
Q* (z:y:2)=(0:1:0).

Define ¢z similarly—the map
P (pa(P), 0s(P)) : E(Q)/2E(Q) — (Q*/Q**)

is injective. For each prime p, let ¢,(P) be the element of (Z/2Z)? whose components are
ord,(pa(P)) mod 2, and ord,(es(P)) mod 2

and let ¢ (P) be the element of {+}* whose components are

sign(a(P)), and sign(ps(P)).
The proposition is proved by showing:

(a) if p does not divide A, then ¢,(P) = 0 for all P;
(b) if p € Ty, then ¢,(P) is contained in the diagonal of F3 for all P;
(c) when a, 3,7 are ordered so that a < 3 < 7, 9o (P) equals (+,+) or (+, —).
Except for p = 2, (a) was proved in the paragraph preceding (14.7).
We prove (b) in the case a =3 modpand P=(z:y:1), 2 # a, 3,7. Let
a=ordy(r —a), b=ord,(x—0F), c=ord,(x—7).

Because
(z —a)(z - B)(x —7)
is a square, a +b+c =0 mod 2.

If a < 0, then (because o € Z) p~® occurs as a factor of the denominator of z (in its
lowest terms), and it follows that b = a = ¢. Since a + b+ ¢ =0 mod 2, this implies that
a=b=c¢=0 mod 2, and so ¢,(P) = 0. The same argument applies if b < 0 or ¢ < 0.

If a > 0, then p divides the numerator of  — a. Because p doesn’t divide (a — ), it
doesn’t divide (a4 — ) + (x —a) = (x — ), and so ¢ = 0. Now a+b =0 mod 2 implies that
©p(P) lies in the diagonal of 3. A similar argument applies if b > 0 or ¢ > 0.
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The remaining cases of (b) are proved similarly.
We prove (c). Let P = (x:y: 1), z # a,,7. We may suppose that a < 5 < 7, so that
(x —a) > (x—0F) > (z —7). Then p(P) = (+,4), (+,—), or (—, —). However, because
(z —a)(z = B)(z—7)
is a square in Q, the pair (—, —) is impossible. The cases x = « etc. are equally easy. O

Example 16.9. The curve

E:Y*Z=X*-XZ?
is of the above form with («,,7) = (—1,0,1). The only bad prime is 2, and here the
reduction is nodal. Therefore r = 0, and F has no point of infinite order:

E(Q) ~ (Z)27).

Exercise 16.10. Hand in one of the following two problems (those who know the quadratic
reciprocity law should do (2)).

(1) Show that E(Q) is finite if £ has equation
V7 = X°—4XZ7*.

Hint: Let P be a point of infinite order in F(Q), and show that, after possibly replacing P
with P + @ where 2Q = 0, ¢2(P) is zero. Then show that ¢ (P) = (4, +)—contradiction.

(2) Let E be the elliptic curve
Y27 = X? — 2 X 72
where p is an odd prime. Show that the rank r of E(Q) satisfies:

r<2 if p=1 mod 8
r=20 if p=3 mod 8
r<l1 otherwise.

Hint: Let P be a point of infinite order in F(Q), and show that, after possibly replacing P
with P + @ where 2Q = 0, ¢,(P) is zero.

Note: These are fairly standard examples. You should do them without looking them up
in a book.

17. GEOMETRIC INTERPRETATION OF THE COHOMOLOGY GROUPS; JACOBIANS

For simplicity throughout this section we take k to be a perfect field, for example, a field
of characteristic zero or a finite field. Everything still holds when k is not perfect except
that then the algebraic closure k! of k must be replaced with its separable algebraic closure
(the union of all subfields of £ finite and separable over k).

For any elliptic curve F over a field k, we have an exact sequence of cohomology groups:
0 — E(k)/nE(k) — H*(k,E,) — H'(k, E), — 0.

Here H'(k, E,,) and H'(k, E) are defined to be the groups of crossed homomorphisms from
Gal(k/k) to E(k™),, and E(k*) respectively, modulo the principal crossed homomorphisms.
In this section, we shall give a geometric interpretation of these groups, and hence also of
the Selmer and Tate-Shafarevich groups. We shall attach to any curve W of genus 1 over
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k, possibly without a point with coordinates in k, an elliptic curve F, called its Jacobian.
The Tate-Shafarevich group of an elliptic curve E classifies the curves of genus 1 over k for
which the Hasse principle fails, i.e., such that the curve has a point in @, for all p and in R,
but which doesn’t have a point in Q.

In general, H'(k,?) classifies objects over k that become isomorphic over k% to a fixed
object with automorphism group 7. We shall see several examples of this.

Principal homogeneous spaces (of sets). Let A be an abelian group. A right A-set
(w,a) —w+a:WxA—->W
is called a principal homogeneous space for A if W # () and the map
(w,a) = (w,w+a): WxA—->WxW
is bijective, i.e., if for every pair wq, ws € W, there is a unique a € A such that w; + a = ws.

Example 17.1. (a) Addition A x A — A makes A into a principal homogeneous space for
A, called the trivial principal homogeneous space.

(b) An affine space (for example, the universe according to Newton) is (by definition) a
principal homogeneous space for a vector space—essentially, it is a vector space without a
preferred origin.

A morphism @ : W — W' of principal homogeneous spaces is simply a map A-sets.
¥ g

Proposition 17.2. Let W and W’ be principal homogeneous spaces for A.

(a) For any points wy € W, wj € W', there exists a unique morphism ¢ : W — W’
sending wy to wy.

(b) Every morphism W — W' is an isomorphism (i.e., has an inverse that is also a
morphism).

Proof. (a) Uniqueness: Any w € W can be written uniquely in the form w = wy +a, a € A,
and then ¢(w) = w{ + a. Existence: This formula defines a morphism.

(b) If ¢ maps wy to wy, then the unique morphism W’ — W sending wj, to wy is an inverse
to p. O

Corollary 17.3. (a) Let W be a principal homogeneous space over A. For any point wy €
W, there is a unique morphism A — W (of principal homogeneous spaces) sending 0 to wy.

(b) An a € A defines an automorphism w — w + a of W, and every automorphism of W
1s of this form for a unique a € A.

Hence
Aut(W) = A;

—for any abelian group A, we have defined a class of objects having A as their groups of
automorphisms.
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Principal homogeneous spaces (of curves). Let E be an elliptic curve over a field k.
A principal homogeneous space for E is a curve W over k together with a right action of
given by a regular 2° map

(w,P)w+P:WxE—->W

such that
(w,P) — (w,w+P): W xE—-WxW

is an isomorphism of algebraic varieties. The conditions imply that, for any field K D k,
W (K) is either empty or is a principal homogeneous space for the group F(K) (in the sense
of the previous subsection). A morphism of principal homogeneous spaces for E is a regular
map ¢ : W — W' such that

WxE — W
! !
W' xE — W

commutes. Much of the theory in the previous subsection extends to principal homogeneous
spaces for elliptic curves:

Addition F x F — E makes E into a principal homogeneous space for E—any principal
homogeneous space isomorphic to this principal homogeneous space is said to be trivial.

Let W and W' be principal homogeneous spaces for E. For any field K D k and any
points wy € W(K), wj, € W/(K), there exists a unique morphism ¢ : W — W’ over K
sending wy to wy, and ¢ is automatically an isomorphism of principal homogeneous spaces
over K.

Let W be a principal homogeneous space for E. For any point wy € W (k), there is a
unique homomorphism E — W (of principal homogeneous spaces) sending 0 to wg. Thus W
is trivial if and only if W (k) # 0. Since W will have a point with coordinates in some finite
extension K of k (this follows from the Hilbert Nullstellensatz), it becomes trivial over such
a K.

A point P € E(K) defines an automorphism w +— w + P of W, and every automorphism
of W over K is of this form for a unique P € E(K).

The classification of principal homogeneous spaces. Let W be a principal homoge-
neous space for £, and choose a point wy € W (k™). For any o € Gal(k*/k), owy € W (k™),
and so can be expressed cwy = wy + f(o) for a unique f(o) € E(k™). Note that

(o7 )wo = o(Two) = o(wo + f(7)) = owo + o f(1) = wo + f(0) + o f(7),

and so
flor) = f(o) +af(7).
Thus f is a crossed homomorphism Gal(k*/k) — E(k™). Because wy has coordinates in

a finite extension of k, f is continuous. A second point w; € W (k*) will define a second
crossed homomorphism f;, but w; = wy + P for some P € E(Q¥), and so

owy = o(wy+ P) =owyg+ 0P =wy+ f(o)+ 0P =w + f(o) +oP — P.

Hence
fi(o) = f(o)+oP — P,

20That is, one defined by polynomials.
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i.e., f and f’ differ by a principal crossed homomorphism, and so we have attached a well-
defined cohomology class to W.

If the cohomology class is zero, then f(o) = P — P for some P € E(k), and
o(wg— P)=owy—cP =wy+ 0P —P—0P =w,— P.
This implies that wy — P € W (k), and so W is a trivial principal homogeneous space.

Theorem 17.4. The map W + [f] defines a one-to-one correspondence
{Principal homogeneous spaces for E}/~ < H'(k, E).

Proof. Let ¢ : W — W' be an isomorphism of principal homogeneous spaces for E (over k),
and let wy € W (k*). One checks immediately that (W, wg) and (W', p(wg)) define the same
crossed homomorphism, and hence the map

{Principal homogeneous spaces for E}/~ — H'(k, E)

is well-defined. If W and W' define the same cohomology class, we can choose wy and wy, so
that (W, wp) and (W’ wy) define the same crossed homomorphism. There is a unique regular
map ¢ : W — W’ over k? sending wy to w). Let w € W (k¥), and write w = wo + P. Then

p(ow) = p(o(wotP)) = p(owe+oP) = p(wotf(0)+0P) = wyt f(o)+o P = owyto P = op(w),

which implies that the map ¢ is defined over k (i.e., it is defined by polynomials with
coordinates in k rather than k). Hence the map is one-to-one. We discuss the surjectivity
in the next subsubsection. [

Defining algebraic curves over subfields of algebraically closed fields. Two plane affine curves
C; and Cy over k may become isomorphic over k*' without being isomorphic over k. The
simplest example is the pair of curves

X?4+Y? =1, X?’4Y?=-1,

which are not isomorphic over R (one has no real points) but which become isomorphic over
C.

From an affine curve C over k, we obtain an affine curve C’ over k* together with an
action of Gal(k*/k) on C'(k™).
Proposition 17.5. The functor sending a plane affine curve C' over k to C' endowed with
the action of Gal(k®/k) on C'(k%) is fully faithful, i.e., to give a regular map C; — Cy of
curves over k is the same as to give a reqular map C] — C4 commuting with the Galois
actions.

We explain the statement. Suppose C; and C5 are defined by the polynomials Fy(X,Y),
Fy(X,Y) € k[X,Y]. The curves C] and C} are defined by the same polynomials now regarded
as elements of k*[X Y.

By definition, a regular map ¢ : C; — C} is of the form
(2, 9) = (G(z,y), H(z,y)), G(r,y), H(z,y) € k[C1] =4 kX, Y]/(F1(X,Y)).
A regular map ¢ : C] — (9 is of the form
(2,9) = (G(z,y), H(z,y)), Gla,y), H(z,y) € k"[C]] =¢ k[X,Y]/(F(X,Y)).
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To say that ¢ commutes with the Galois actions means that, for all P € Cj(k*) and all
o € Gal(k*/k), (o P) = op(P),ie.,c0po0 ! =p. But copooc!isdefined by °G,” H
where °G and ? H are obtained from G and H by applying o to their coefficients. Therefore,
if ropoo! = forall o, then G, H € k*[C]]S2F/F) = k[Cy].

It follows from the proposition that if a curve €’ endowed with an action of the Galois
group on C’(k*) arises from a curve C over k, then C is unique (up to a unique isomorphism).
We can ask: when does such a pair (C’,action) arise from a curve C' over k7 A necessary
and sufficient condition is the following:

(a) the orbits of Gal(k®/k) acting on C’(k¥) are finite; and

(b) denote the given action of o € Gal(k/k) on P € C'(k™) by o * P; let °C’ be the
curve obtained from C” by applying o to the coefficients of the polynomial defining
C’,and let P+ o P : C'(k¥) — 2C"(k*) be the map (x,y) — (o, 0y); then the map
o* P oP: C'(k¥) —° C'"(k*) should be regular.

Similar remarks apply to plane projective curves.

Geometric Interpretation of H!(Q, E,). We now give a geometric interpretation of
H'(k,E,). An n-covering is a pair (W, a) consisting of a principal homogeneous space
W for E and a regular map o : W — FE (defined over k) with the property: for some
wy € W(k¥), a(w; + P) =nP for all P € E(k™). A morphism (W,a) — (W', a’) (automat-
ically an isomorphism) of n-coverings is a morphism ¢ : W — W' of principal homogeneous
spaces such that « = o/ o .

For o € Gal(k*/k), write cw, = wy + f(0), f(o) € E(k™). As before, f(o1) = f(0) +
of(7). The equation ca(w;) = a(ow;) implies that nf(c) = 0, and so f is a crossed
homomorphism with values in E,(k*!). The element w; € W (k) is uniquely determined by
the property “a(w; + P) = nP for all P” up to replacement by w; + Q, Q € E,(k¥). Tt
follows easily that the class of f in H'(k, E,,) is independent of the choice of w;.

Theorem 17.6. The map (W, «) — [f] defines a bijection
{n-coverings} /~ 5 H'(k, E,).
Proof. The proof is similar to that of Theorem 17.4. [

Geometric Interpretation of the Exact Sequence. We now give a geometric description
of the exact sequence:

0 — E(k)/nE(k) — H*(k,E,) — H'(k, E), — 0.

If v € H'(k, E,) corresponds to the n-covering (W, «), then the image of v in H'(k, E)
corresponds to W. If W is trivial, so that there exists a wy € W(k), then 7 is the image
of the point a(wy) € E(k). If wy also € W(k), then w, = wo + P for some P € E(k), and
a(w)) = a(wy) +nP, and so a(wy) is well-defined as an element of E(k)/nE(k).

Twists of Elliptic Curves. In this subsection we study the following problem: given an
elliptic curve Ey over k, find all elliptic curves F over k that become isomorphic to Ey over
k2. Such a curve E is often called a “twist” of Ey. Remember than an elliptic curve E over
k has a distinguished point O € E(k). Throughout, I assume that the characteristic of k is

£2.3.
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Example 17.7. Consider an elliptic curve

E\:Y*Z=X34aXZ?+0b73, abek, A=4da®>+270*+#0
over k. For any d € k*,

Ey:dY?Z = X® +aXZ* + 023,

is an elliptic curve over k that becomes isomorphic to E; over k. Indeed, after making the
change of variables dZ <« Z, the equation becomes
a 2 b3
EX 45+ §Z ,

and so Fy4 becomes isomorphic to E; over any field in which d is a square.

Y?Z =X+

We first compute Aut(F,0), the group of automorphisms of E fixing the zero element.
According to Theorem 5.3, two elliptic curves

E(a,b):Y?Z = X3 +aXZ*+bZ° a,bck, Ala,b)#0

EdV):Y*Z =X +dXZ>+ V7% d,bek, Aldb)#0
are isomorphic if and only if there exists a ¢ € k* such that o’ = c*a, v’ = c®b, in which case
the isomorphisms are of the form

(z:y:2)— (Px:ly:2).
Since these maps not only send O to O, but also map straight lines in P? to straight lines,

they are homomorphisms. We apply this to the case: (a’,b) = (a,b).

Case ab # 0: Here we seek ¢ € kX such that ¢* = 1 = 5. These equations imply that
¢ = £1, and so the only automorphism of (E,O) other than the identity map is

(x:y:2)—(x:—y:2).

Case a = 0: Here ¢ can be any 6th root ¢ of 1 in k, and the automorphisms of (E,O) are
the maps

(:y:2) = (o Gy 2).

Case b = 0: Here ¢ can be any 4th root ¢ of 1 in k, and the automorphisms of (E,O) are
the maps

(:y:2) (o Gy 2).

Proposition 17.8. The automorphism group of (E,O) is ~ {£1} unless j(E) =0 or 1728,
in which cases it is = pg(k) or ~ us(k) respectively.

Remark 17.9. (a) Notice that the proposition is consistent with Proposition 10.22, which
says that (over C), End(F) is isomorphic to Z or to a subring of the ring of integers in a
field Q[v/—d]. The only units in such rings are roots of 1, and only Q[v/—1] and Q[v/—3]
contain roots of 1 other than £1.

(b) When we allow k to have characteristic 2 or 3, then it is still true that Aut(E,O) =
{£1} when j(F) # 0,1728, but when j = 0 or 1728 the group of automorphisms of (£, O)
can have as many as 24 elements.
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Fix an elliptic curve Ej over k, and let £ be an elliptic curve over k that becomes isomor-
phic to Ey over k. Choose an isomorphism ¢ : Ey — E over k. For any o € Gal(k¥/k),
we obtain a second isomorphism op =4 0o oot : Ey — FE over k*. For example, if ¢
is(x:y:2) (Pzx:Ay:z2), thenopis (x:y:2)— ((6c)’r : (0c¢)®y : 2). The two
isomorphisms ¢, 0 : Ey — E (over k¥) differ by an automorphism of Ey over k!

op=poa(o), alo)e€ Auti(Ey,O).
Note that

(07)p = a(rp) = a(poa(r)) = poala) coa(r),

and so « is a crossed homomorphism Gal(k®/k) — Autgu(Ep, O). Choosing a different
isomorphism ¢ replaces a(o) by its composite with a principal crossed homomorphism.

Theorem 17.10. The map E +— |« defines a one-to-one correspondence
{elliptic curves over k, isomorphic to Ey over k%} /~ <=5 HY(Gal(k®/k), Autyu(Ep)).
Proof. The proof is similar to that of Theorem 17.4. [

Corollary 17.11. If j(Ey) # 0,1728, then the list of twists of Ey in Ezample 17.7 is
complete.

Proof. In  this case, Autpa(E,0) = 2, and so, according to Example 12.7,
HY(Gal(k¥/k),us) = k*/k*2. Under the correspondence in the theorem, E; « d
mod kX% O

Remark 17.12. The same arguments can be used to obtain the description of the twisted
multiplicative groups on p25. The only endomorphisms of G,, = A!\ {0} are the maps
t — t™, some fixed m € Z. Hence End(G,,) = Z and Aut(G,,) = (End(G,,))* = {£1}.
The twisted forms of G, are classified by H'(k,{+1}) = H'(k, ua) = k*/k>*%. The twisted
multiplicative group corresponding to a € k* /k*? is G,,[a].

Remark 17.13. Let Aut(E) be the group of all automorphisms of F, not necessarily pre-
serving O. The map @ +— tg, where tg is the translation P — P + @), identifies E (k) with
a subgroup of Aut(E). I claim that Aut(F) is a semi-direct product,

Aut(E) = E(k) x Aut(E, O),
that is, that

(a) E(k) is a normal subgroup of Aut(E);

(b) E(k)NAut(E,O) = {0};

(c) Aut(E) = E(k) - Aut(E, O).
Let @ € E(k) and let a € Aut(F,O). As we noted above, « is a homomorphism, and so,
for any P € F,

(aotgoa™)(P)=ala™(P)+Q) =P+ a(Q) = taq)(P).

Therefore a0 tg o o' = t4(g), which implies (a). Assertion (b) is obvious. For (c), let
v € Aut(E), and let v(0) = Q; then v =tgo (t_go7), and t_g oy € Aut(E, O).
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Curves of genus 1. Let W be a principal homogeneous space for an elliptic curve E over
k. Then W becomes isomorphic to E over k%!, and so W is projective, nonsingular, and of
genus 1 (at least over k*, which implies that it is also over k). The next theorem shows
that, conversely, every projective nonsingular curve W of genus 1 over k occurs as a principal
homogeneous space for some elliptic curve over k.

Theorem 17.14. Let W be a nonsingular projective curve over k of genus 1. Then there
exists an elliptic curve Ey over k such that W is a principal homogeneous space for Ej.
Moreover, Ey is unique up to an isomorphism (over k).

Proof. (Sketch). By assumption, there exists an isomorphism ¢ : W — E from W to an
elliptic curve E over k¥, which we may suppose to be in our standard form

E:Y’Z=X3+aXZ?+b2Z% a,bek, NA=4a>+270*#0.

Let 0 € Gal(k®/k). Then oy is an isomorphism ¢W — oE. Here oW and oF are
obtained from W and F by applying ¢ to the coefficients of the polynomials defining them
(so E = E(oa,ob)). But W is defined by polynomials with coefficients in k, and so oW =
W. Therefore E ~ W ~ oFE, and j(E) = j(cE) = oj(FE). Since this is true for all
o € Gal(k*/k), we have that j(E) € k. Now (see bottom of p51) there is a curve Ey over k
with j(Ep) = j(£). In fact, there will be many such curves over k, and so we have to make
sure we have the correct one.

Choose an isomorphism ¢ : Ey — W over k¥, and for o € Gal(k*/k), let o = ¢ o a(o)
where a(o) € Autpa(Ep). Then ¢ — «(o) is a crossed homomorphism into Autga (Ep),
and hence defines a class [a] in H'(k, Autya(FEp)). According to (17.13) there is an exact
sequence

1 — Eo(k™) — Autya (Ey) — Autya (Eo, O) — 1.

If [a] lies in the subgroup H'(k, Ey) of H'(k, Auty.(Ep)), then W is a principal homogeneous
space for Fy. If not, then we use the image of [a] in H'(k, Autga(Ep)) to twist Ey to obtain
a second curve F; over k with the same j-invariant. Now one can check that the class of the
crossed homomorphism [a] lies in H'(k, F1), and so W is a principal homogeneous space for
Ey. O

The curve Ey given by the theorem is called the Jacobian of W. It is characterized by
having the following property: there is an isomorphism ¢ : Ey — W over k¥ such that, for
all o € Gal(k®/k), there exists a point Q, € Ey(k*) such that

(0p)(P) = @(P +Q,), all PeE(kY).

Remark 17.15. In the above proof we spoke of a crossed homomorphism into Autya (Ey),
which need not be an abelian group. However, one can still define H'(G, M) when M is non-
abelian as follows. Write M multiplicatively. Asin the abelian case, a crossed homomorphism
isamap f: G — M such that f(o7) = f(0)-0f(7). Call two crossed homomorphisms f and
g equivalent if there exists an m € M such that g(o) =m™" - f(0) - om, and let H'(G, M)
be the set of equivalence classes of crossed homomorphisms. It is a set with a distinguished
element, namely, the map o — 1.

Exercise 17.16. Find the Jacobian of the curve

W:aX?+bX3+¢Y? =0, a,bceQ”.
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[First, by a change of variables over Q% obtain an isomorphism W =~ E where E is an
elliptic curve over Q* in standard form. Second, write down an elliptic curve Ey over Q in
standard form that becomes isomorphic to E over Q. Third, modify Ej if necessary so that
it has the property characterizing the Jacobian.|

The classification of elliptic curves over Q (summary). Let (£, O) be an elliptic curve
over Q. We attach to it the invariant j(E) € Q. Every element of Q occurs as the j-invariant
of an elliptic curve over Q, and two elliptic curves over Q have the same j-invariant if and
only if they become isomorphic over Q. See (10.15) et seq..

Fix a j € Q, and consider the elliptic curves (F,O) over Q with j(E) = j. The iso-
morphism classes of such curves are in one-to-one correspondence with the elements of
H'(Q, Aut(E,0)). For example, if j # 0,1728, then Aut(E,O) = pa, H'(Q, Aut(E, 0)) =
Q*/Q*2, and the curve corresponding to d € Q* is the curve E; of Example 17.7.

Fix an elliptic curve (E, O) over Q, and consider the curves of genus 1 over Q having E as
their Jacobian. Such a curve has the structure of a principal homogeneous space for E, and
every principal homogeneous space for E has E as its Jacobian. The principal homogeneous
spaces for F are classified by the group H'(Q, E), which is a very large group.

Every curve of genus 1 over Q occurs as the Jacobian of an elliptic curve over Q, and
hence as a principal homogeneous space.

Consider the exact sequence of torsion groups
0— TS(E/Q) — HY(Q,E) — @, H' (Q,, E) — C — 0.

Endow each group with the discrete topology. Cassels has shown that the Pontryagin dual
of this sequence has the form

0 TS(E/Q) — © « [[ H'(Q,. E) — E(Q) 0,

p,o0

where E (Q) is the completion of E(Q) for the topology for which the subgroups of finite
index form a fundamental system of neighbourhoods of 0, provided that TS(E/Q) is finite.

Exercise 17.17. Find the Jacobian of the curve
W aX?+bY3+¢Z>=0, a,b,ceQ”.

[Hint: The curve F : X + Y3 +dZ3 = 0, d € Q*, has the point O : (1 : —1 : 0)—the pair
(E,O) is an elliptic curve over Q. It can be put in standard form by the change of variables
X=X'+Y V=X -Y']

18. THE TATE-SHAFAREVICH GROUP; FAILURE OF THE HASSE PRINCIPLE

We discuss a family of curves whose the Tate-Shafarevich groups are nonzero, and which
therefore give examples of elliptic curves for which the Hasse principle fails. Full details on
what follows can be found in [S1], pp309-318.

Proposition 18.1. Ifp =1 mod 8, then the 2-Selmer group S@(E/Q) of the elliptic curve
E:YZ = X? +pX 22
is isomorphic to (Z/27)3.
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The family of curves in the statement is similar to that in Exercise 16.10(2), but since only
one of the points of order 2 on E have coordinates in QQ, we don’t have a simple description
of H'(Q, E;). Of course, one can pass to Q[,/p], but it is easier to proceed as follows. One
shows that there is a second curve E' and homomorphisms

ELELE

whose composite is multiplication by 2 and such that the kernel of ¢ is the subgroup of F
generated by P = (0:0:1). From the study of the cohomology sequences of

0 »<P> — E(QY) & E'(Q") — 0

and
0 — Kerty) — E'(Q") & E(QY) — 0

one can draw information about E(Q)/2E(Q), S®(E/Q), TS(E/Q),. For example, Lemma
13.2 applied to the maps

E@Q) % E(Q) % EQ)

shows that there is an exact sequence:
E(Q)/9(E@)) — E(Q)/2EQ) — E(Q)/¢(E(@Q)) — 0.
Since E(Q), ~ Z/2Z,
rank(E(Q)) + dimp, TS(E/Q), = dimg, S?(E/Q) — 1.

Thus » = 0,1, or 2, but r = 1 is conjecturally ruled out: Cassels has shown that TS(E/Q)
carries a nondegenerate alternating form if it is finite, and the existence of such a form
implies that dimp, (TS(E/Q)) is even. !

Proposition 18.2. Let E be as in (18.1). If 2 is not a fourth power modulo p, then
rank(F(Q)) =0 and TS(E/Q)q ~ (Z/27)2.

Remark 18.3. It is, of course, easy (for a computer) to check for any particular prime
whether 2 is a fourth power modulo p, but Gauss found a more efficient test.

From Math 593, we know that the ring of Gaussian integers, Z[i], is a principal ideal
domain. An odd prime p either remains prime in Z[i] or it factors p = (A+iB)(A—iB). In
the first case, Z[i]/pZ][i] is an field extension of F, of degree 2. Therefore p remains prime
if and only if F, doesn’t contain a primitive 4th root of 1. Because F; is cyclic, it contains
an element of order 4 if and only if 4 divides its order. Therefore the second case occurs if
and only if 4]p — 1. We conclude that a prime p =1 mod 4 can be expressed p = A? + B2,
A, B € Z.

Gauss showed that for a prime p = 1 mod 8, 2 is a 4th power modulo p if and only if
8| AB. Therefore, p satisfies the hypotheses of the proposition if p is

17T=12+4% 41=5"44% 97=9>+4% 193="7*+12%..
The proof of this, which is quite elementary, can be found in [S1], p318. Number theorists

will wish to prove that there are infinitely many such primes p (and find their density).

21Recall from Math 593 that a vector space carrying a nondegenerate skew-symmetric form has even
dimension, provided the field is of characteristic # 2. When the form is assumed to be alternating, i.e.,
Y(x,z) = 0 for all x, then the condition on the characteristic is unnecessary.
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It is very difficult to show directly that the rank of an elliptic curve is smaller than the

bound given by the Selmer group. Instead, in this case, one exhibits 3 nontrivial elements
of TS(E/Q)a. They are:

Y2 =4pX* -1, +Y?=2pX*-2.

One can (no doubt) check directly that these three curves are principal homogeneous spaces
for £ :Y?Z = X3 + pZ3, but it can be more easily seen from the proof of Proposition 18.1
([S1] 6.2Db).

Remark 18.4. We should explain what we mean by these curves. Consider, more generally,
the curve

C:Y?=aX*+bX?+cX?+dX +¢

where the polynomial on the right has no repeated roots. Assume that the characteristic is
# 2,3. Then this is a nonsingular affine curve, but its projective closure

C':Y?Z? =aX"+bX°Z + cX*2Z° +dX 7% + eZ*
is singular: on setting ¥ = 1, we obtain the equation
Z?* = homogeneous polynomial of degree 4,

which is visibly singular at (0,0). Recall (p9) that the genus of a plane projective curve of
degree d is

gzw_ S

P singular

For P = (0,0), dp = 2, and so the genus of C"is 3—2 = 1. When one “blows up” the singular
point, one obtains a nonsingular curve and a regular map C” — C” that is an isomorphism
except over the singular point. It is really C” that one means when one writes C'.

We shall prove that the curve
C:Y?*=2—-2pXx*

has no points in Q, but has points in R and Q, for all p. For this we shall need to use the
quadratic reciprocity law. For an integer a not divisible by the prime p, the Legendre symbol
(%) = +1 or —1 according as a is, or is not, a square modulo p.

Theorem 18.5 (Quadratic reciprocity law). For odd primes p,q,

(-

Moreover,

Proof. The theorem surely has more published proofs than any other in mathematics. The
first proofs were found by Gauss. Most introductory books on number theory contain a
proof. O
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Proof. We now prove that
C:Y?*=2—-2pXx*

has no points with coordinates in Q. Suppose (x,y) is a point on the curve. Let z = r/t
with r and ¢ integers having no common factor. Then

5 260 —2prt
y - t4 .

The numerator and denominator on the right again have no common factor, and so y = 2s/t2
for some integer s with

252 = t4 — prt.

Let ¢ be an odd prime dividing s. Then t* = pr* mod ¢, and so (g) = 1. According to the

quadratic reciprocity law, this implies that (19)) = 1. From the quadratic reciprocity law,

(%) = 1, and so all prime factors of s are squares modulo p. Hence s? is a 4th power modulo

p. The equation
252 =t* mod p

now shows that 2 is a 4th power modulo p, which contradicts our hypothesis.

We should also make sure that there is no point lurking at infinity. The projective closure
of C'is

C':Y?7? =27% — 2pX*,

and we have just shown that C’ has no rational point with Z = 1. For Z = 0, the equation
becomes

27 — Xt =0

which clearly has no rational solution. Since the nonsingular version C” of C’ maps to C’,
it can’t have a rational point either. [

The curve C' obviously has points in R. In order to prove that C' has a point in Q, it suffices
(by Hensel’s lemma) to show that the reduction C' of C' modulo the prime ¢ has a nonsingular
point with coordinates in [F,. For ¢ # 2, p, the (affine) curve C has good reduction at ¢, and
the results of the next section will show that it has a point with coordinates in I, (at least
for ¢ not too small). Therefore, C' automatically has a point with coordinates in Q, except
for ¢ = 2, p, and perhaps a few additional small primes. The verification for these fields can
safely be left to the reader (or the reader’s computer).

19. EvrripTic CURVES OVER FINITE FIELDS

As usual, F), is the field Z/pZ with p elements, F is a fixed algebraic closure of IF,,, and Fn
is the (unique) subfield of F with p™ elements. The elements of F,. are the roots of X?" — X
and F,m C Fpn if and only if m|n (see Math 594).
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The Frobenius map; curves of genus 1 over [F,. Let C' be a plane projective curve over
[F,, so that C' is defined by an equation

FX,Y.Z)= > apXYZ' aj€F,
i+j+k=d

fP=(x:y:z2),zy,z2€F, lieson C, then

Z aijkxiyjzk =0.
i+j+k=d
On raising this equation to the pth power, remembering that we are in characteristic p and
that a? = a for all a € F,,, we obtain the equation

Z aijkxipyjpzkp =0,
i+j+hk=d
which says that (27 : y? : 2P) also lies on C'. We therefore obtain a map (z : y : z) +— (2P :
y? : zP) : C'— C, which, being defined by polynomials, is regular. It is called the Frobenius
map.

Proposition 19.1. For any elliptic curve E over F,, H'(F,, E) = 0. Therefore, every
principal homogeneous space for E is trivial.

Proof. Let T be the Galois group of F over F,. We have to show that every continuous
crossed homomorphism f : I' — E(F) is principal.

We first determine the structure of I'. The map a — a” is an automorphism of F, which
we call the Frobenius automorphism, and denote 0. As we noted above, for each n > 1,
[F, has a unique extension of degree n contained in F, namely, F,». Moreover, F,., being
the splitting field of X?" — X, is Galois over F,, and Gal(F,./F,) is generated by o|Fpn.
Therefore, by infinite Galois theory, for each n > 1, I has a unique open subgroup I, of
index n, and I'/T,, is generated by ol',. It follows that ¢ has infinite order, and that I" is the
closure of the subgroup generated by c—we say that o generates I' as a topological group.
Note that for P = (z:y: z) € E(F), and ¢ : E — E the Frobenius map,

o(P)=(aP :y? : 2P) = (ox: 0y :02) = o P.

Now consider a crossed homomorphism f : I' — E(F). The map P +— ¢(P) — P is a
nonconstant regular map £ — E; it therefore induces a surjective?” map E(F) — E(F). In
particular, there exists a P € E(FF) such that ¢(P)—P = f(0), i.e., such that f(o) = cP—P.
Then

f(e®) = f(o) +of(c)=0P —~P+0*P—0oP =0*P - P,

fle")=flo)+of(c"")=0oP—-P+o(c"'P-P)=0c"P—P
Therefore f and the principal crossed homomorphism 7 — 7P — P agree on ¢" for all n.

Because both crossed homomorphisms are continuous, this implies that they agree on the
whole of I". O

22 Any nonconstant regular map ¢ : C — C’ from a connected projective curve to an irreducible curve is
surjective as a map of algebraic curves (this implies that C(k*') — C'(k) is surjective, but not necessarily
that C(k) — C'(k) is surjective): because C' is projective the image of ¢ is Zariski-closed; because C' is
connected, its only proper Zariski-closed subsets are finite; therefore, p(C) # C' = (C) is finite =
»(C) = a single point (because C' is connected) = ¢ is constant.
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Corollary 19.2. A nonsingular projective curve C' of genus 1 over F, has a point with
coordinates in F),.

Proof. According to (17.14), the curve C' is a principal homogeneous space for its Jacobian
E, and according to the Proposition, it is a trivial principal homogeneous space, i.e., C(FF,) #
0. O

I next want to prove the Riemann hypothesis for an elliptic curve, namely, that if N is
the number of points on the elliptic curve £ with coordinates in I, then |N —p—1] < 2,/p.
However, first I'll explain why this statement is called the Riemann hypothesis, which involves
reviewing some of the formalism of zeta functions.

Zeta functions of number fields. First recall that the original (Riemann’s) Riemann zeta

function is
1
Cs)= 1] . => n"°, scomplex, R(s)> 1.

_ s
p prime p n>1

The second equality is an expression of unique factorization:

() =TT =TT (L™ 4 4 7 4 s

P —p

on multiplying out this product, we obtain a sum of terms
() ()" - (%)™ = (o1 - - i)™

Both the sum and the product converge for R(s) > 1, and so ((s) is holomorphic and
nonzero for R(s) > 1. In fact, ((s) extends to a meromorphic function on the whole complex
plane with a simple pole at s = 0. Moreover, the function £(s) = 7~ 2'(£)((s) satisfies the
functional equation £(s) = {(1—s), has simple poles at s = 0, 1, and is otherwise holomorphic.
Since I'(s) has poles at s = 0, —1,—2, =3, ..., this forces ¢ to be zero at s = —2n, n > 0,
n € Z. These are called the trivial zeros of the zeta function.

Conjecture 19.3 (Riemann hypothesis). The nontrivial zeros of ((s) lie on the line

R(s) = 1.

This is perhaps the most famous problem remaining in mathematics.

Dedekind extended Riemann’s definition by attaching a zeta function (x (s) to any number
field K. He defined

Ck(s)=1] ;_ =Y N(a)™®, s complex, R(s)> 1.
p 1-— N(P) s a
The first product is over the nonzero prime ideals in K, and the second is over all ideals in
Ok. The numerical norm Na of an ideal a is the order of the quotient ring Ok /a. The proof
of the second equality uses that every nonzero ideal a has a unique factorization a = []p;"
into a product of powers of prime ideals, and that N(a) = [TN(p;)". Note that for K = Q,
this definition gives back ((s). The function (x(s) extends to a meromorphic function on
the whole complex plane with a simple pole at s = 1. Moreover, a certain multiple x(s)
of it satisfies a functional equation £k (s) = k(1 — s). It is conjectured that (x(s) has its

nontrivial zeros on the line R(s) = %
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Zeta functions of affine curves over finite fields. Consider a plane affine curve
C:f(X,)Y)=0
over the field [F,. In analogy with the above definition, we set

1
Cca = 7T Nea—s’ s >17
€ =T RC)

where p runs over the nonzero prime ideals in F,[C] =4 F,[X,Y]/(f(X,Y)) = F,[z,y|. For
any nonzero prime ideal p of F,[C], the quotient F,[C]/p is finite, and so we can again define
Np to be its order.

Because F,[C]/p is finite and an integral domain, it is a field (and p is maximal). We
define degp to be the degree of F,[C]/p over F,, so that Np = pd¢e?. This allows us to make
a change of variables in the zeta function: when we define

1
Z(C,T) = 1;[ i

then
C(C,s)=2Z(C,p™).

Here Z is a capital zeta. The product [] 1_T+egp converges for all small T', but generally we
simply regard it as a formal power series

Z(C,T) = [](1 4 Tdeev 4 72desp 4 73degd ...y € Z[[T]).
p

In the following, I will often make use of the fact that many of the identities in Math 115
involving power series are valid for power series over any ring. For example, we can define
log(1 +t) to be the power series
U A A

log(l4+t) =t — —+— ——+— — ...

og(1+1) 5737175 ’
and then

2 t3 t4

1
] — _Jog(l —¢) = T
Ogl—t og( t) t+2+3—|—4+

Computation of the zeta function of A'. To fit it into the above scheme, we can regard A’
as the curve Y = 0, and so

Fy[A] = F,[X, Y]/(Y) = F,[X].

The nonzero (prime) ideals on F,[X] are in one-to-one correspondence with the monic (irre-
ducible) polynomials f(X) € F,[X], and so
1
1 —
Z(AT) = 11 Tt

f monic irreducible

Take the log of both sides,
log Z(A',T) = - log(1 — T9®/),
!
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and then the derivatives

z'(T) z:de,g.);]”~Tdegf_1
2Ty — 4 1—Tdef
— Z degf . T(n—f—l)degf—l'
n>0,f

In this power series, the coefficient of 7™~ is 3" deg f, where f runs over all monic irreducible
polynomials f € F,[T] of degree dividing m. Note that deg f|m if and only if all of the roots
of f lie in Fpm, and that, conversely, every element of F,m is the root of a polynomial of
degree dividing m. Therefore, the coefficient of 7™~! is p™, and we have
Z'(T)
— me—l'
Z(r) = 2

On integrating, we find that

P 1
log Z(A'. T) = =1 .
og Z(ALT) = — BT 7

We have shown:

Proposition 19.4. The zeta function of A' has the property that

AYF,m)T™
logZ(Al,T) = ZM
m
and so
1 1
Z(AT) = )
1 —pT

Expression of Z(C,T) in terms of the points of C. Let C be an affine curve over F,,.
As for Al

Z'(C,T) degp - Tdesp~1

Z(C,T) Ep: 1 — Tdegp

= Z deg p .T(n+1)degp/T'

n>0,p

In this power series, the coefficient of T™~! is 3" deg p where p runs over the prime ideals of
k[C] such that degp divides m. But degp =4 [F,[C]/p : F,], and so the condition degp|m
means that there is a homomorphism F,[C]/p < F,m—there will in fact be exactly deg p such
homomorphisms (because F,[C]/p is separable over F,). Conversely, any homomorphism
F,[C] — F,m factors through F,[C]/p for some prime ideal with degp|m. Therefore, the
coefficient of 7™! in the above power series is the number of homomorphisms (of F,-
algebras)
F,[C] — Fym.

But F,[C] =F,[X,Y]/(f(X,Y)), and so a homomorphism F,[C] — F,m is determined by the
images a, b of X,Y", and conversely the homomorphism P(X,Y) — P(a,b) : F,[X, Y] — Fym
determined by a pair a, b € Fpm factors through F,[X,Y]/(f(X,Y)) if and only if f(a,b) = 0.
Therefore there is a natural one-to-one correspondence

{homomorphisms F,[C] — Fyn} £ C(F,m).
We have proved:
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Proposition 19.5. The zeta function of an affine curve C' has the property that

log Z(C,T) ZN —, Ny =#C(Fpm).
In other words,
Tm
Z(C,T)=exp(>_ Np—),
m>1 m
where
T? A
expT =1+T+ o+ +—+
2! n!

Zeta functions of plane projective curves. For a plane projective curve C' (in fact, an
arbitrary curve) over F, one usually defines Z(C,T") to be the power series such that

log Z(C,T) =Y N,,(C Tm Nin(C) = #C(Fpm),

and then one defines
C(Cys)=2Z(C,p™*).
IfC= C() U 01, then

N (C) = N (Co) + N (Cr) — N (Co N Cy),

and so

¢(Co, 8)¢(Ch, 8)

C(C7 S) = C(CO m Cl,S) .

Thus, ((C,s) can also be expressed as a product of terms — Np_

For example,

Ny (PY) = N, (AY) + 1, for all m,

and so
log Z(P', T) = log Z(A', T) + log 7
Therefore
1 1
ZPNT) = ——=Z(A"T) = :
(1) = =724 T) (1—-T)(1—pT)

Similarly, for E an elliptic curve over F, and E*T the affine curve E N {Z # 0},

1

Z(E,T):ﬁ

Z(ET).
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The rationality of the zeta function of an elliptic curve.

Theorem 19.6. Let E be an elliptic curve over F,. Then

AED =0 ma )

Ny = Ny(E).

Remark 19.7. (a) Factor
1+ (N —p— 1T +pT? = (1 —aT)(1 - BT),
so that «a, 3 are algebraic integers such that
N—-p-1l=—-a—-0, aof=p
Then
(1—aT)(1-pT) "

A=myi—pr) ~ &I

log Z(E,T) = log
and so
Np(E)=1+p" —a™ — g™,
Thus, if one knows N, one can find a and 3, and the whole of the sequence

NU(E), Ny(E), N3(E), ... .

(b) With the notation in (a),
(1 —ap™)(1 = Gp™)
(I=p=)A=p'=)

It has simple poles at s = 0 and s = 1, and zeros where p° = « and p® = 3. Write s = o +it.
Then |p°| = p?, and the zeros of ((FE, s) have real part % if and only if o and 3 have absolute

((E,s) =

value p%.
By definition o and 3 are the roots of a polynomial

1+0T +pT?% b=N, —p—1.

If b2 — 4p < 0, then « and (3 are corr}plex conjugates. Since ?heir product is p, this implies
that they each have absolute value pz. Conversely, if |a| = pz = ||, then

[Ny —p =1 =[a+ 8] <2Vp.
Thus, granted Theorem 19.6, the Riemann hypothesis for F is equivalent to the statement

Exercise 19.8. (a) Prove that the zeta function of an elliptic curve E over F, satisfies the
functional equation

C(Ea S) = C(Ea 1-— S)'
(b) Compute the zeta functions for the curve
E:YZ+YZ*=X"-X*Z

over the fields Fy, F3, F5, 7, and verify the Riemann hypothesis in each case. How many
points does the curve have over the field with 625 elements?
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I outline some of the ideas that go into the proof of the theorem. First consider Z(A!, T')
again. By definition

1
1 _

Z(ALT) = ];[1_Tdegf

— H(l+Tdegf+T2degf+T3degf+“.>’

!

where the product is over the monic irreducible polynomials in F,[X]. On multiplying out
we obtain a formal power series that is a sum of terms of the form

T degfi . . Tt deg ft

The coefficient of 7™ is the number sequences (71, f1), ..., (rt, f;) such that 3" r; deg f; = m.
Because unique factorization holds in F,[X], we can identify such a sequence with a monic
polynomial ] f;* of degree m. Therefore, the coefficient of T™ is the number of monic
polynomials in F,[X] of degree m. This is p™, and so

1
ZALT)=> p"T" = :
(ALT)=>"p T
Hence (again),
1 1
ZP'T)= ——=Z(A"T) = :
Now consider an elliptic curve £ over [F,,. Here
1
Z(B,T) = ——=Z(F" T
(E,T) T Z(ENT)
1 1

1—T1;[ 1 — Tdegp’
where the p run through the prime ideals of
F[E*T = F,[X,Y]/(Y? — X? —aX —b).

On multiplying the product out and applying the Riemann-Roch theorem (see below), we
find that

Z(BE,T) =Y d,T™"

where dy = 1 and d,, = N, p:__ll. Therefore,

pr—1

ZT) = 1+ M ™

m>0 b— 1
N 1 1

= - 1
p—l(l—pT 1—T>+

- op—1 ((1—pT)(1—T)> !

(1 =T)(1 = pT)
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Application of the Riemann-Roch theorem. In this subsection, we explain how the Riemann-
Roch theorem leads to the above formula for d,,,. Consider an elliptic curve

E:Y*Z=X3+aXZ?+0b27% abek, A0,
over a field k. Write E*® for the affine curve
Y2=X3+aX +0.
A divisor on FE is a finite sum
D=3 rpi
with 7; € Z and p; either a nonzero prime ideal in k[E?%] or another symbol ps, (the “prime
divisor corresponding to the point at infinity”). A divisor D = Y r;p; is positive if r; > 0

for all . The degree of p is the degree of the field extension [k[C*T]/p : k] if p # poo, and is
1if p = poo. We extend the definition to all divisors by linearity:

deg D = Zri deg p;.

The ring k[E*T] is a Dedekind domain, and so, for each prime ideal p, the localization
k[E*T), is a principal ideal domain with a single prime element (up to associates). Therefore,
corresponding to such a prime ideal, we obtain a valuation ord, : k(E)* — Z—if f € k[E?],
(f) = IIp° (). Similarly, there is a valuation ord,_ : k(E)* — Z measuring the order of
the zero or pole of f at infinity. The divisor of an f € k(E)* is

(f) = Zordp(f)p.

For a divisor D, define
L(D) = {f € k(E)* | () + D > 0} U{0}.

Theorem 19.9 (Riemann-Roch). For any divisor D, L(D) is a finite-dimensional vector
space over k, and if deg D > 1, then

dim L(D) = deg D.

We need to restate this slightly. Fix Dy, and consider the set P(Dy) of all divisors D such
that

(a) D >0,
(b) D ~ Dy, i.e., D = Dy + (f) for some f € k(E)*.
Then
f= Do+ (f) : L(Do) \ {0} — P(Do)

is surjective, and two functions have the same image if and only if one is a constant multiple
of the other. We therefore have a bijection

(L(Do) \ {0})/k* — P(Do).

In the case that £ = [, and deg Dy = m > 1, the Riemann-Roch theorem implies that
P(Dy) has
" -1

qg—1

elements.
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Remark 19.10. The map sending (a, b) in E*T(k) to the ideal p,, =4 (z—a,y—b) C k[E]]
(ideal of all regular functions on E*T zero at (a,b)) is a one-to-one correspondence

E* (k) £ {nonzero prime ideals in k[E*"] of degree 1}.

When £ is algebraically closed, all prime ideals in k[E*] have degree 1, and the definitions
and statements above agree with those in Section 4.

We need two more facts. The degree of a principal divisor (f) is zero, and so the degree
map factors through the quotient group Pic(E) = Div(E)/{(f) | f € k(E)*}. Moreover

PicE 2% 7

is surjective, because p., +— 1. Define
Pic™E = {0 € Pic(E) | degd = m}.
Then
(a) the map E(k) — Pic’(E),
(@:b:1) — pay
(0:1:0) — P
is an isomorphism of abelian groups (cf. 4.7; this again follows from the Riemann-
Roch theorem);

(b) the map Pic’(E) — Pic™(E), 0 +— 0 + mpoo, is a bijection (this is obvious from the
definition of Pic™(E)).

We are now able to derive the formula for d,,, m > 1. With the above terminology,
the coefficient d,,, of T™ is the set of positive divisors on E of degree m. In the discussion
following the Riemann-Roch theorem, we saw that each class in Pic"™(FE) has pp__ll elements,

and there are

#Pic™(E) Y 4#Pic®(B) ¥ 4E®T,) = N,
such classes. Therefore, altogether, there are

positive divisors of degree m.

Proof of the Riemann hypothesis for elliptic curves. Let
We have to show that
b2 —4p <0.

I'll only sketch the proof. The details of what follows can be found in [C2], Sections 24, 25,
and most other books on elliptic curves.

Fix an algebraically closed field k. Consider a nonconstant regular map
p:C— ('

from one irreducible affine curve C' to a second (defined over k). Then ¢ being regular means
that it defines a homomorphism

[ fop:k[C]— k[C]
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from the k-algebra of regular functions on C’ to the k-algebra of regular functions on C.
This map is injective, and so defines map on the fields of fractions

k(C") — k(C),

which realizes k(C') as a finite extension of k(C"). The degree of ¢ is defined to be the degree
of this extension.

Important fact: If k(C) is separable over k(C’), then p~!(P) has deg points for all but
finitely many P € C(k), i.e., if degy = d, then ¢ is “generically” d : 1.
Example 19.11. Consider the map (z,y) — x : E*%(k) — A(k), where £ is the curve

EY? = X* +aX +b.
The map on the rings of regular functions is
Xz k[X] — k[, y] =4 k[X,Y]/(Y? = X? —aX — ).

Clearly k(z,y) = k(z)[va3 + ax + b, and so the map has degree 2. If characteristic k# 2,
then the field extension is separable, and the map is 2 : 1 except over the roots of X?4aX +b.

A nonconstant map ¢ : E — E’ of elliptic curves such that ¢(0) = 0 is called an isogeny.
An isogeny is automatically a homomorphism, and so its fibres ¢=*(P) all have the same
cardinality, which will be deg ¢ if k(F) is separable over k(E').

We need two facts about degrees of isogenies:

(a) deg(p o)) = deg(ep) - deg(1));
(b) deg(p + 1) + deg(p — ) = 2deg(y) + 2deg(v).

The first statement is simply
[F(E) : k(E")] = [k(E) : k(E][K(E') : k(E")]

(see Math 594), and the second has a proof that is similar to the proof of the parallelogram
law for the height function.

The second statement implies that deg : End(E) — Z is quadratic (see 15.6), i.e., that
deg(mep + n) = am* + bmn + cn®,  all m,n € Z,
for certain integers a, b, ¢ depending on ¢ and 1. In fact, on taking (m,n) = (1,0) or (0, 1),
we see that a = degy and ¢ = deg . Now deg(me + nyp) > 0 for all m,n. Hence
ar*+br+¢>0
for all » € Q. From high school algebra, this implies that
b2 — 4ac < 0.

We apply this with ¢ the Frobenius map F — E and v the identity map idg. From the
picture

ka,y) 20D e y)
|2 |2

we see that
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and clearly degidg = 1. Therefore
b —4p <0
where b is such that
deg(p —idg) =degyp — b+ degidpg =p — b+ 1.

But the kernel of ¢ — id is the set of P € E(k) such that ¢(P) = P, i.e., such that
(xP:yP:2P) = (x:y: z), i.e, such that P € E(F,). Therefore (assuming separability),

deg(p —id) = Ny,
and so
The above inequality becomes

(N —p—1)* < 4p,
as required.

A Brief History of Zeta. The story begins, as do most stories in number theory, with
Gauss.

Gauss 1801. Consider the elliptic curve
E:X*+Y*+2°=0
over [F,, p # 3.

If p £ 1 mod 3, then 3 doesn’t divide the order of F;, and so a +— a® is a bijection
Fx — Fx. It follows that (z :y: z) — (2% : y° : 2%) is a bijection from E(F,) onto L(IF,)
where L is the line

L:X+Y+Z=0.

Therefore

#E(Fp> = #L(Fp> =p+ L

If p=1 mod 3, then 4p = A% 4 27B% where A and B are integers, uniquely determined
up to sign. Fix the sign of A by requiring that A =1 mod 3. Then Gauss showed that

#E(F,) =p+1+ A,
Therefore,
[#E(F,) —p— 1] = |A| = [4p — 27B%|> < 2p7,

and so the Riemann hypothesis holds for £ over I, all p # 3. For details, see Silverman
and Tate, pp110-119.

This result is typical for elliptic curves with complex multiplication.
Emil Artin 192/. In his thesis, Artin defined the zeta function of a curve of the form
C:Y? = f(X).

Here F,(C) = F,(X)[v/f], and so F,(C) is analogous to a quadratic extension of Q. He proved
that it is a rational function of p~° and satisfies a functional equation, and he checked the
Riemann hypothesis, at least for a few curves.
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F.K. Schmidt 1925-1950. For a nonsingular projective curve C' over [F,, define
s ™
C(C, S) = Z(C,p ), Z(C, T) = Z Nmﬁ’ Nm = #C(Fpm)
m>1

Using the Riemann-Roch theorem, Schmidt showed (as in the above proof for elliptic curves)
that

P(T)
Z(C,T) = A=T)(1—pT)’ P(T)=1+---€Z[T], degP(T)=2g.
Moreover, .
Z(p—T) =p' T Z(T),
and so
C(1—s) =p () 7((s)
Write

Then the formulas show that

N,, = 1—|—pm—Za§”.
Thus, once one knows a1, . .. , agg, then one knows N, for all m. However, unlike the elliptic
curve case, N; doesn’t determine the a;’s—one needs to know several of the NV,,’s.

Hasse 1933/34. Hasse proved that the Riemann hypothesis is true for elliptic curves.

Weil 1940-1948. In 1940, Weil announced a proof of the Riemann hypothesis for all curves,
i.e., that |a;| = /P for 1 < i < 2g where «; is above. His proof assumed the existence of
a theory of algebraic geometry over arbitrary fields, including the theory of Jacobian and
Abelian varieties, which at the time was known only over C. He spent most of the 1940’s
developing the algebraic geometry he needed, and gave a detailed proof in a book published
in 1948.

Weil 1949/1954. Weil studied zeta functions of some special algebraic varieties, and stated
his famous “Weil conjectures”.

For a nonsingular projective variety V' of any dimension over F,, one can define (as for

curves)
. ™
CV,s)=2ZV,p™®), Z(V,T)= Z Nmﬁ, Ny, = #V(Fpm).
m>1

Weil conjectured that Z(V,T) is a rational function of 7', that a “Riemann hypothesis” holds
for ¢(V, s), and that ((V,s) satisfies a functional equation—see below for exact statements.
He even hinted that one might be able to prove the rationality by developing a cohomology
theory for algebraic varieties over arbitrary fields, analogous to that provided by algebraic
topology over C, and for which a Lefschetz fixed point formula. At the time, this seemed an
outlandish idea.

Duwork 1960. Dwork gave an “elementary” proof that Z(V,T') is a rational function of T

Grothendieck et al 1963/64. Grothendieck defined étale cohomology and, with the help of
M. Artin and Verdier, developed it sufficiently to prove that Z(V,T') is rational and satisfies
a functional equation. The rationality follows from a “Lefschetz fixed point formula”, and
the functional equation from “Poincaré duality” theorem.
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Deligne 1973. Deligne used étale cohomology to prove the remaining Weil conjecture,
namely, the Riemann hypothesis. For this, he received the Fields medal.

In summary, the results of Grothendieck, Artin, Verdier, and Deligne show that, for a
nonsingular projective variety V' over [,

Z(V,T) =

where d = dim V' and P;(T") € Z[T]. Moreover

1

Z(V,—=) = £Tp™?Z(V,T

where x is the self-intersection number of the diagonal in V' x V. Finally (Riemann hypoth-
esis):

P(T) =101 = ayT),  |ag| = p">.
This last statement says that ((V,s) has its zeros on the lines

13 2d -1
590 g

R(s) =

and its poles on the lines

R(s)=0,1,2,... ,d.
Exercise 19.12. (a) Let E be the elliptic curve
E:Y?Z =X’ —4X*Z +162°.

Compute N, =4 #E(F,) for all primes 3 < p < 13 (more if you use a computer).
(b) Let F'(q) be the (formal) power series given by the infinite product

Flg)=q[(1—¢")*Q—¢"")? =q—2¢* - +2¢" +---.
n=1

Calculate the coefficient M, of ¢" in F'(q) for n < 13 (more if you use a computer).

(c) For each prime p, compute the sum M, + N,. Formulate a conjecture as to what
M, + N, should be in general.

(d) Prove your conjecture. [This is probably very difficult, perhaps even impossible, using
only the information covered in the course.]

[[Your conjecture is, or, at least, should be a special case of a theorem of Eichler and

Shimura. Wiles’s big result is that the theorem of Eichler and Shimura applies to virtually
all elliptic curves over Q.]]
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20. THE CONJECTURE OF BIRCH AND SWINNERTON-DYER

Introduction. We return to the problem of computing the rank of E(Q). Our purely
algebraic approach provides only an upper bound for the rank, via the Selmer group, and
the difference between the upper bound and the actual rank is measured by the mysterious
Tate-Shafarevich group. It is very difficult to decide whether an element of S (E/Q) comes
from an element of infinite order, or survives to give a nontrivial element of TS(E/Q)—in
fact, there is no (proven) algorithm for doing this. Clearly, it would be helpful to have
another approach.

~ One idea is that perhaps the rank E(Q) should be related to the orders of the groups
E(F,). For any good prime p, there is a reduction map

E(Q) — E(Fy)

but, in general, this will be far from injective or surjective. For example, if F(Q) is infinite,
then so also is the kernel, and if F(Q) is finite (and hence has order < 18) then it will fail
to be surjective for all large p (because #E(F,) > p+1—2,/p).

Let E be an elliptic curve over Q. For each prime p where E has good reduction, I write
(in contradiction to the notations of the last section)

Ny = #E(Fp)

where E denotes the reduction of F over F,.

In the late fifties, Birch and Swinnerton-Dyer had the idea that if E(Q) is large then this
should force the N,’s to be “large”. Since they had access to one of the few computers
then in existence, they were able to test this experimentally. For P a large number (large,
depending on the speed of your computer), let

f(P) = H%

p<p P

Recall that N, is approximately p. Their calculations led them to the following conjecture.

Conjecture 20.1. For each elliptic curve E over Q, there exists a constant C' such that
lim f(P) = Clog(P)’

where r = rank(E(Q)).

We write the conjecture more succinctly as
f(P) ~ Clog(P)" as P — 0.

Note the remarkable nature of this conjecture: it predicts that one can determine the rank
of E(Q) from the sequence of numbers N,,. Moreover, together with an estimate for the error
term, it will provide an algorithm for finding 7.

Birch and Swinnerton-Dyer were, in practice, able to predict r from this conjecture with
fairly consistent success, but they found that f(P) oscillates vigorously as P increases, and
that there seemed to be little hope of finding C' with an error of less than say 10%. Instead,
they re-expressed their conjecture in terms of the zeta function of F.
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The zeta function of a variety over Q. Let VV be a nonsingular projective variety over
Q. Such a variety is the zero set of a collection of homogeneous polynomials

F(Xo,...,X,) € Q[Xo, ..., X,

Scale each such polynomial so that its coefficients lie in Z but have no common factor, and
let F(Xo,...,X,) € F,[Xo,...,X,] be the reduction of the scaled polynomial modulo p. If
the polynomials £ define a nonsingular variety Vp over [, then we say V' has good reduction
at p, or that p is good for V. All but finitely many primes will be good for a given variety.

For each good prime p we have a zeta function

. v
C(V;ms) = Z(Vp:p )7 lOgZ Vp,T Z#V

and we define

C(Va S) = H C(Vpa S)'

p

Because the Riemann hypothesis holds for V), the product converges for R(s) > d + 1,
d=dimV (cf. the explanation below for the L-series of an elliptic curve).

Let Pt be the point over Q, i.e., Pt = A = PY. For this variety, all primes are good, and

1
1-T

log Z(Pt,,T) = Zl— log

Therefore

¢(Pt,s) H

p

which is just the Riemann zeta function—already an interesting function.
Let V =P". Again all primes are good, and

qn+1 _

#PUE,) = = 1tat e+l g=p",

from which it follows that

C(P",s) = C(s)C(s = 1) - ((s —m)

with ((s) the Riemann zeta function.

Conjecture 20.2 (Hasse-Weil). For any nonsingular projective variety V- over Q, ((V, s)
can be analytically continued to a meromorphic function on the whole complex plane, and
satisfies a functional equation relating ((V, s) with ((V,d+1—s), d = dimV (and, of course,
it is expected to satisfy a Riemann hypothesis, but let’s not concern ourselves with that).

The conjecture is widely believed to be true, but it is known in only a few cases (and the
parenthetical statement is not known for any variety, not even a point). Note that the above
calculations prove it for V' = P".
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The zeta function of an elliptic curve over Q. Let E be an elliptic curve over QQ, and
let S be the set of primes where E has bad reduction. According to the above definition

L+ (N, —p—1p~* +p
C(Ea S) = pl;!s‘ (1_p—s>(1_p1—s)
Gs(s)Cs(s — 1)
LS(S)

where (s(s) is Riemann’s zeta function except that the factors corresponding to the primes
in S have been omitted, and

LS(E, S) = H

pgS

1
L+ (N, —p—1)p=s +pt=2

Write
1+ (Np -p—-1)T +pT2 =(1- O‘pT>(1 - BPT>7

so that
1 1

LS E, S) = .
(£,5) 1;[ L—app= 1= fpp=
As we noted on p 92, the product [], ﬁ converges for R(s) > 1, and so

H 1

-
p 1—p2p~*

converges for R(s) > 3. Because |ap| = p% = |B,|, a similar estimate shows that Lg(F, s)
converges for R(s) > 3.
We want to add factors to Lg(E, s) for the bad primes. Define

1—a, T +pI? a,=p+1—N, pgood

L(T) = 1-1T, if £ has split multiplicative reduction
PR Y 1+ T, if F/ has non-split multiplicative reduction
1, if E has additive reduction.

In the four cases N . .
L) = =2, p;’ Zi’ P
p p p p
#E (Fp)

Thus in each case, L,(p~') = 0, where E™ is the nonsingular part of the reduction of

the elliptic curve modulo p (see the table on p29). Define
1
LEs)=]] ——
7o
where the product is now over all prime numbers. The conductor Ng,q of E is defined to be
11, baa p/» where

Y

£ = fp =1 if £ has multiplicative reduction at p
P71 f, > 2 if E has additive reduction at p, and equals 2 if p # 2, 3.

A formula of Ogg (proved by painful, case by case, checking) states that
fp =o0rd,(A)+1—m,
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where m,, is the number of irreducible components on the Néron model (not counting mul-
tiplicities) and A is the discriminant of the minimum equation of F

Y2 + alXY + agY = X3 + a2X2 + a4X + ag.

See Section 22 below.

Define A(E,s) = Ng//?@(Qﬂ)_SF(s)L(E, s). The following is a more precise version of the

Hasse-Weil conjecture for the case of an elliptic curve.

Conjecture 20.3. The function A(E,s) can be analytically continued to a meromorphic
function on the whole of C, and it satisfies a functional equation

A(E,s) =wA(E,2—5s), w==l.

There is even a recipe for what w should be.

For curves with complex multiplication, i.e., such that End(FE) # Z, the conjecture was
proved by Deuring 1951/55. This case occurs for exactly 9 values of the j-invariant. The
key point is that there is always a “formula” for N, similar to that proved by Gauss for the
curve X3 + Y3 4+ Z3 = 0 (see pl01) which allows one to identify the L-series of E with an
L-series previously defined by Hecke and for which one knows analytic continuation and a
functional equation.

A much more important result, which we’ll spend most of the rest of the term discussing,
is the following. Let

To(N) = { ( .« ) € SLy(2)

c=0 modN}.

Then I'g(N) acts on the complex upper half-plane, and the quotient I'o(/N)\H has the struc-
ture of a Riemann surface. An elliptic curve E over Q is said to be modular if there is a
nonconstant map of Riemann surfaces

Fo(N)\H — E(C)

for some N. Eichler and Shimura (in the fifties and sixties) proved a slightly weaker form of
Conjecture 20.3 for modular elliptic curves.

Recall that a curve is said to have semistable reduction at p if it has good reduction at p
or multiplicative reduction at p, i.e., if the reduced curve doesn’t have a cusp.

Wiles (with the help of Richard Taylor) proved that an elliptic curve with semistable
reduction at all p is modular, and Diamond extended Wiles’s results to elliptic curves having
semistable reduction at 3 and 5.

Remark 20.4. (a) Deuring’s result is valid for elliptic curves with complex multiplication
over any number field. The results of Eichler, Shimura, Wiles, et al. are valid only for elliptic
curves over Q. Even today, little is known about the L-series of elliptic curves over number
fields other than Q.

(b) Both results prove much more than the simple statement of Conjecture 20.3—they
succeed in identifying the function A(E, s).
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Statement of the Conjecture of Birch and Swinnerton-Dyer. Let FE be an elliptic
curve over Q. Let
Y2+ ar XY +a3Y = X° + apaX® + asX + ag

be a minimum equation for E over Q (see Section 22 below), and let
dx
w=—.
2y 4+ a1x + as
Recall that there is a canonical pairing
<> BEQ) xE@Q) —R, <PQ>=h(P+Q)-h(P)-hQ).

We define the discriminant of <, > to be the determinant of the r x r matrix whose i, jth
entry is < P;, P; > where P, ..., P, is a basis for £(Q) modulo torsion:

disc <, >= det(< P, P; >).
It is independent of the choice of the basis {P;}.
Conjecture 20.5 (Birch and Swinnerton-Dyer). For any elliptic curve E over Q,

e (Q LT ) TS =2 1y a1,

where
(x| = order of x (elsewhere written #x );
Q= fE(R) jwl;
¢p = (B(Q) : E°(@)).
Remark 20.6. (a) As we discuss in Section 22, for a modular elliptic curve, all terms in

the conjecture are computable except for the Tate-Shafarevich group, and, in fact, can be
computed by Pari.

(b) Formally, L,(1) = I Nlp, and so the conjecture has an air of compatibility with Con-

jecture 20.1. I don’t know what (if any) is the precise mathematical relation between the
two conjectures.

(c) Let Pi,..., P, be linearly independent elements of F(Q). Then
det(< P, P; >)
(E(Q): X ZP)?

is independent of the choice of Py, ..., P,, and equals

disc <, >
[E(Q)1ors]?
when they form a basis.
(d) The integral [y, |w| makes sense, and, in fact equals (E(Q,) : E'(Qy))/p. The
explanation for the formula is that (see 7.3) there is a bijection E*(Q,) < pZ, under which

w corresponds to the Haar measure on Z, for which Z, has measure 1 and (therefore) pZ,
has measure 1/(Z, : pZ,) = 1/p. Hence,

_ .l — ol = (E(Qp) : EY(Qy)) _ My
Lo, 1= (E@): @) [ = p 2.
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For any finite set S of prime numbers including all those for which E has bad reduction,
define

-1
1

Li(s) = ( n/ rwr) I

peSU{co} E(Qp) p&S Lp(p )
In this, Q, = R when p = co. When p is good,

N,
LipH=-L= (/ w) ,
o) p E(Qp) o

and so the behaviour of Lg(s) near s is independent®® of S satisfying the condition, and the

conjecture of Birch and Swinnerton-Dyer can be stated as:
[TS(E/Q)]disc <, >
[E(Q>tors]2

This is how Birch and Swinnerton-Dyer stated their conjecture.

Li(E,s) ~ s—1)" ass— 1.
S

What’s known about the conjecture of B-S/D. Birch and Swinnerton-Dyer, Stephens,
and many others, have computed all the terms in the conjecture except TS for several
thousand curves. The predicted value of [T'S] turns out to be a square, and, when computed,
the 2 and 3 primary components have the correct order.

Cassels proved that [TS] is a square if finite. Thus, if [T'S,] has order not equal to a square
for some p, then TS is infinite.

Let F and E’ be two elliptic curves over Q, and suppose there is an isogeny £ — E’. Most
of the terms in Conjecture 20.5 differ for the two curves, but nevertheless Cassels was able
to show that if the conjecture if true for one curve, then it is true for the other, i.e., that the
conjecture is compatible with isogenies.

These results of Cassels were interesting applications of Galois cohomology.

For certain elliptic curves over function fields, the conjecture was proved in 1967 (see the
next section).
Thus, by the mid-seventies, the little progress had been made toward proving the conjec-

ture over Q. The Tate-Shafarevich group was not known to be finite for a single curve. In
1974, Tate said:

This remarkable conjecture relates the behaviour of a function L at a point
where it is not at present known to be defined to the order of a group TS which
is not known to be finite.

Coates and Wiles (1977): If E has complex multiplication, and E(Q) is infinite, then
L(E,1)=0.
Birch: For a modular elliptic curve F/Q and a complex quadratic extension K of Q, he

defined a “Heegner point” Py € F(K), and suggested that it should often be of infinite
order.

Gross-Zagier (1983): Proved the formula

h(Prk) = (nonzero)L'(E/K,1).
Thus Pk has infinite order if and only if L'(E/K, 1) # 0.

ZMore precisely, lim, .1 Ls(s)/Ls/(s) = 1 for any two such sets S, S’.
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Let K = Q[\/B], D < 0, be a complex quadratic extension of Q. If E' is the curve
E:Y*Z=X}+aXZ*+b23,
define EX to be the curve
EX . DY?*Z = X3 +aXZ? + 073
—+thus EX becomes isomorphic to E over K. There is an elementary formula:
L(E/K,s) = L(E/Q,s) - L(E®,s).

Bump-Friedberg-Hoffstein (1989): Showed that, given a modular elliptic curve E over Q,
there exists a complex quadratic field K such that L'(E*,1) # 0 (and hence the formula of
Gross and Zagier proves that P has infinite order if L(E/Q, 1) # 0).

Kolyvagin (1988): For a modular elliptic curve E/Q, if Px has infinite order for some
complex quadratic extension K of Q, then F(Q) and TS(E/Q) are both finite.

On combining these results, we find that L(£/Q,1) # 0 = FE(Q) and TS(E/Q) are
finite.

In fact, Kolyvagin proves much more. For example, he shows that [T'S(E/Q)] divides its
conjectured order. To complete the proof of the conjecture of Birch and Swinnerton-Dyer, it
suffices to check the its p-primary component has the correct order for a finite set of primes.

Roughly speaking, this is what was known by 1990.

21. ErLvripTic CURVES AND SPHERE PACKINGS

The conjecture of Birch and Swinnerton-Dyer is expected to hold, not just for elliptic
curves over QQ, but also for elliptic curves over number fields and over certain function fields.
In the second case, the full conjecture has been proved in some important cases, and Elkies
and Shioda have shown that it can be used to recover (at least in dimensions < 1000) most
of the known lattices that give very dense sphere packings, and in certain dimensions, for
example, 33, 54, 64, 80,..., to discover new denser sphere packings.

Let ¢ be a power of the prime p, and let F,(T") be the field of fractions of F,[T]. The
height of a point P of P*(F,(T)) can be defined as for a point of P*(Q): represent the point
as (f(T') : g(T)) where f and g have been chosen to lie in IF,[T] and be relatively prime, and
define

H(P) = max(F,[T] : (f)), (F,[T] : (9)) = max gi°&/ gde9.

The logarithmic height is
h(P) = log q - max{deg f,degg}
If p # 2,3, an elliptic curve E over F,(7") can be written
Y27 = X} 4+ a(T)X?Z +W(T) 2, a,bcF,[T], A(T)=4a®+27b* # 0.
For each monic irreducible polynomial p(7) in F,[T"], we have a homomorphism a +— a :
F,[T] — F,[T]/(p(T)), and so we obtain a curve
E:Y?Z=X*+aX*Z+bZ* a,beF,[T]/(p(T)),

over the field F,[T']/(p(T)). All the terms that go into the conjecture of Birch and Swinnerton-
Dyer in the number field case can be defined here.



ELLIPTIC CURVES 107

More generally, let K be a finite extension of F,(7"). There will exist a nonsingular
projective curve C such that F (1) = F,(C). As we discussed on p102,

I12, (1 — wiT)
(L —T)(1—ql)
Now consider a constant elliptic curve E over K, i.e., a curve defined by an equation

E:Y*Z=X3+aXZ?4+b273

Z(C,T) = wil = ¢, g = genus(C).

with the a,b € F, C K. Let
(1 — OélT)(l — OéQT)

ZED =T

|| = % = |as].

Proposition 21.1. For a constant elliptic curve E over K = F,(C) (as above), the conjec-
ture of Birch and Swinnerton-Dyer is equivalent to the following statements:

(a) the rank of E(K) is equal to the number of pairs (i, j) such that o; = wj;

(b) [TS(E/K)]disc <,>= ¢ Tla,0,(1 = 2).
Proof. Elementary, but omitted. [
Theorem 21.2. In the situation of the proposition, the conjecture of Birch and Swinnerton-
Duyer is true.

Proof. Tate (1966) proved statement (a) of the Proposition, and I proved statement (b) in
my thesis (1967). O

In fact, the conjecture of Birch and Swinnerton-Dyer is true under the weaker hypothesis
that j(E) € F, (Milne 1975), for example, for all curves of the form

Y?Z = X3 +b7° beK.

Sphere packings. ?* As we noted in (16.6) pairs consisting of a free Z-module of finite rank
L and a positive definite quadratic form g on V =4 L®R are of great interest. By Sylvester’s
theorem, we can choose a basis for V' that identifies (V,¢) with (R", X7 + --- + X?2). The
bilinear form associated with ¢ is

<z,y>=q(r +y) — q(x) — q(y)-
Given such a pair (L, g), the numbers one needs to compute are

(a) the rank r of L;
(b) the square of the length of the shortest vector

m(L) = inf <v,v>;
ve L, v#0

(c) the discriminant of L,
disc L = det(<e;, e;>)
where eq,... , e, is a basis for L.

24The best reference for this is Oesteré’s Bourbaki talk (Astérisque, 189/190, 1990). There are some
uncorrected misprints in the next two pages.
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The discriminant is independent of the choice of a basis for L. Let
~(L) = m(L)/ disc(L)*.

The volume a fundamental parallelopiped for L is v/disc L. The sphere packing associated
with L is formed of spheres of radius % m(L), and therefore its density is

d(L) = 27" by (L)}

where b, = "/2/T(“£2) is the volume of the r-dimensional unit ball. To maximize d(L), we
need to maximise y(L).

Let E be a constant elliptic curve over a field F,(C') as above, and let L = E(Q)/E(Q)tors
with the quadratic form ¢ = 2h. If we know the w; and a;, part (a) of Theorem 21.2 gives
r, and part (b) gives an upper bound for disc L:

disc <, >= ¢ [[ (1—%)/&8} <q¢ [] -

aﬁéw]- ¢ O‘i#w]'

ﬁ).

0%
Finally, an easy, but nonelementary argument, shows that
m(L) = 2[C(k)]/[E(k)]

for all finite £ D F, (and [*] = Card(x)). The point is that an element P of E(K) defines

amap u: C — FE, and ?L(P) is related to the degree of u. Thus, we get a lower bound for
m(L) in terms of the w; and «;.

Example. Consider the curve
C - xat! 4 yatl 4 zatl —
over F,2 (note, not over Fy).

Lemma 21.3.

(a) The curve C is nonsingular, of genus g = —Q(q;”.

(b) #C(Fpe) = ¢* + 1.

_ (14q7)9(a—1)
() Z(C.T) = trya—gry-

Proof. (a) The partial derivatives of the defining equation are X9, Y9, Z% and these have
no common zero in P2, Therefore, the curve is nonsingular, and so the formula on p9 shows
that it has genus ¢(q — 1)/2.

(b) The group IF; is cyclic of order ¢*> — 1 = (¢ + 1)(¢ — 1), and Fx is its subgroup of
order ¢ — 1. Therefore, as = runs through F2, 297! takes the value 0 once, and each value
in Fy ¢+ 1 times. A similar remark applies to y?*" and 29%'. We can scale each solution of
X+t pyatl 4 Zatt — (5o that 2 = 0 or 1.

Case 1: x = 1, 1 + y9™! # 0. There are ¢> — g — 1 possibilities for y, and then ¢ + 1
possibilities for z. Hence (¢*> — q — 1)(¢+ 1) = ¢* — 2¢ — 1 solutions.

Case 2: x =1, 1 + 9% = 0. There are g + 1 possiblities for y and one for z. Hence ¢ + 1
solutions.

Case 3: x = 0. We can take y = 1, and then there are ¢ + 1 possibilities for z.

In sum, there are ¢® + 1 solutions.
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(c) We know that
2g
#OF) =14¢ - > w.
i=1
Therefore 327, w; = ¢> — ¢* = —2gq. Because |w;| = g, this forces w; = —¢. [
For all ¢, it is known that there is an elliptic curve E over Fgp, such that E(F,) has
q* 4+ 2q + 1 elements (the maximum allowed by the Riemann hypothesis). For such a curve
(1+47)?
(= T)(1 - ¢T)
Proposition 21.4. Let L = E(K)/E(K )os with E and K =F,(C) as above. Then:

(a) The rank r of L is 2q(q — 1);

(b) m(L) >2(q —1);
(( ¢) [TS(E/K)]disc(L) = ¢ia=1;

d) (L) = 2(¢—1)/\/q
Proof. (a) Since all o; and w; equal —g, if follows from (21.2a) that the rank is 2 x 29 =
2q(q — 1).
(b) We have

Z(E,T) =

CE)] _ ¢*+1
m(L) > = >q— 2.
2 EEa] "
(c) This is a special case of (21.2), taking count that our field is Fp (not F,) and g =

q(q—1)/2.

(d) Follows immediately from the preceding. O

Remark 21.5. (a) Gross and Dummigan have obtained information on the Tate-Shafarevich
group in the above, and a closely related, situation. For example, TS(E/K) is zero if ¢ = p
or p?, and has cardinality at least p?’ =1 /2 if g =

(b) For ¢ = 2, L is isomorphic to the lattice denoted Dy, for ¢ = 3, to the Coxeter-Todd
lattice K19, and for ¢ = 3 it is similar to the Leech lattice.

The best description of the work of Elkies and Shioda on the application of elliptic curves
to sphere packings is Oesterlé’s Séminaire Bourbaki talk, 1989/90, no. 727 (published in
Asterisque).

Exercise 21.6. Consider E : Y2Z +Y Z? = X3,
(a) Show that E is a nonsingular curve over F.
(b) Compute #E(F4), Fy being the field with 4 elements.

(c) Let K be the field of fractions of the integral domain F4[X,Y]/(X® 4+ Y5+ 1), and let
L = E(K)/E(K )os considered as a lattice in V' = L ® R endowed with the height pairing.
Compute the rank of L, m(L), and (L).

[[This exercise is becomes more interesting when X° +Y?® +1 is replaced by X? + Y3+ 1.]]

Solution to Exercise 16.10. There are detailed solutions in Knapp, p110-114. Consider
the curve Y2 = X? — 4X, and take a« = —2, 3 =0, v = 2. Suppose P is a point of infinite
order on E—we may assume P ¢ 2F(Q). The images of the 2-torsion points (—2,0), (0,0),
(2,0) under ¢y are (1,1), (1,0), and (0,1). Since these fill out all possible nonzero values
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of 9, after possibly replacing a point P of infinite order by P + @, 2Q = 0, ¢2(P) will be

(0,0). If poo(P) # 0 (i-e., poo(P) # (+,+)) then o (P) = (4, —), which means that
r+2=01, r=-U1 z—-2=-01

where P = (z : y : 1) and OJ denotes a square. Subtracting the first two equations gives
2 = O+ 0. If these squares have even denominators, one finds that

0=0+0 mod38

with both squares odd integers, which is impossible. Thus the squares x + 2 and x have odd
denominators. Hence
where the first square (hence also the second) has odd denominator. On clearing denomina-

tors, one finds that
2m?=—-0+0 mod 8

with m odd and all terms integers. This is impossible. Hence ¢ (P) = 0, and so P €
2E(Q)——contradiction.

22. ALGORITHMS FOR ELLIPTIC CURVES

The general Weierstrass equation of an elliptic curve E over a field k is
Y2Z 4+ a1 XYZ 4+ asYZ? = X3+ ax X?Z + an X 7% + ag Z°.

One attaches to the curve the following quantities:

bQ = CL% -+ 4@2 Cy = b% — 24(94
b4 = aiaz+ 2@4 Cg — —b% -+ 366264 — 21666
be = a3+ 4dag [Silverman (1st printing) p46
bs = boag — arazaq + azai — a? has cg = +b3 + - -]
A = —b%bg — 862 - 276% + 9626466 j = Ci/A
The curve is nonsingular if and only if A # 0. The differential w = m is invariant

under translation. A Weierstrass equation for an elliptic curve E' is unique up to a coordinate
transformation of the form

r=ul'+r y=uly +sur’+t, urstcek u#0.
The quantities A, j, w transform according to the rules:
uPA = A, =4 W =uw.

Two curves become isomorphic over the algebraic closure of k if and only if they have the
same j-invariant. When £ has characteristic # 2,3, the terms involving a, a3, as can be
eliminated from the Weierstrass equation, and the above equations become those of (5.3).

A minimum Weierstrass equation for an elliptic curve E over Q is an equation of the above
form with the a; € Z and A minimal. It is unique up to a coordinate transformation of the
above form with r, s, t,u € Z and u € Z* = {£1}.

There is an algorithm (due to Tate) for computing the minimum Weierstrass equation,
discriminant, conductor, j-invariant, the fibres of its Néron model, etc. of an elliptic curve
over Q, which has been implemented in computer programs, for example, in the program
Pari, which is specifically designed for calculations in algebraic number theory (including
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elliptic curves). In the following, I explain how to use Pari as a supercalculator. You can
also program it, but for that you will have to read the manual.

To start Pari on the Suns, type:

gp (why, I don’t know).?

An elliptic curve is specified by giving a vector e=[al,a2,a3,a4,a6]
smallinitell(e) Computes the 13-component vector

[al, asz, s, a4, as, b1, by, bg, bs, c4, c, Aaj]

addell(e,z1,z2) Computes the sum of the points z1=[x1,y2] and z2=[x2,y2].
In the following operations, e is usually required to be the output of smallinitell.

globalred(e) Computes the vector [N,v] where N is the conductor of the curve and
v=[u,r,s,t] is the coordinate transformation giving the Weierstrass minimum model with
a;=0or1,a; =0,1,—1, and ag = 0, 1. Such a model is unique.

chell(e,v) Changes e to €', where € is the 13-component vector corresponding to the
curve obtained by the change of coordinates v="[u,r,s,t].

Some of the remaining functions require the curve e to be in minimal Weierstrass form.

anell(e,k) Computes the first k of the a,’s for the curve (the coefficients of n=% in the
Dirichlet series, e.g., for a good p, N, =p+1 —ay).

apell(e,p) Computes a,.

hell(e,z) Computes the Néron-Tate canonical height of the point z on e.

localred(e,p) Computes the type of the reduction at p using Kodaira’s notation ([S1,
p359]. It produces [f,n,...] where f is the exponent of p in the conductor of e, n = 1
means good reduction (type Iy), n = 2,3,4 means reduction of type ILIILIV, n = 4 + v
means type I, and —1, —2 etc. mean I* II* etc..

lseriesell(e,s,N,A) Computes the L-series of e at s. Here N is 4+ the conductor
depending on the sign of the functional equation (i.e., the w), and A is a cutoff point for the
integral, which must be close to 1 for best speed (see the reference below).

pointell(e,z) Computes the coordinates [x,y] where z = p(z) and y = ¢'(2) (I think).
powell(e,n,z) Computes n times the point z on e.

To quit, type \¢q (supporting my conjecture that no two programs written by Unixphiles
terminate with the same command).

EXAMPLE: gp

? e=[0,-4,0,0,16] Defines the elliptic curve Y2 = X3 — 4X? + 16 (see Exercise
19.12).

%1=[0,-4,0,0,16]
? smallinitell(e)

%2=[0,-4,0,0,16,-16,0,64,-256,256,-9728,-45056,-4096/11] For example,
A = —45056.

? globalred(%2)

%3=[11, [2,0,0,4],1] Computes the minimum conductor and the change of coordi-
nates required to give the minimal equation.

25Maybe Go Pari?
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? chell(%2,[2,0,0,4])

%4=[0,-1,1,0,0,-4,0,1,-1,16,-152,-11,-4096/111]
Computes the minimal Weierstrass equation for £, Y? +Y = X3 — X2, which now has
discriminant —11 but (of course) the same j-invariant.

? anell(%4,13)
»5=[01,-2,-1,2,1,2,-2,0,-2,-2,1,-2,4] In particular,

ap=g¢ p+1—N,=—1,1,-2,14 for p=3,5,7,11,13.

? localred(%4,2)
%6 = [0,1,...] So E now has good reduction at 2.
? localred(%4,11)

%6 = [1,5,...]1 So F has bad reduction at 11, with conductor 11" (hence the singularity
is a node), and the Kodaira type of the special fibre of the Néron model is I;.

Pari is available (free!) by anonymous ftp from math.ucla.edu—it runs on PC’s and Macs.
Henri Cohen, the main author of Pari, has also written the best book on computational
algebraic number theory “A Course in Computational Algebraic Number Theory”, which
explains most of the algorithms incorporated into Pari.

23. THE RIEMANN SURFACES X((N)

We wish to understand the L-series of an elliptic curve E over Q, i.e., we wish to understand
the sequence of numbers

Ny, N3,Ns,Ny7,... . N,,...  N,=#E(F,).

There is no direct way of doing this. Instead, we shall see how the study of modular curves
and modular forms leads to functions that are candidates for being the L-series of an elliptic
curve over Q, and then we shall see how Wiles showed that the L-series of (almost all) elliptic
curves over Q do arise from modular forms.

The notion of a Riemann surface. Let X be a connected Hausdorff topological space.
A coordinate neighbourhood for X is a pair (U, z) with U an open subset of X and z
a homeomorphism of U onto an open subset of the complex plane C. Two coordinate
neighbourhoods (Uy, z1) and (Us, 22) are compatible if the function

Z1 © 22_1 : ZQ(Ul N UQ) — Zl(Ul N UQ)

is holomorphic with nowhere vanishing derivative. A family of coordinate neighbourhoods
(Ui, zi)ier 1s a coordinate covering if X = UU; and (U;, #;) is compatible with (Uj, z;) for all
pairs (i,j) € I x I. Two coordinate coverings are said to be equivalent if the their union
is also a coordinate covering. This defines an equivalence relation on the set of coordinate
coverings, and we call an equivalence class a complex structure on X. A Hausdorff topological
space X together with a complex structure is a Riemann surface.

Let U = (U;, %) be a coordinate covering of X. A function f : U — C on an open subset
U of X is said to be holomorphic relative to U if f o z;' : (U N U;) — C is holomorphic
for all ©+ € I. If f is holomorphic relative to one coordinate covering, then it is holomorphic
relative to every equivalent covering, and so it will be said to be holomorphic for the complex
structure on X.
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Recall that a meromorphic function on an open subset U of C is a holomorphic function
f on U — = for some discrete subset = C U that has at worst a pole at each point of =, i.e.,
such that for each a € =, there exists an m such that (z — a)™ f(z) is holomorphic in some
neighbourhood of a. A meromorphic function on an open subset of a Riemann surface is
defined similarly.

A map f : X — X’ from one Riemann surface to a second is holomorphic if g o f is
holomorphic whenever g is a holomorphic function on an open subset of X’. For this, it
suffices to check that for every point P in X, there are coordinate neighbourhoods (U, z) of
P and (U, 2') of f(P) such that 2’0o foz™' : 2(U) — 2/(U’) is holomorphic. An isomorphism
of Riemann surfaces is a bijective holomorphic map whose inverse is also holomorphic.

Example 23.1. Any open subset of C is a Riemann surface with a single coordinate
neighbourhood—U itself with the identity function z.

Example 23.2. Let X be the unit sphere
So: XP+Y?+ 2% =1
in R3, and let P be the north pole (0,0,1). Stereographic projection from P is a map

T+ 1y

(x,y,2) — 1 X —-P—C.

—Z

Take this to be a coordinate neighbourhood for X. Stereographic projection from the south
pole S gives a second coordinate neighbourhood. These two coordinate neighbourhoods
define a complex structure on X, and X together with the complex structure is called the
Riemann sphere.

Example 23.3. Let X = R?/Z%. For any 7 € H, the homeomorphism
(z,y) — 27 +y :R*/Z* - C/Zt + Z

defines a complex structure on X. The Riemann surfaces corresponding to 7 and 7’ are
isomorphic if and only j(7) = j(7') (see Section 10). In particular, this shows that there are
uncountably many nonisomorphic complex structures on the topological space X.

Quotients of Riemann surfaces by group actions. We shall need to define Riemann
surfaces as the quotients of other (simpler) Riemann surfaces by group actions. This can be
quite complicated. The following examples will help.

Example 23.4. Let n € Z act on C by z +— z + n. Topologically C/Z is a cylinder. We
can give it a complex structure as follows: let 7 : C — C/Z be the quotient map; for any
P e C/Z and Q € f~'(P) we can find open neighbourhoods U of P and V of @ such that
7 : U — V is a homeomorphism; take any such pair (U, 7=! : U — V) to be a coordinate
function.

For any open U C C/Z, a function f : U — C is holomorphic for this complex structure
if and only if f o 7 is holomorphic. Thus the holomorphic functions f on U C C/Z can
be identified with the holomorphic functions g on #7!(U) invariant under Z, i.e., such that
9(z+1) = g(2).

For example, q(z) = €™ defines a holomorphic function on C/Z. In fact, it gives an
isomorphism C/Z — C* whose in inverse C* — C/Z is (by definition) (27i)~" - log.
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Example 23.5. Let D be the open unit disk {z | |z| < 1}, and let A be a finite group acting
on D. The Schwarz lemma implies that Aut(D) = {z € C | |z| = 1} = R/Z, and it follows
that A is a finite cyclic group. Let z +— (z be its generator and suppose that ¢ has order m,
i.e., (™ = 1. Then 2™ is invariant under A, and so defines a function on A\ D, which in fact
is a homeomorphism A\D — D, and therefore defines a complex structure on A\D.

Let 7 : D — A\D be the quotient map. Then f — fom identifies the space of holomorphic
functions on U C A\ D with the space of holomorphic functions on 7=(U) such that f((z) =
f(z), i.e., which are of the form f(z) = h(z™) with h holomorphic. Note that if 7(Q) = P,
then ordp(f) = Lordg(f o).

Let I" be a group acting on a Riemann surface X. A fundamental domain for I' is a
connected open subset D of X such that

(a) no two points of D lie in the same orbit of I';
(b) the closure D of D contains at least one element from each orbit.

For example,
D={zeC|0<R(2) <1}
is a fundamental domain for Z acting on C (as in 23.4), and
Dy={zeD|0<argz<7/n}

is a fundamental domain for Z/nZ acting on the unit disk (as in 23.5).

The Riemann surfaces X (I'). Let I' be a subgroup of finite index in SLy(Z). We want
to define the structure of a Riemann surface on the quotient I'\H. This we can do, but the
resulting surface will not be compact. Instead, we need to form a quotient I'\H* where H*
properly contains HI.

The action of SLa(Z) on the upper half plane. Recall that SLy(Z) acts on H = {z | &(2) > 0}
according to
a b az+b
( c d ) T etd

-1 _01 ) acts trivially on H, and so the action factors through

Note that —1 = ( 0

PSLy(Z) = SLy(Z)/{=1}.

Let
0 —1 -1
S_<1 0),8052—7,
and
11
Tz(o 1>,soTz:z+1.
Then

S? =1, (ST)*=1in PSLy(Z).
Proposition 23.6. Let

1 1
D:{ZE]HIH,Z]>1, —§<§R(z)<§}.
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(a) D is a fundamental domain for SLy(Z); moreover, two elements z and z' of D are in

the same orbit if and only if
(i) R(z) =+5 and 2/ =z+1 (so 2/ =Tz or z =T%');
(ii) |2] =1 and 2 = —1/z (= Sz).

(b) For z € D, the stabilizer of z is # {*I} if and only if = = i, in which case the
stabilizer is <S>, or p = €2™/6 in which case the stabilizer is <T'S>, or p?, in which
case it is <ST>.

(¢) The group PSLa(Z) is generated by S and T.

Proof. Let I" =< S, T>. One first shows that I'D = H, from which (a) and (b) follow
easily. For (c), let v € SLo(Z), and choose a point 2o in D. There exists a 4" in I” such that

vz0 = 7’20, and it follows from (b) that 4/y~! = 1. For the details, see (Serre, Course on

Arithmetic, VII.1.2). O
Remark 23.7. Let I be a subgroup of finite index in SLy(Z), and write
SLy(Z) =Ty U...UT, (disjoint union).

Then D' = U~; D satisfies the conditions to be a fundamental domain for I', except that it
won’t be connected. However, it is possible to choose the 7; so that the closure of D’ is
connected, in which case the interior of the closure will be a fundamental domain. for I'.

The extended upper half plane. The elements of SLy(Z) act on P!(C) by projective linear
transformations,

( a b ) (21 22) = (az1 + bze : cz1 + dz2).

c d
Identify H, @, and {oo} with subsets of P!(C) according to
— (2:1) z€eH
— (r:1) reQ.
< (1:0)

The action of SLy(Z) stabilizes H* =4 HU QU {co}. For example, for z € H,

az—i—b.
cz+d’

as usual, and for r € Q,

(((1; b)(r:l):(ar+b:cr+d):{(3:13:1) 7«#_%’

d 00 r=—

(0 0)o—wa={ & 20

Thus in passing from H to H*, we have added one additional SLy(Z) orbit. The points in
H* not in H are often called the cusps.

and, finally,

We make H* into a topological space as follows: the topology on H is that inherited from
C; the sets

{z|S(z) > M}, M>0
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form a fundamental system of neighbourhoods of co; the sets
{z]|z=(a+ir)| <r}U{a}

form a fundamental system of neighbourhoods of a € Q. One shows that H* is Hausdorff,
and that the action of SLy(Z) is continuous.

The topology on I"'\H*. Recall that if 7 : X — Y is a surjective map and X is a topological
space, then the quotient topology on Y is that for which a set U is open if and only of
771(U) is open. In general the quotient of a Hausdorff space by a group action will not be
Hausdorff, even if the orbits are closed—one needs that distinct orbits have disjoint open
neighbourhoods.

Let I be a subgroup of finite index in SLy(Z). One can show that such a I' acts properly
discontinuously on H, i.e., that for any pair of points x,y € H, there exist neighbourhoods
U of x and V of y such that

{yel[UNV #0}

is finite. In particular, this implies that the stabilizer of any point in H is finite (which we
knew anyway).

Proposition 23.8.  (a) For any compact sets A and B of H, {y € I' | yYAN B # 0} is

finite.
(b) Any z € H has a neighbourhood U such that
~NUNU # ()
only if vz = z.

(¢) For any points x,y of H not in the same I'-orbit, there exist neighbourhoods U of x
and V of y such that YUNV =0 for all v € T

Proof. (a) This follows easily from the fact that I' acts properly discontinuously.

(b) Let V' be compact neighbourhood of z. From (a) we know that there is only a finite
set {71,...,7} of T such that VN~V # 0. Let v1,...,7s be the v,’s fixing z, and for each
1 > s, choose disjoint neighbourhoods V; of z and W; of v;z, and set

U=VnN(NisVi Ny W5).

For i > s, v;U C W;, which is disjoint from V;, which contains U.

(¢) Choose compact neighbourhoods A of x and B of y, and let 71, ... , 7, be the elements
of ' such that ;AN B # (). We know v;x # y, and so we can find disjoint neighbourhoods
U; and V; of v;x and y. Take

U=An~y'Un...0ny, 0, V=BnVin...nV,.
O
Corollary 23.9. The space I'\H is Hausdorff.

Proof. Let x and y be points of H not in the same I-orbit, and choose neighbourhoods U and
V of x and y as in (c) of the last proposition. Then I'U and I'V" are disjoint neighbourhoods
of 'r and I'y. O

In fact, I'\H* will be Hausdorff, and compact.
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The complex structure on I'g(/NV)\H*. The subgroups of SLy(Z) that we shall be espe-
cially interested in are
a b
ro) ={ (4 4]
We let I'g(1) = SLa(Z).

For zy € H, choose a neighbourhood V' of zy such that

c=0 modN}.

"yVﬂV#@ = Y20 = %0,

and let U = 7(V)—it is open because 71U = UyV is open.

If the stabilizer of zp in I'g(N) is £1, then 7 : V' — U is a homeomorphism, with inverse
¢ say, and we require (U, ¢) to be a coordinate neighbourhood.

If the stabilizer of zo in I'g(N) is # {£1}, then it is a cyclic group of order 2m with m = 2
or 3 (and its stabilizer in I'o(N)/{%1} has order 2 or 3)—see (23.6b). The fractional linear
transformation
zZ— 20

ANH—D, z+— —
zZ— 20

carries zp to 0 in the unit disk D. There is a well-defined map ¢ : U — C such that

o(m(z)) = A(z)", and we require (U, ) to be a coordinate neighbourhood (cf. Example
23.5).

Next consider zy = 0o. Choose V' to be the neighbourhood {z | &(z) > 2} of 0o, and let
U=n(V). If

zeVnqyV, ”yz(i 2>€F0(N),

then
3(2) < 1 1
- lez +d]? ~ ||?)S(2) ~ 2|c]?

1 m

and so there is a well-defined map ¢ : U — C such that ¢(7(2)) = €*™*, and we require
(U, ¢) to be a coordinate neighbourhood (cf. Example 23.4).

For zp € Q, we choose a 3 € SLy(Z) such that (3(zp) = oo, and proceed similarly.

and so ¢ = 0. Therefore

Proposition 23.10. The coordinate neighbourhoods defined above are compatible, and there-
fore define on T'o(N)\H* the structure of a Riemann surface.

Proof. Omitted. [

Write Xo(N) for the Riemann surface I'o(V)\H*, and Y,(V) for its open subsurface
o(N)\H.
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The genus of X((N). The genus of a Riemann surface can be computed by “triangulating”
it, and using the formula

2—-29=V -FE+F

where V' is the number of vertices, E is the number of edges, and F' is the number of faces.
This, presumably, is the original definition of the genus. For example, the sphere may be
triangulated by projecting out from a regular tetrahedron. Then V =4, F =6, and F = 4,
so that g = 0 as expected.

Proposition 23.11. The Riemann surface Xo(1) has genus zero.

Proof. One gets a fake triangulation of the sphere by taking taking as vertices three points
on the equator, and the upper and lower hemispheres as the faces. This gives the correct
genus

2=3-3+2

but it violates the usual definition of a triangulation, which requires that any two triangles
intersect in a single side, a single vertex, or not at all. It can be made into a valid triangulation
by adding the north pole as a vertex, and joining it to the three vertices on the equator.

One gets a fake triangulation of Xy(1) by taking the three vertices p, ¢, and oo and the
obvious curves joining them (two on the boundary of D and one the nimaginary axis from
i to 00). It can be turned into a valid triangulation by adding a fourth point not on any of
these curves, and joining it to p, 7, and co. [

For a finite mapping 7 : Y — X of compact Riemann surfaces, the Hurwitz genus formula
relates the two genuses:

29y —2=(29x —2)m+ Y _(eg — 1).
QeYy

Here m is the degree of the mapping, so that 7—!(P) has m elements except for finitely many
P, and eg is the ramification index, so that eg = 1 unless at least two sheets come together
at @ above m(Q)) in which case it is the number of such sheets.

For example, if E is the elliptic curve
E:Y’Z=X*+aXZ?+0b7% a,beC, A0,

and 7 is the map
00+ 00, (r:y:2)— (v:2): E(C) — PYC)

then m = 2 and e = 1 except for () = oo or one of the points of order 2 on £, in which
case eg = 2. This is consistent with F(C) having genus 1 and P!(C) (the Riemann sphere)
having genus 0.

The Hurwitz genus formula can be proved without too much difficulty by triangulating Y
in such a way that the ramification points are vertices and such that the triangulation of Y
lies over a triangulation of X.

Now one can compute the genus of Xy(N) by studying the quotient map Xo(N) — Xo(1).
The only (possible) ramification points are those I'g(1)-equivalent to one of i, p, or co.
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Explicit formulas can be found in Shimura, Arithmetic Theory of Automorphic Functions,
pp23-25. For example, one finds that, for p a prime > 3,

n—1 ifp=12n+1
genus(Xo(p)) =< n ifp=12n+512n+7
n+1 if p=12n+ 11.

Moreover,

g=0 if N=1,...,10,12,13,16,18,25;
g=1 if N=11,14,15,17,19,20,21,24, 27,32, 36,49
g=2 if N =22 23 26,2829, 31,37,50.

Exercise 23.12. (a) For a prime p, show that the natural action of Iy(p) on P!(Q) has only
two orbits, represented by 0 and oo = (1 : 0). Deduce that X,(p) \ Yo(p) has exactly two
elements.

(b) Define A(2) = A(Zz+7Z) (see p51), so that A is a basis for the C-vector space of cusp
forms of weight 12 for I'g(1). Define Aj1(2) = A(11z), and show that it is a cusp form of
weight 12 for I'g(11). Deduce that A - Ay is a cusp form of weight 24 for T'g(11).

(c) Assume Jacobi’s formula:
AG) = 202 [10 - ¢,
n=1
(¢ = €*™#), and that Sy(I'9(11)) has dimension 1. Show that
P =g 10 a0 -2

is a cusp form of weight 2 for I'g(11). [Hint: Let f be a nonzero element of Sy(I'g(11)), and
let g = A - Aq;. Show that f1?/g is holomorphic on H* and invariant under T'o(1), and is
therefore constant (because the only holomorphic functions on a compact Riemann surface
are the constant functions). The only real difficulty is in handling the cusp 0, since I have
more-or-less ignored cusps other than co.]

24. Xo(N) AS AN ALGEBRAIC CURVE OVER Q

In the last section, we defined compact Riemann surfaces X(/V). A general theorem states
that any compact Riemann surface X can be identified with the set of complex points of a
unique nonsingular projective algebraic curve?® C' over C. However, in general C' can’t be
defined over Q (or even Q*)—consider for example a Riemann surface C/A whose j-invariant
is transcendental-—and when C' can be defined over QQ, in general, it can’t be defined in any
canonical way—consider an elliptic curve E over C with j(E) € Q.

In this section, we’ll see that Xy(/N) has the remarkable property that it is the set of
complex points of a canonical curve over Q.

26The inconsistency between “surface” and “curve” is due to the analysts inability to count.
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Modular functions. For a connected compact Riemann surface X, the meromorphic func-
tions on X form a field of transcendence degree 1 over C.

For a subgroup I of finite index in SLy(Z), the meromorphic functions on I'\H* are called
the modular functions for I'. If m : H — ['\H* is the quotient map, then g — 7 o g identifies
the modular functions for I' with the functions f on H such that

(a) f is meromorphic on H;

(b) for any v € T, f(v2) = f(2);
(c) f is meromorphic at the cusps (i.e., at the points of H* \ H).

The meromorphic functions on X;(1). Let S be the Riemann sphere S = C U {oco}
(better, S = P}(C) = AY(C)U {(1 : 0)}. The meromorphic functions on S are the rational
functions of z, and the automorphisms of S are the fractional-linear transformations,
az+0b
cz+d
In fact, Aut(S) = PGL2(C) =4 GL2(C)/C*. Moreover, given two sets {Pi, P2, P3} and
{Q1, Q2, Q3} of distinct points on S, there is a unique fractional-linear transformation sending
each P; to Q;. (The proof of the last statement is an easy exercise in linear algebra: given
two sets {L1, Lo, L3} and {M;, My, M3} of distinct lines through the origin in C?, there is a
linear transformation carrying each L; to M;, and the linear transformation is unique up to
multiplication by a nonzero constant.)

a,b,c,d e C, ad— bc# 0.

A e d

We use oo, i, and p to denote also the images of these points on Xg(1).

Proposition 24.1. There exists a unique meromorphic function J on Xo(1) that is holo-
morphic except at oo, where it has a simple pole, and takes the values

J@) =1, J(p)=0.
Moreover, the meromorphic functions on Xo(1) are the rational functions of J.

Proof. We saw in the last section that Xo(1) is isomorphic (as a Riemann surface) to the
Riemann sphere S. Let f : Xy(1) — S be an isomorphism, and let P, @, R be the images
of p,i,00. There is a unique fractional-linear transformation L sending P, Q, R to 0,1, oo,
and the composite L o f has the required properties. If J’ is a second such function, then
the composite J' o J~! is an automorphism of S fixing 0,1, 0o, and so is the identity map.
Under this isomorphism, the function z on S corresponds to the function J on Xy(1). O

In minor disagreement with the notation in Section 10, I write
IVED
WEAWHAD
for a lattice A C C, and
Go(2) = Gop(Zz + Z), ga(z) = 60G4(2), ¢g6(z) = 140G¢(2), =z € H.
Then (p, ¢') maps C/Zz + 7Z onto the elliptic curve
Y2Z = 4X? — gu(2)X 2% - g5(2)2°, A= qu(2)’ —27gs(2)* #0,

whose j-invariant is
L 1728g4(2)?
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From their definitions, it is clear that Gax(2), A(z2), and j(2) are invariant under " : 2 — z+1,
and so can be expressed in terms of the variable ¢ = 2™, In Serre, Cours d’Arithmétique,
VII, one can find the following expansions:

Gon(2) = 2((2]{)—%%20%_1(””71’ Jk(n):%dk’

A = (2m)"(q—24¢" +252¢° — 1472¢* + - +),

1 o0
j o= — 4744+ 196884q + 214937600 + 3 c(n)q", c(n) € Z.
q n=3

The proof of the formula for Gax(z) is elementary, and the others follow from it together
with elementary results on ((2k). The factor 1728 was traditionally included in the formula
for 7 so that it has residue 1 at infinity.

The function j is invariant under SLy(7Z), because j(z) depends only on the lattice Zz + Z.
Moreover:

j(p) = 0, because C/Zp + Z has complex multiplication by p?> = /1, and
therefore is of the form Y2 = X3 + b, which has j-invariant 0.

j(i) = 1728, because C/Zi + 7Z has complex multiplication by ¢, and therefore
is of the form Y? = X3 + aX.

Consequently j = 1728/, and the field of meromorphic functions on Xy (V) is C(j).
The meromorphic functions on Xy(N). Define jy to be the function on H such that
Jn(z) = j(Nz). For v € I'y(1), one is tempted to say
in(vz) = j(Nvz) = j(yNz) = j(Nz) = jn(2),
but, this is false in general, because Nyz # vNz. However, it is true that jy(vz) = jn(z2) if

v € T'o(N). In fact, let v = ( (CL Z ) € I'o(N), so that ¢ = N¢ with ¢ € Z. Then

Naz—i—Nb) B ,(a(Nz) + Nb
cz+d 7 d(Nz)+d

in(vz) = J( ) =J(YNz)

where 7/ = ( g, ]\gb ) € Ih(1), so

J(YNz) = j(Nz) = jn(2).
Thus, we see that jy is invariant under I'y(/V), and therefore defines a meromorphic function
on Xo(N).
Theorem 24.2. The field of meromorphic functions on Xo(N) is C(4, jn)-
Proof. The curve Xo(N) is a covering of Xy(1) of degree m = (I'y(1) : I'g(IN)). The general
theory implies that the field of meromorphic functions on Xo(N) has degree m over C(j),

but we shall prove this again. Let {7 = 1,...,7»} be a set of representatives for the right
cosets of I'g(N) in I'g(1), so that,

To(1) = [JTo(N)vy; (disjoint union).
i=1
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For any v € I'o(1), {717, ---, Y7} is also a set of representatives for the right cosets of I'g(V)
in ['g(1)—the family (I'o(NN)v;y) is just a permutation of the family (I'o(N)7;).

If f(z) is a modular function for I'g(N), then f(v;2) depends only on the coset I'o(N)y;.
Hence the functions {f(7;yz)} are a permutation of the functions {f(v;z)}, and any sym-
metric polynomial in the f(v;2) is invariant under I'y(1); since such a polynomial obviously
satisfies the other conditions, it is a modular function for I'y(1), and hence a rational function
of j. Therefore f(z) satisfies a polynomial of degree m with coefficients in C(j), namely,
[T(Y — f(7:i2)). Since this holds for every meromorphic function on X,(N), we see that the
field of such functions has degree at most m over C(j).

Next I claim that all the f(+;z) are conjugate to f(z) over C(j): for let F'(,Y’) be the min-
imum polynomial of f(z) over C(j), so that F(j,Y) is monic and irreducible when regarded
as a polynomial in Y with coefficients in C(j); on replacing z with 7;z and remembering that
J(viz) = j(2), we find that F(j(z), f(7:2)) = 0, which proves the claim.

If we can show that the functions j(N~;z) are distinct, then it will follow that the minimum
polynomial of jy over C(j) has degree m, and that the field of meromorphic functions on
Xo(N) has degree m over C(j), and is generated by jn.

Suppose j(Nv;z) = j(Nv,z) for some i # j. Recall that j defines an isomorphism
Fo(1)\H* — S (Riemann sphere), and so

J(Nv;z) = j(Nv;jz)all z = Ty € I'y(1) such that Nvy;z = yN~;z all z,

N oY _, (NoY)
0 1 )%= o 1)

-1
Hence vy; ' € To(1) N ( ](j\)[ ? ) Lo(1) ( ](j\)[ ? ) = I'o(IV), which contradicts the fact

that v; and 7, lie in different cosets. [

and this implies that

We saw in the proof that the minimum polynomial of jx over C(j) is

m

F(3,Y) =TIV = j(Nvz)).

=1

The symmetric polynomials in the j(/Nv;z) are holomorphic on H. As they are rational
functions of j(z), they must in fact be polynomials in j(z), and so Fy(j,Y) € Clj, Y] (rather
than C(j)[Y]).

On replacing j with the variable X, we obtain a polynomial Fiy(X,Y) € C[X,Y],
Fn(X)Y) = ZCTVSXTYS, s €C, com=1.

I claim that Fy(X,Y) is the unique polynomial of degree < m in Y, with ¢y, = 1, such
that

FN(jajN> =0.
In fact, Fn(X,Y) generates the ideal in C[X,Y] of all polynomials G(X,Y) such that
G(j,jn) = 0, from which the claim follows.

Proposition 24.3. The polynomial Fx(X,Y') has coefficients in Q.
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Proof. We know that
j2)=q7" + Z()C(n)q”, c(n) € Z.
When we substitute this into the equationi

F(j(2),5(N2)) =0,

and equate coefficients of powers of g, we obtain a set of linear equations for the ¢, ; with
coefficients in Q, and when we adjoin the equation

Co,m = 17

then the system determines the ¢, ; uniquely. Because the system of linear equations has a
solution in C, it also has a solution in Q (look at ranks of matrices); because the solution is
unique, the solution in C must in fact lie in Q. Therefore ¢, € Q. O

The polynomial Fix(X,Y') was introduced by Kronecker more than 100 years ago. It is
known to be symmetric in X and Y. For N = 2, it is

X34+ Y3 - X224 1488XY (X +Y) — 162000(X? + Y?)+

40773375XY + 8748000000(X + Y) — 157464000000000.

It was computed for N = 3,5,7 by Smith (1878), Berwick (1916), and Herrmann (1974).
At this point the humans gave up, and left it to MACSYMA to compute Fi; (1984). This
last computation took about 20 hours on a VAX-780, and the result is a polynomial with
coefficients up to 10 that takes 5 pages to write out. It is important to know that the
polynomial exists; fortunately, it is not important to know what it is.

The curve X((N) over Q. Let Cy be the affine curve over Q with equation Fy(X,Y) =0,
and let Cy be the projective curve defined by Fy made homogeneous. Then z
(7(2),j(Nz)) is a map Xo(N) \ = — Cn(C), where = is the set where j or jx has a pole.
This map extends uniquely to a map Xo(N) — Cx(C), which is an isomorphism except over
the singular points of Cy, and the pair (Xo(N), Xo(N) — Cn(C)) is uniquely determined
by Cx (up to a unique isomorphism): it is the canonical “desingularization” of Cy over C.

Now consider C'y over Q. There is a canonical desingularization X — Cy over Q, i.e., a
projective nonsingular curve X over Q, and a regular map X — Cy that is an isomorphism
except over the singular points of Cy, and the pair (X, X — Cy) is uniquely determined by
Cy (up to unique isomorphism). When we pass to the C-points, we see that (X(C), X(C) —
Cn(C)) has the property characterizing (Xo(N), Xo(N) — Cn(C)), and so there is a unique
isomorphism of Riemann surfaces Xo(N) — X (C) compatible with the maps to C(C).

In summary, we have a well-defined curve X over Q, a regular map v : X — Cy over
Q, and an isomorphism Xy(N) — X (C) whose composite with v(C) is (outside a finite set)
2= (j(2),J(N2)).

In future, we’ll often use Xo(N) to denote the curve X over Q—it should be clear from

the context whether we mean the curve over Q or the Riemann surface. The affine curve
Xo(N) \ {cusps} C Xo(N) is denoted Yy(N); thus Yo(N)(C) = (1) \H.

Remark 24.4. It is known that the curve Fiy(X,Y) = 0 is highly singular, because, in the
absence of singularities, the formula on p9 would predict much too high a genus.
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The points on the curve X,(/V). Since we can’t write down an equation for Xo(N) as
a projective curve over Q, we would at least like to know what its points are in any field
containing Q. This we can do.

We first look at the complex points of Xo(N), i.e., at the Riemann surface X, (V). Consider
the diagram:

{(E 5}~ < {(A9}/C = To(N\M/C* — To(N)\H

{E%/z — L/%CX — 1“0(1)\l]\/[/(CX — Fo(ll)\]I-]I
The bottom row combines maps in Section 10. All the symbols < are natural bijections.
Recall that M is the subset of C x C of pairs (w;,ws) such that J(w;/we) > 0 (so M/C* C
P!(C)), and that the bijection M/C — H sends (w;,ws) to wy /wa. The rest of the right hand
square is now obvious.
Recall that the L is the set of lattices in C, and that the lattices defined by two pairs in
M are equal if and only if the pairs lie in the same I'g(1)-orbit. Thus in passing from an

element of M to its I'g(1)-orbit we are forgetting the basis and remembering only the lattice.
In passing from an element of M to its I'g(N)-orbit, we remember a little of the basis, for

suppose
wiy [a b w1 a b
()-(2a)(z) (20)enm.
Then
Wi = awi + bwo
wy = cwi+ dws = dws mod NA.
Hence | p
ngzﬁwg mod A.

2 has determinant 1, ged(d, N) = 1, and so %wé and %wg generate
the same cyclic subgroup S of order N in C/A. We see that the map

Note that because ( (CL

1
(wi,wa) = (Awr, w2), <Nw2>)

defines a bijection from I'o(N)\ M to the set of pairs consisting of a lattice A in C and a cyclic
subgroup S of C/A of order N. Now (A, S) — (C/A,S) defines a one-to-one correspondence
between this last set and the set of isomorphism classes of pairs (F, S) consisting of an elliptic
curve over C and a cyclic subgroup S of E(C) of order N. An isomorphism (E,S) — (E',S’)
is an isomorphism F — E’ carrying S into S’.

Note that E/S = C/A(wi, xw2) < N2l and so, if j(E) = j(2), then j(E/S) = j(Nz).

Now, for any field & D Q, define & (N)(k) to be the set of isomorphism classes of pairs £
consisting of an elliptic curve E over k and a cyclic subgroup S C E(k*) of order N stable
under Gal(k* /k)—thus the subgroup S is defined over k, but not necessarily its elements.
The above remarks show that there is a canonical bijection

E(N)(C)/=— Yo(N)

whose composite with the map Yy(N) — Cy(C) is (E,S) — (j(E),j(E/S)). Here Yy(N)
denotes the Riemann surface I'o(N)\H.
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Theorem 24.5. For any field k D Q, there is a map
Eo(N) (k) — Yo(N)(k),
functorial in k, such that
(a) the composite E(N)(k) — Yo(N)(k) — Cn(k) is (E,S) — (i(E), j(E/S));
(b) for all k, E(N)(k)/~ — Yo(N)(k) is surjective, and for all algebraically closed k it
18 bijective.
The map being functorial in & means that for every homomorphism o : & — k' of fields,
the diagram
E(N)(E) — Yo(N)(K)
To To
E(N) (k) — Yo(N)(k)
commutes. In particular, & (N)(k*) — Yo(N)(k*) commutes with the actions of Gal(k*/k).
Since Yy () (k*)Gal'/k) — Y, (N)(k), this implies that

Yo(N)(K) = (E9(N) (k) /) S0

for any field k£ D Q.

This description of the points can be extended to Xo(N) by adding to &(N) certain
“degenerate” elliptic curves.

Variants. For our applications to elliptic curves, we shall only need to use the quotients
of H* by the subgroups I'y(NN), but quotients by other subgroups are also of interest. For

example, let
a b
oo ={( i)

The quotient X;(N) = I't(N)\H* again defines a curve, also denoted X;(N), over Q, and
there is a theorem similar to (24.5) but with & (N)(k) the set of pairs (E, P) consisting of
an elliptic curve E over k and a point P € E(k) of order N.

a=1=d mod N, ¢=0 modN}.

In this case, the map
E(N)(k)/~ — Y1(N) (k)
is a bijection whenever 4| N. The curve X;(N) has genus 0 exactly for N =1,2,...,10,12.
Since X;(/V) has a point with coordinates in Q for each of these N (there does exist an
elliptic curve over Q with a point of that order), X;(N) ~ P!, and so X;(N) has infinitely
many rational points. Therefore, for N = 1,2,... 10,12, there are infinitely many elliptic
curves over Q with a point of order N (rational over Q). Mazur showed, that for all other
N, Yo(N) is empty, and so these are the only possible orders for a point on an elliptic curve
over Q (Conjecture of Beppo Levi).

25. MODULAR FORMS

It is difficult to construct functions on H invariant under a subgroup I' of SLy(Z) of finite
index. One strategy is to construct functions, not invariant under I', but transforming in
a certain fixed manner. Two functions transforming in the same manner will be invariant
under I'. This idea suggests the notion of a modular form.



126 J.S. MILNE

Definition of a modular form.

Definition 25.1. Let I" be a subgroup of finite index in SLy(Z). A modular form for I' of
weight?” 2k is a function f : H — C such that

(a) f is holomorphic on Hj

(b) for any v = ( (é Z ) el f(v2) = (cz + d)** f(2);

(c) f is holomorphic at the cusps.

Recall that the cusps are the points in H* not in H. Since I is of finite index in SLy(Z),

Th = ( é }f ) is in I' for some integer h > 0, which we may take to be as small as possible.

Then condition (b) implies that f(T"z) = f(2), i.e., that f(z + h) = f(z), and so

f(z)=[fq), q=em""

and f* is a function on a neighbourhood of 0 € C, with 0 removed. To say that f is
holomorphic at oo means that f* is holomorphic at 0, and so

f(z) =3 cln)g", q= M

n>0

For a cusp r # oo, choose a v € SLy(Z) such that y(co) = r, and then the requirement is
that f o~ be holomorphic at co. It suffices to check the condition for only one cusp in each
[-orbit.

A modular form is called a cusp form if it is zero at the cusps. For example, for the cusp
oo this means that

f(2) = S elng”, g = e

n>1

Remark 25.2. Note that, for v = ( (é 2 ) € SLy(Z),

az+b a(cz+d) —claz +b)
cz+d (cz+d)?

Thus condition (25.1b) says that f(z)(dz)* is invariant under the action of T".

dz = (cz + d)2dz.

Write Moy (I") for the vector space of modular forms of weight 2k, and Sy (I") for the
subspace?® of cusp forms. A modular form of weight 0 is a holomorphic modular function (i.e.,
a holomorphic function on the compact Riemann surface X (I')), and is therefore constant:
My(I") = C. The product of modular forms of weight 2k and 2k is a modular form of weight
2(k+ k"), which is a cusp form if one of the two forms is a cusp form. Therefore @9 Max ()
is a graded C-algebra.

Proposition 25.3. Let m be the quotient map H* — I'o(N)\H*, and for any holomorphic
differential w on T'o(N)\H*, set m*w = fdz. Then w — f is an isomorphism from the space
of holomorphic differentials on I'o(N)\H* to So(I'o(N)).

2Tk and —k are also used.
28The S is for “Spitzenform”, the German name for cusp form. The French call them “forme parabolique”.
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Proof. The only surprise is that f is necessarily a cusp form rather than just a modular
form. I explain what happens at co. Recall (p122) that there is a neighbourhood U of oo in
[o(N)\H* and an isomorphism ¢ : U — D (some disk) such that gom = ¢?™*. Consider the
differential g(q)dq on U. Its inverse image on H is

g(e*™*)d(e*™*) = 2mi - g(e*™*) - *™*dz = 2mifdz

where f(z) = g(e*™*) - *™*. If g is holomorphic at 0, then g(q) = 3,50 ¢(n)¢", and so the
g-expansion of f is ¢ >,>¢c(n)q", which is zero at co. [

Corollary 25.4. The C-vector space So(I'o(N)) has dimension equal to the genus of Xo(N).

Proof. 1t is part of the theory surrounding the Riemann-Roch theorem that the holomorphic
differential forms on a compact Riemann surface form a vector space equal to the genus of
the surface. O

Hence, there are explicit formulas for the dimension of Sy(I'g(/V))—see p123. For example,
it is zero for N < 10, and has dimension 1 for N = 11. In fact, the Riemann-Roch theorem
gives formulas for the dimension of Sy (I'g(N)) for all N.

The modular forms for I'y(1). In this section, we find the C-algebra @j>0Mak(Io(1)).

We first explain a method of constructing functions satisfying (25.1b). As before, let £ be
the set of lattices in C, and let F' : £ — C be a function such that

FOAAN) =X*F(A), MeC, AccL.

Then
W3 F(A(wr, ws))

depends only on the ratio w; : wq, and so there is a function f(z) defined on H such that

W F(A(wy,ws)) = f(wi/ws), whenever I(w; /wy) > 0.
For v = ( (CL Z ) € SLy(Z), Alawy + bws, cwy + dwy) = A(wy,ws) and so

az+b
cz+d

( ) = (cz +d)7*F(A(z,1)) = (cz + d) 7 f(2).

When we apply this remark to the Eisenstein series

1
Gar(A) = )] BETE

weA,w#0

we find that the function Gax(2) =45 Gar(A(z, 1)) satisfies (25.1b). In fact:

Proposition 25.5. For all k > 1, Gax(z) is a modular form of weight 2k for I'y(1), and A
s a cusp form of weight 12.

Proof. We know that Gax(2) is holomorphic on H, and the formula on p125 shows that it is
holomorphic at oo, which is the only cusp for I'y(1) (up to I'g(1)-equivalence). The statement
for A is obvious from its definition A = g4(2)® — 27¢g4(2)?, and its g-expansion (p125). O
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Theorem 25.6. The C-algebra Gi>oMoar(LTo(1)) is generated by G4 and Gg, and G4 and Gg
are algebraically independent over C. Therefore

C[Gy4, Ge] = ®roMar(To(1)), C[G4,Ge] = C[X,Y]

(isomorphisms of graded C-algebras if X and Y are given weights 4 and 6 respectively).
Moreover,

f — f . A . Mgk_lg(ro(l)) — Sgk(ro(l))

1 a bijection.
Proof. Straightforward—see Serre, Cours..., VI[.3.2. O

Therefore, for k£ > 0,

' k/6 ifk=1 mod 6
dim Moy (I'o(N)) = { M% +1 otherwise.

Here [z] is the largest integer < x.

Theorem 25.7 (Jacobi). There is the following formula:

A = (27r)12q H (1 - qn>24’ q= e27riz'

n=1

Proof. Let
F(z)=q[(1—q")*
n=1

From the theorem, we know that the space of cusp forms of weight 12 has dimension 1, and
therefore if we can show that F'(z) is such a form, then we’ll know it is a multiple of A, and
it will be follow from the formula on p125 that the multiple is (27)"2.

01 1
conditions in (25.1), it suffices to verify that F' transforms correctly under 7" and S. For T
this is obvious from the way we have defined F', and for S it amounts to checking that
1

F(—;) =22 F(2).

Because SLo(Z)/{£I} is generated by T' = ( L1 ) and S = ( 0 _01 ), to verify the

This is trickier than it looks, but there are short (2 page) elementary proofs—see for example,
Serre, ibid., VII.4.4. O

26. MODULAR FORMS AND THE L-SERIES OF ELLIPTIC CURVES

In this section, I'll discuss how the L-series classify the elliptic curves over Q up to isogeny,
and then I’ll explain how the work of Hecke, Petersson, and Atkin-Lehner leads to a list of
candidates for the L-series of such curves, and hence suggests a classification of the isogeny
classes.



ELLIPTIC CURVES 129

Dirichlet Series. A Dirichlet series is a series of the form

f(s)=>a(n)n™®, a(n)eC, seC.
n>1
The simplest example of such a series is, of course, the Riemann zeta function 3,5, n™°. If
there exist positive constants A and b such that | Y, <, a(n)| < Az’ for all large x, then the
series for f(s) converges to an analytic function on the half-plane R(s) > b.

It is important to note that the function f(s) determines the a(n)’s, i.e., if 3 a(n)n™* and
> b(n)n~° are equal as functions of s on some half-plane, then a(n) = b(n) for all n. In
fact, by means of the Mellin transform and its inverse (see 26.4 below), f determines, and is
determined by, a function g(g) convergent on some disk about 0, and ¢(¢) = X a(n)q™

We shall be especially interested in Dirichlet series that are equal to Euler products, i.e.,
those that can be expressed as

1
fe) = 1;[ L —P,(p~*)

where each P, is a polynomial.

Dirichlet series arise in two essentially different ways: from analysis and from geometry
and number theory. Omne of big problems mathematics is to show that the second set of
Dirichlet series is a subset of the first, and to identify the subset. This is a major theme
in Langlands’s philosophy, and the rest of the course will be concerned with explaining how
Wiles was able to identify the L-series of (almost all) elliptic curves over Q with certain
L-series attached to modular forms.

The L-series of an elliptic curve. Recall that for an elliptic curve E over Q, we define

1 1

L(E,s) = .
( ’ ) pg)d 1 — app—s + pl—s pllgd 1— app—s
where
p+1—N, p good;
o — 1 p split nodal;
P -1 p nonsplit nodal;
0 p cuspidal.

Recall also that the conductor N = Ng/q of Qis[], p’r where f, = 0 if E has good reduction
at p, f, = 1 if E has nodal reduction at p, and f, > 2 otherwise (and = 2 unless p = 2, 3).

On expanding out the product (cf. below), we obtain a Dirichlet series

L(E,s)=> a.n".
This series has, among others, the following properties:
(a) (Rationality) Its coefficients a,, lie in Q.
(b) (Euler product) It can be expressed as an “Euler product”; in fact, that’s how it is
defined.

(¢) (Functional equation) Conjecturally it can be extended analytically to a meromorphic
function on the whole complex plane that satisfies the functional equation

AE,s) =wA(E,2—5), w==l,

where A(E, s) = Ny (2m)~*I(s)L(E, s).
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L-series and isogeny classes. Recall that two elliptic curves F and £’ are said to be
isogenous if there is a nonconstant regular map from one to the other. By composing the
map with a translation, we will then get a map sending 0 to 0, in which case it will also be a
homomorphism for the group structures on £ and E’. A nonconstant map ¢ : £ — E’ such
that ©(0) = 0 is called an isogeny.

Lemma 26.1. Isogeny is an equivalence relation.

Proof. The identity map is an isogeny, so it is reflexive, and the composite of two isogenies
is an isogeny, so it is transitive. Let ¢ : E — E’ be an isogeny, and let S be its kernel. Since
S is finite, it will be contained in FE,, for some n, and there are isogenies

E — FE/S — EJ/E,

I I I
EFE — E — E

—the isomorphism E — E/FE, is induced by multiplication by n in
0—FE,—-FEXFE—QO.

Here I'm assuming facts about elliptic curves and their quotients by finite subgroups ([S1]
I11.4). O

An isogeny E — E’ induces a homomorphism F(Q) — E’(Q) which, in general, will be
neither injective nor surjective. The ranks of F(Q) and E’(Q) will be the same, but their
torsion subgroups will in general be different. Surprisingly, isogenous curves over a finite
field do have the same number of points.

Theorem 26.2. Let E and E' be elliptic curves over Q. If E and E' are isogenous, then
N,(E) = N,(E') for all good p. Conversely, if N,(E) = N,(E") for sufficiently many good
p, then E is isogenous to E'.

Proof. The fact that allows us to show that N,(E) = N,(E’) when E and E’ are isogenous
is that N,(E) is the degree of a map £ — E, in fact, it is the degree of ¢ — 1 where ¢ is
the Frobenius map (see p101). An isogeny o : £ — E’ induces and isogeny «y, : E, — E
on the reductions of the curves modulo p, which commutes with the Frobenius map: if
alz:y:z)=(Pr,y,2): Qx:y:2),R(x:y:2), PQ,ReF,[X,Y, 7], then
ap(z:y:z)= (Pl y? 2P),...)
whereas
va(z:y:z)=(Plx,y,z)?,...),
which the characteristic p binomial theorem shows to be equal. Because the diagram

E 2L E

la la
E ‘P__l> E

commutes, we see that
dega - deg(p — 1) = deg(p — 1) - deg v,

S0,
dega - Ny(E) = Ny(E') - dega,
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and we can cancel deg a.

The converse is much more difficult. It was conjectured by Tate about 1963, and proved
under various hypotheses by Serre. It was proved in general by Faltings in his paper on
Mordell’s conjecture (1983). O

Faltings’s result gives an effective procedure for deciding whether two elliptic curves over
Q are isogenous: there is a constant P such that if N,(E) = N,(£’) for all good p < P,
then F and E’ are isogenous. Unfortunately, P is impossibly large, but, in practice, if your
computer fails to find a p with N,(E) # N,(E’) in a few minutes you can be very confident
that the curves are isogenous.

It is not quite obvious, but it follows from the theory of Néron models, that isogenous
elliptic curves have the same type of reduction at every prime. Therefore, isogenous curves
have exactly the same L-series and the same conductor. Because the L-series is determined
by, and determines the N,, we have the following corollary.

Corollary 26.3. Two elliptic curves E and E' are isogenous if and if L(E,s) = L(E',s).

We therefore have a one-to-one correspondence between
{isogeny classes of elliptic curves over Q} «» {certain L-series}

In the remainder of this section we shall identify (using only complex analysis) the L-series
arising from elliptic curves over Q (in fact, we’ll identify the L-series of the elliptic curves
with a fixed conductor).

Since we shall be classifying elliptic curves only up to isogeny, it is worth noting that a
theorem of Shafarevich implies there are only finitely many isomorphism classes of elliptic

curves over Q with a given conductor, hence only finitely many in each isogeny class—see
[S1], IX.6.

The L-series of a modular form. Let f be a modular form of weight 2k for I'((/V). By
definition, it is invariant under z — z 41 and is zero at the cusp oo, and so can be expressed

f(5) = Y ema", =€, cn)€C.

n>1
The L-series of f is the Dirichlet series
L(f,s)=> c¢(n)n®, seC.

A rather rough estimate shows that |c(n)| < Cn* for some constant C, and so this Dirichlet
series is convergent for R(s) > k + 1.

Remark 26.4. Let f be cusp form. The Mellin transform of f (more accurately, of the
function y — f(iy) : Rsg — C) is defined to be
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Ignoring (as usual) questions of convergence, we find that

co X d
g(s) = / S e 2y Y
0 n=1

Y

> o0 dt
= > cn/ e '(2mn) "t —  (t = 2mny)
n=1 0 t

= (2m)~°T(s) > c(n)n™*

n=1
= (2m)7°T(s)L(f, s)-
For the experts, the Mellin transform is the version of the Fourier transform appropriate for
the multiplicative group R<.

. . -1
Modular forms whose L-series have a functional equations. Let ay = ( 0 )

N 0
Then

(2 8= (8390 (2 ) (50~ )

and so conjugation by ay preserves I'g(N). Define
(wxf)(2) = (VN2)* f(=1/z).

Then wy preserves Sor(T'o(IN)) and has order 2, w% = 1. Therefore the eigenvalues of wy are
+1 (or perhaps just +1), and Sax(I'o(IV)) is a direct sum of the corresponding eigenspaces
Sor = St © Syt

Theorem 26.5 (Hecke). Let f € Sor(I'0(N)) be a cusp form in the e-eigenspace, € =1 or
—1. Then f extends analytically to a holomorphic function on the whole complex plane, and
satisfies the functional equation

A(f,s) =e(=DFA(f, k —s),
where

A(f,s) = N*/?(2m) T (s)L(f, s).

Proof. We omit the proof—it involves only fairly straightforward analysis (see Knapp,
p270). O

Thus we see that, for k = 2, L(f, s) has exactly the functional equation we hope for the
L(E,s).

Modular forms whose L-functions are Euler products. Write
g[[1—q¢")* =3 7(n)q"
1

The function n — 7(n) is called the Ramanujan 7-function. Ramanujan conjectured that
it had the following properties:

(2) [7(p)| < 2p"%
(b) T(mn) = 7(m)r(n) if ged(m,n)=1;
(p)-7(p") = 7(p") +ptlr(p™!) if pis prime and n > 1.
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Conjecture (a) was proved by Deligne: he first showed that 7(p) = a + § where a and 3
occur as the reciprocal roots of a “Pi1(T")” (see pl03), and so (a) became a consequence of
his proof of the Riemann hypothesis.

Conjecture (b) was proved by Mordell in 1917 in a paper in which he introduced the
first examples of Hecke operators. Consider a modular form f of weight 2k for I'y(N) (e.g.,
A = (2m)2qTI(1 — ¢™)?*, which is a modular form of weight 12 for T'9(1)), and write

L(f,s) =Y c(n)n".

n>0

Proposition 26.6. The Dirichlet series L(f,s) has an Euler product expansion of the form

L(fs) = —— I :

on L= PP gy L — cp)p™s + p?F1e

if (and only if)

cmn) = c¢(m)e(n) if ged(m,n) =1,
. ) = c(prtt) +p*Fle(pmt), r > 1, if p does not divide N;
c(p’) = c(p), r>1, if p|N.

Proof. For a prime p not dividing NV, define
Ly(s) =D c(™p™™ =1+ clp)p™ +c(p)(p™*)* +--- .
By inspection, the coefficient of (p~*)" in the product
(1 —=clp)p™ + P 'p ") Ly(s)

is

1 for r=0

0 for r=1

c(p™t) — c(p)e(p™) + p**te(prt) for r+1.

Therefore
1

LP(S> = 1 — C(p)p—s +p2k—1—8

if and only if the second equation in (*) holds.

Similarly,
1
L s) = c pr p—T’S R
p( ) df Z ( ) 1_C(p>p_s
if and only if the third equation in (*) holds.

If n € N factors as n = [[p;’, then the coefficient of (p=*)" in [T L,(s) is [Tc(p;), which
equals ¢(n) if (*) holds. O

Remark 26.7. The proposition says that L(f,s) is equal to an Euler product of the above
form if and only if n +— c¢(n) is weakly multiplicative and if the ¢(p™) satisfy a suitable
recurrence relation. Note that (%), together with the normalization ¢(1) = 1, shows that the
c¢(n) are determined by the ¢(p) for p prime.
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Hecke defined linear maps
T(n) : Sgk(ro(N)) — Sgk(ro(N)), n 2 1,
and proved the following theorems.

Theorem 26.8. The maps T'(n) have the having the following properties:
(a) T(mn) =T(m)T'(n) if ged(m,n) =1;
(b) T(p)-T(p") =T )+ p** YT (pr=1) if p doesn’t divide N ;
(c) T(p") =T(p)", r 21, p|N;
(d) all T(n) commute.

Theorem 26.9. Let f be a cusp form of weight 2k for T'o(N) that is simultaneously an
eigenvector for all T'(n), say T(n)f = X(n)f, and let

[ =Y e, g =

3
—

Then

Note that ¢(1) # 0, because otherwise ¢(n) = 0 for all n, and so f = 0.
Corollary 26.10. Let f be as in Theorem 26.9, and normalize f so that ¢(1) = 1. Then

L(fs) = —— I !

an L= PP vy L —cp)pe 4 Pt

Example 26.11. Since Si2(I'g(1)) has dimension 1, A must be an eigenform for all T'(n),
which implies (b) of Ramanujan’s conjecture.

Definition of the Hecke operators. I first explain the definition of the Hecke operators
for the full group I'g(1) = SLo(Z).
Recall that we have canonical bijections
L/C* « To(1)\M/C* < I'y(1)\H.
Moreover, the equation
f(z) = F(A(2,1))

defines a one-to-one correspondence between
(a) functions F : £ — C such that F(AA) = A" F(A), A € C*;

(b) functions f : H — C such that f(vyz) = (cz + d)** f(2), v = ( (CL Z )

We'll work first with L.
Let D be the free abelian group generated by the A € £; thus an element of D is a finite

sum
ZTLA[A], nyn €2, NeL,
and two such sums > na[A] and > n/\[A] are equal if and only if ny = n/y for all A.

For n > 1, define
T():D—D, Tm) = ¥ ]
(A:A)=n
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and
R(n) : D — D, R(n)=[nA].
Proposition 26.12.  (a) T'(mn) =T (m)oT(n) if ged(m,n) =1;
(b) T(p") o T(p) = T("™") +pR(p) o T(p"").

Proof. (a) For a lattice A,

T(mn)[A] = >J[A"] sum over A", (A: A”) =mn),
T(m)oT(n)[A] = > [A"] (sum over pairs (A, A”) with (A : A") =n, (A": A") =m).
But if A” is a lattice of index mn, then A/A” is an abelian group of order mn with ged(m,n) =

1, and so has a unique subgroup of order m. The inverse image of this subgroup in A will
be the unique lattice A’ O A” such that (A’ : A”) = m. Thus the two sums are the same.

(b) For a lattice A,
T(p")oT(p)[A] = X[A”] (sum over pairs (A, A”) with (A: A) =p, (A : A") =p"),
T(ptH[A] = S[A] (sum of A” with (A : A”) = p'th);
pR(p) o T(p" H[A] = p-> R(p)[A] (sum over A’ with (A: A') = p™1)
= p-3[A’] (sum over A” C pA with (pA : A”) = p™1).
Each of these is a sum of lattices A” of index p"*! in A. Fix such a lattice A”, and let a be

the number of times that [A”] occurs in the first sum, and b the number of times it occurs
in the third sum. It occurs exactly once in the second sum, and so we have to prove that

a =1+ pb.

There are two cases to consider.

The lattice A" is not contained in pA. In this case, b = 0, and «a is the number of lattices
A’ such that (A : A’) = pand A’ D A”. Such lattices are in one-to-one correspondence with
the subgroups of A/pA of index p containing the image A” of A” in A/pA. But (A : pA) = p?
and A/pA # A" # 0, and so there is only one such subgroup, namely A” itself. Therefore
there is only one possible A’, namely pA + A”, and so a = 1.

The lattice A" D pA. Here b = 1. Every lattice A’ of index p in A contains pA, hence also
A", and the number of such A”’s is the number of lines through the origin in A/pA ~ IE‘I%, ie.,
the number of points in P!(F,), which is p 4+ 1 as required. [

Corollary 26.13. For any m and n,
T(m) => "d- R(d) o T(mn/d?)
(sum is over the positive divisors d of gcd(m, n)).

Proof. Prove by induction on s that

TP )T(p*)=>_p - R@')oT(p+%),

i<r,s
and then apply (a) of the theorem. [O

Corollary 26.14. Let H be the Z-subalgebra of End(D) generated by T'(p) and R(p) for p
prime; then H is commutative, and it contains T'(n) for all n.

Proof. Obvious from the theorem. [J
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Let F' be a function £L — C. We can extend F' by linearity to a function F' : D — C,

F(> nalA]) =) _naF(A).
For any linear map 7' : D — D, we define T - F' to be the function £ — C such that
T - F(A) = F(TA). For example,
(T(n)-F)(A)= > F(A),
(A:A")=n
and if F(AA) = A7) F(A), then
R(n)-F=n"%F

Proposition 26.15. If F' : £ — C has the property that F(AA) = X=2*F(A) for all )\, A,
then so also does T'(n) - F', and

(a) T(mn)- F=T(m)-T(n)-F if gcd(m,n) =1;
() T(p)-T(p")-F=Tp ) - F+p'=2*T(pr=1) - F if p doesn’t divide N;

D
(c) T(p")-F=T(p)-F,r>1,p|N.

Now let f(z) be a modular form of weight 2k, and let F' be the associated function on L.
We define T'(n) - f to be the function on H associated with n?*=!.T(n) - F. Thus

(T(n) - f)(z) = n** (T (n) - F)(A(2,1)).

Theorem 26.8 in the case N = 1 follows easily from the Proposition. To prove Theorem 26.9
we need an explicit description of the lattices of index n in a fixed lattice.

Write My (Z) for the ring of 2 x 2 matrices with coefficients in Z.
Lemma 26.16. For any A € My(Z), there exists a U € My(Z)* such that

UA:(S 2) ad=n, a>1, 0<b<d.

Moreover, the integers a,b,d are uniquely determined.

a

Proof. Let A = , and suppose ra+sc = a’ where a’ = ged(a, ¢). Then ged(r, s) = 1,

b
d
and so there exist e, f such that re + sf = 1. Now

(o) (e ) =(o )

" %) =1 Now apply the appropriate elementary row operations. For the

and det ( _f
uniqueness, note that multiplication by such a U doesn’t change the greatest common divisor
of the entries in any column, and so a is uniquely determined. Now d is uniquely determined
by the equation ad = n, and b is obviously uniquely determined modulo d. [

For the lattice A(z, 1), the sublattices of index n are exactly the lattices A(az+0b, d) where
(a,b,d) runs through the triples in the lemma. Therefore

(T(n) - =) =n 3 a2 (D)

a,b,d
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where the sum is over the same triples. On substituting this into the g-expansion

f=23" c(m)q™

m>1

one finds (after a little work) that

This proves Theorem 26.9 in the case N = 1.

When N # 1, the theory of the Hecke operators is much the same, only a little more
complicated. For example, instead of £, one must work with the set of pairs (A, S) where
A € £ and S is a cyclic subgroup of order N in C/A. This is no problem for the 7'(n)’s with
ged(n, N) = 1, but the T'(p)’s with p| N have to be treated differently.

Thus the problem of finding cusp forms f whose L-series have Euler products becomes
a problem of finding simultaneous eigenforms for the linear map 7'(n) : Sox(I'o(N)) —
Sor(T'o(V)). Hecke had trouble doing this because he didn’t know some linear algebra,
which we now review.

Linear algebra: the spectral theorem. Recall that a Hermitian form on a vector space
V' is a mapping <,>: V x V — C such that <v,w>= <w,v> and <, > is linear in one
variable and conjugate-linear in the second. Such a form is said to be positive-definite if
<wv,v>> 0 whenever v # 0. A linear map o : V' — V' is Hermitian or self-adjoint relative to
<, > if

<av,w>=<v,aw>, all v, w.

Theorem 26.17 (Spectral Theorem). Let V' be a finite-dimensional complex vector space
with a positive-definite Hermitian form <, >.

(a) Any self-adjoint linear map o« : V' — V is diagonalizable, i.e., V is a direct sum of
eigenspaces for .

(b) Let ay,as,... be a sequence of commuting self-adjoint linear maps V- — V', then V
has a basis of vectors that are eigenvectors for all ;.

Proof. (a) Because C is algebraically closed, o has an eigenvector e;. Let Vi be (Cep)t.
Then V; is stable under o, and so contains an eigenvector es. Let Vo = (Ce; @ Cey)* ete.

(b) Now suppose V' = @V (\;) where the \; are the distinct eigenvalues of a;. Because
ay commutes with aq, it stabilizes each V ()\;), and so each V()\;) can be decomposed into a
direct sum of eigenspaces for . Continuing in this fashion, we arrive at a decomposition
V = @V, such that each «; acts as a scalar on each V;. Choose bases for each V;, and take
their union. [

This suggests that we should look for a Hermitian form on Sa(I'g(N)) for which the T'(n)’s
are self-adjoint.
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The Petersson inner product. As Poincaré pointed out, the unit disk forms a model
for hyperbolic geometry?’: if one defines a “line” to be a segment of a circle orthogonal
to the circumference of the disk, angles to be the usual angles, and distances in terms of
cross-ratios, one obtains a geometry that satisfies all the axioms for FEuclidean geometry
except that given a point P and a line ¢, there exist more than one line through P not
meeting ¢. The map z — i—jrz sends the upper-half plane onto the unit disk, and, being
fractional-linear, maps circles and lines to circles and lines (collectively, not separately) and
preserves angles. Therefore the upper half-plane is also a model for hyperbolic geometry.
The group PSLy(R) =4 SLo(R)/{£I} is the group of transformations preserving distances
and orientation, and therefore plays the same role as the group of orientation preserving
affine transformations of the Euclidean plane. The next proposition shows that the measure
w(U) = [f, dz# plays the same role as the measure [f;; drdy on sets in the Euclidean plane—

it is invariant under transformations in PGLy(R).

Proposition 26.18. Define u(U) = [f; d;gly,- then pu(yU) = p(U) for all v € SLy(R).

Proof. If v = ( (CL Z ), then

dy 1 o _ S(®)
dz  (cz+d)?’ S(i2) = lcz 4+ d*
The next lemma shows that

* dxdy .
v (dxdy) = oo+ dft (z =z +1y),

and so dz#, y = (z), is invariant under 7. O

Lemma 26.19. For any holomorphic function w(z), the map z — w(z) multiplies areas by
|w'(2)|*.

Proof. Write w(z) = u(z,y) + iv(x,y), so that z — w(z) is the map

(2, y) = (u(z,y),v(z,9)),

whose Jacobian is

Uy Uy
On the otherhand, w'(z) = u, + iv,, so that

W (2) P = o
The Cauchy-Riemann equations state that v, = v, and v, = —u,, and so the two expressions

agree. []

29 Apparently Bolyai showed that it is possible to square the circle in hyperbolic geometry. A recent
popular (shoddy) book on Fermat’s Last Theorem contains the following mystifying statement (in italics):
If no one believes that it is possible to square the circle despite Bolyai’s proof, why should we believe Wiles’s
proof of Fermat’s last theorem, which also uses hyperbolic geometry.
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If f, g are modular forms of weight 2k for I'y(N), then
f(2)-g(z)y**

is invariant under SLy(R), which suggests defining

dzd
<f,g>= // e
D Yy

for D a fundamental domain for I'g(/N)—the above discussion shows that (assuming the
integral converges) <f, g> will be independent of the choice of D.

Theorem 26.20 (Petersson). The above integral converges provided at least one of f or
g is a cusp form. It therefore defines a positive-definite Hermitian form on the vector space
Sor(To(N)) of cusp forms. The Hecke operators T'(n) are self-adjoint for all n relatively
prime to N.

Proof. Fairly straightforward calculus—see Knapp, p280. O

On putting the theorems of Hecke and Petersson together, we find that there exists a

decomposition
Sar(To(N)) = &V
of Sy into a direct sum of orthogonal subspaces V;, each of which is a simultaneous eigenspace
for all T'(n) with ged(n, N) = 1. The T'(p) for p|N stabilize each V; and commute, and so
there does exist at least one f in each V; that is also an eigenform for the 7'(p) with p|N. If
we scale f so that f = ¢+ >,5,c(n)q", then
1 1

079 =115 11

5 _ C(p)p—s + p2k—1—2s oIV 1 — Cpp—s

where the first product is over the primes not dividing /N, and the second is over those
dividing N.

The operator wy is self-adjoint for the Petersson product, and does commute with the
T'(n)’s with ged(n, N) = 1, and so each V; decomposes into orthogonal eigenspaces

‘/'i — ‘/i—i—l @‘/’i—l

for wy. Unfortunately, wy doesn’t commute with the 7'(p)’s, p| N, and so the decompostion
is not necessarily stable under these T'(p)’s. Thus, the results above do not imply that
there is a single f that is simultaneously an eigenvector for wy (and hence has a functional
equation) and for all T'(n) (and hence is equal to an Euler product).

New forms: the theorem of Atkin and Lehner. The problem left by the last subsection
has a simple remedy. If M|N, then I'o(M) D I'g(N), and so Sai(I'o(M)) C Sar(I'o(N)).
Recall that the N turns up in the functional equation for L(f, s), and so it is not surprising
that we run into trouble when we mix f’s of “level” N with f’s that are really of level M|N,
M < N.

The way out of the problem is to define a cusp form that it in some subspace Soi(I'o(M)),
M|N, M < N, to be old. The old forms form a subspace S9i4(T'o(N)) of Sar(To(N)), and

new

the orthogonal complement Sye™(I'o(N)) is called the space of new forms. It is stable under
all the operators T'(n) and wy, and so Sy decomposes into a direct sum of orthogonal
subspaces W;,

2 (Do(N)) = oW,



140 J.S. MILNE

each of which is a simultaneous eigenspace for all T'(n) with ged(n, N) = 1. The T'(p) for
p|N and wy stabilize each W;.

Theorem 26.21 (Atkin-Lehner (1970)). The spaces W; in the above decomposition all
have dimension 1.

It follows that each W; is also an eigenspace for wy and T'(p), p|N. Each W; contains
(exactly) one cusp form f whose g-expansion is of the form ¢ + Y55 ¢(n)q". For this form,
L(f, s) is equal to an Euler product, and A(f,s) satisfies a functional equation

A(f,S)ZSA(f,Q—S)

where ¢ = +1 is the eigenvalue of wy acting on W;. If the ¢(n) € Z, then A(f,s) is a
candidate for being the L-function of an elliptic curve E over Q.

Exercise 26.22. Let «, 3,7 be integers, relatively prime in pairs, such that
of + g =+,
where /¢ is a prime # 2, 3, and consider the elliptic curve
E:Y*Z =X(X-d'Z)(X —~'2).

(a) Show that E has discriminant A = 16a2¢3%¢~2¢.
(b) Show that if p does not divide a3y, then E has good reduction at p.

(c) Show that if p is an odd prime dividing a7, then E has at worst nodal reduction at
p.

(d) Show that (the minimal equation for) E has at worst nodal reduction at 2. [[After
possibly re-ordering o, 3,7, we may suppose, first that v is even, and then that of = 1
mod 4. Make the change of variables © = 4X, y = 8Y + 4X, and verify that the resulting
equation has integer coefficients.]]

(b),(c),(d) show that the conductor N of E divides [],,3,p, and hence is much smaller
than A. This is enough to show that F doesn’t exist, but the enthusiasts may wish to verify
that N = [Ijag, p- [Hint: First show that if p doesn’t divide c4, then the equation is minimal
at p.|

27. STATEMENT OF THE MAIN THEOREMS

Recall that to an elliptic curve E over QQ, we have attached an L-series L(F,s) = > a,n™*
that has coefficients a,, € Z, can be expressed as an Euler product, and (conjecturally)
satisfies a functional equation (involving Ng/q, the conductor on E). Moreover, isogenous
elliptic curves have the same L-series. We therefore have a map

E — L(E,s) : {elliptic curves/Q}/~ — {Dirichlet series}.

An important theorem of Faltings (1983) shows that the map is injective: two elliptic curves
are isogenous if they have the same L-function.

On the other hand, the theory of Hecke and Petersson, together with the theorem of Atkin

and Lehner, shows that the subspace S3*(I'o(N)) C S2(I'o(N)) of new forms decomposes
into a direct sum

Sy (o(N)) = W,
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of one-dimensional subspaces W; that are simultaneous eigenspaces for all the 7'(n)’s with
ged(n, N) = 1. Because they have dimension 1, each W; is also an eigenspace for wy and for
the T'(p) with p|N. An element of one of the subspaces W;, i.e., a simultaneous eigenforms
in §3V(I'g(N)), is traditionally called a newform, and I'll adopt this terminology.

In each W; there is exactly one form f; = Y ¢(n)q" with ¢(1) = 1 (said to be normalized).
Because f; is an eigenform for all the Hecke operators, it has an Euler product, and because
it is an eigenform for wy, it satisfies a functional equation. If the c¢(n)’s are®® in Z, then
L(fi,s) is a candidate for being the L-function of an elliptic curve over Q.

Conjecture 27.1. The following sets are equal:
{L(E,s) | E an elliptic curve over Q with conductor N}
{L(f,s) | f a normalized newform for I'¢(N), i.e., f = f; some i}.

The following theorem of Eichler and Shimura (and others) (1954/1958/...) shows that
the second set is contained in the first.

Theorem 27.2 (Eichler-Shimura). Let f = Y ¢(n)q" be a normalized newform for
Lo(N). If all ¢(n) € Z, then there exists an elliptic curve Ey of conductor N such that
L(Ef,s) = L(f,s).

The early forms of the theorem were less precise—in particular, they predate the work of
Atkin and Lehner in which newforms were defined.

The theorem of Eichler-Shimura has two parts: given f, construct the curve Ey (up to
isogeny); having constructed Ey, prove that L(Ey, s) = L(f, s). I'll discuss the two parts in
Sections 28 and 29.

After the theorem of Eichler-Shimura, to prove Conjecture 27.1, it remains to show that
every elliptic curve E arises from a modular form f—such an elliptic curve is said to be
modular.

In a set of problems circulated (in Japanese) to the members of a conference in 1955,
Taniyama asked (in rather vague form) whether every elliptic curve was modular. In the
ensuing years, this question was apparently discussed by various people, including Shimura,
who however published nothing about it.

One can ask whether every Dirichlet L-series L(s) = > a,n™*, a, € Z, equal to an Euler
product (of the same type as L(E, s)), and satisfying a functional equation (of the same type
as L(FE, s)) must automatically be of the form L(f, s). This is not so, but Weil (1967) proved
something only a little weaker. Let y : (Z/nZ)* — C*, gcd(n, N) = 1, be a homomorphism,
and extend x to a map Z — C by setting x(m) = x(m mod n) if m and n are relatively
prime and = 0 otherwise. Define

m

L) = L xman™, Ay(s) = (35) D)L

Weil showed that if all the functions A, (s) satisfy a functional equation relating A, (s) and
A, (2k — s) (and some other mild conditions), then L(s) = L(f,s) for some cusp form f of

30Tn the next section, we shall see that the ¢(n)’s automatically lie in some finite extension of Q, and that
if they lie in Q then they lie in Z



142 J.S. MILNE

weight 2k for I'o(N). Weil also stated Conjecture 27.1 (as an exercisel)—this was its first
appearance in print.

Weil’s result showed that if L(E, s) and its twists satisfy a functional equation of the correct
form, then F is modular. Since the Hasse-Weil conjecture was widely believed, Weil’s paper
(for the first time) gave a strong reason for believing Conjecture 27.1, i.e., it made (27.1)
into a conjecture rather than a question. Also, for the first time it related the level N of f
to the conductor of E, and so made it possible to test the conjecture numerically: list all
the f’s for I'o(IV), list all isogeny classes of elliptic curves over Q with conductor N, and see
whether they match. A small industry grew up to do just that.

For several years, the conjecture was referred to as Weil’s conjecture. Then, after
Taniyama’s question was rediscovered, it was called the Taniyama-Weil conjecture. Finally,
after Lang adopted it as one of his pet projects®!, it became unsafe to call it anything other
than the Shimura-Taniyama conjecture—see Lang’s scurrilous article in the Notices of the
AMS, November 1995, pp 1301-1307.

In a lecture in 1985, Frey suggested that the curve in Exercise 26.22, defined by a coun-
terexample to Fermats’ Last Theorem, should not be modular. This encouraged Serre to
rethink some old conjectures of his, and formulate two conjectures, one of which implies that
Frey’s curve is indeed not modular. In 1986, Ribet proved sufficient of Serre’s conjectures to
be able to show that Frey’s curve can’t be modular. I’ll discuss this work in Section 31.

Thus, at this stage (1986) it was known that Conjecture 27.1 for semistable elliptic curves
over Q implies Fermat’s Last Theorem, which inspired Wiles to attempt to prove Conjecture
27.1. After a premature announcement in 1993, Wiles proved in 1994 (with the help of R.
Taylor) that all semistable elliptic curves over Q are modular. Recall that semistable just
means that the curve doesn’t have cuspidal reduction at any prime. Diamond improved the
theorem so that it now says that an elliptic curve E over QQ is modular provided it doesn’t
have additive reduction at 3 or 5. In other words, the image of the map

f— Ef:{f} — {E over Q}/~

contains (at least) all E’s with at worst nodal reduction at 3 and 5. Needless to say, efforts
are being made to remove this last condition. I'll discuss the strategy of Wiles’s proof in
Section 30.

28. How TO GET AN ELLIPTIC CURVE FROM A CuUSP FORM

Not long after Newton and Leibniz invented calculus, mathematicians discovered that they
couldn’t evaluate integrals of the form

/ dx
V(@)
where f(x) € R[z] is a cubic polynomial without a repeated factor. In fact, such an integral
can’t be evaluated in terms of elementary functions. Thus, they were forced to treat them

31To the great benefit of the Xerox Co., as Weil put it—1I once made some of the points in the above
paragraph to Lang and received a 40 page response.
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as new functions and to study their properties For example Euler showed that
/t1 /tg /tg
where t3 is a rational function of t1,t2. The explanatlon for this lies with elliptic curves.

Consider the elliptic curve Y? = f(X) over R, and the differential one-form w = idm—l—Ody

on R?. According to Math 215, to integrate w over a segment of the elliptic curve, we should
parametrize the curve. We assume that the segment 7(a,t) of the elliptic curve over |[a, ]
can be smoothly parametrized by z. Thus the segment is

z— (2,4 f(2), = €la].
Then, again according to Math 215,

/ dr /t dz
) Yy Ja\[f(e)
Thus, the elliptic integral can be regarded as an integral over a segment of an elliptic curve.

A key point, which we’ll discuss later, is that the restriction of w to E is translation
invariant, i.e., if £o denotes the map P +— P+ Q on E, then t{w = w (on E). Hence

/ w = w
Y(at) Y(at+z(Q),t+2(Q))
for any @ € E(R) (here z(Q) is the z-coordinate of )). Now Euler’s theorem becomes the

statement
/ w + / = w + / w = w
v(a,t1) v(a,t2) v(ast1) v(t1,t3) v(a,t3)

where t3 is determined by

(ta, \/ f(t2)) — (a,\/ fla)) + (t1,\/ f(t1)) = (t3,1/ f(13))

(difference and sum for the group structure on E(R)).

Thus the study of elliptic integrals leads to the study of elliptic curves. Jacobi and Abel
showed that the study of more complicated integrals leads to other interesting varieties.

Differentials on Riemann surfaces. A differential one-form on an open subset of C is
simply an expression w = fdz, with f a meromorphic function. Given a smooth curve

t— z(t): [a,b] = C, [a,b]={teR|a<t<b},
we can form the integral

Aw - /abf(z(t)) . Z(t)- dt € C.

Now consider a compact Riemann surface X. If w is a differential one-form on X and
(Ui, z;) is a coordinate neighbourhood for X, then w|U; = fi(2;)dz;. If (U, z;) is a second
coordinate neighbourhood, so that z; = w(z;) on U; N Uj, then

filzi)dzi = fi(w(zi))w'(2i)dz
on U; N Uj. Thus, to give a differential one-form on X is to give differential one-forms f;dz;

on each Uj, satisfying the above equation on the overlaps. For any (real) curve v : I — X
and differential one-form w on X, the integral [ w makes sense.



144 J.S. MILNE

A differential one-form is holomorphic if it is represented on the coordinated neighbour-
hoods by forms fdz with f holomorphic.

It is an important fact (already noted) that the holomorphic differential one-forms on a
Riemann surface of genus g form a complex vector space 2!(X) of dimension g.

For example, the Riemann sphere has genus 0 and so should have no nonzero holomorphic
differential one-forms. Note that dz is holomorphic on C = S\ {north pole}, but that
z=1/2"on S\ {poles}, and so dz = —Z%dz’, which has a pole at the north pole. Hence dz
does not extend to a holomorphic differential one-form on the whole of S.

An elliptic curve has genus 1, and so the holomorphic differential one-forms on it form a

vector space of dimension 1. It is generated by w = g—z (more accurately, the restriction of

Ldx + 0dy to E(C) C C?). Here I'm assuming that F has equation
2y
Y27 = X34+ aXZ?+ 073, A#0.
Note that, on Ef,
2udy = (32° + a)dz,

and so
dx dy

2y T 312 ta
where both are defined. Thus it is holomorphic on E**, and one can check that it also
holomorphic at the point at infinity.

For any @ € E(C), tjw is also holomorphic, and so tHw = cw for some ¢ € C. Now
Q +— c¢: E(C) — C is a holomorphic function on C, and all such functions are constant (see
10.3). Since the function takes the value 1 when @ = 0, it is 1 for all @), and so w is invariant
under translation. Alternatively, one can simply note that the inverse image of w under the
map

(z,9) = (p(2), ¢(2)), C\A— E(C)

is

20/(z) 27
which is clearly translation invariant on C—d(z + ¢) = dz.

The Jacobian variety of a Riemann surface. Consider an elliptic curve over £ and a
nonzero holomorphic differential one-form w. We choose a point Py € F(C) and try to define
a map

P

P— | w:E(C)—C.

Py
This is not well-defined because the value of the integral depends on the path we choose
from Fy to P—nonhomotopic paths may give different answers. However, if we choose a
basis {71,72} for Hi(E(C),Z)(= m(E(C), F)), then the integral is well-defined modulo the

lattice A in C generated by
[ [o
il 72

In this way, we obtain an isomorphism

P
P— w: E(C) — C/A.

Py

Note that this construction is inverse to that in Section 10.
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Jacobi and Abel made a similar construction for any compact Riemann surface X. Suppose
X has genus g, and let wy, ... ,w, be a basis for the vector space Q' (X) of holomorphic one-
forms on X. Choose a point I € X. Then there is a smallest lattice A in CY such that the

map
P P
P»—></ wl,...,/ wg>:X—>(C9/A
P P

0
is well-defined. By a lattice in CY, I mean the free Z-submodule of rank 2¢g generated by a
basis for CY regarded as a real vector space (strictly, this is a full lattice). The quotient CY/A
is a complex manifold, called the Jacobian variety Jac(X) of X, which can be considered to
be a higher-dimensional analogue of C/A. Note that it is a commutative group.

We can make the definition of Jac(X) more canonical. Let Q'(X)Y be the dual of Q'(X)
as a complex vector space. For any v € Hy(X,Z),

w|—>/w
Y

is an element of Q'(X)Y, and in this way we obtain an injective homomorphism
Hi(X,Z) — Q'(X)",
which (one can prove) identifies H;(X,Z) with a lattice in Q'(X)Y. Define
Jac(X) = QN (X)V/H, (X, Z).
When we fix a Py € X, any P € X defines an element
W PPw mod H,(X,Z)
0

of Jac(X), and so we get a map X — Jac(X). The choice of a different F gives a map that
differs from the first only by a translation.

Construction of the elliptic curve over C. We apply the above theory to the Riemann
surface Xo(N). Let m be the map 7 : H — Xy(N) (not quite onto). For any w € Q'(X),
7w = fdz where f € S3(Xo(N)), and the map w — f is a bijection

QX)) = Sy(Xo(N))
(see 25.3). The Hecke operator T'(n) acts on Sy(Xo(N)), and hence on Q'(X) and its dual.

Proposition 28.1. There is a canonical action of T'(n) on Hi(Xo(N),Z), which is com-
patible with the map Hy(Xo(N),Z) — QY Xo(N))Y. In other words, the action of T(n)
on QN(X)V stabilizes its sublattice Hy(Xo(N),Z), and therefore induces an action on the
quotient Jac(Xo(N)).

Proof. One can give an explicit set of generators for H;(Xo(N),Z), explicitly describe an
action of T'(n) on them, and then explicitly verify that this action is compatible with the
map H;(Xo(N),Z) — Q' (Xo(N))Y. Alternatively, as we discuss in the next section, there
are more geometric reasons why the 7'(n) should act on Jac(X). O

Remark 28.2. From the action of T'(n) on Hy(X,Z) ~ Z? we get a characteristic poly-
nomial P(Y) € Z[Y] of degree 2g. What is its relation to the characteristic polynomial
Q(Y) € C[Y] of T'(n) acting on Q' (X)" ~ C9? The obvious guess is that P(Y) = Q(Y)Q(Y).
The proof that this is so is an exercise in linear algebra. See the next section.
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Now let f =3 ¢(n)g™ be a normalized newform for I'g(N) with ¢(n) € Z. The map
o a(f) QX (V)Y = C

identifies C with the largest quotient of Q'(X)" on which each T'(n) acts as multiplication
by ¢(n). The image of Hy(X(N),Z) is a lattice Ay, and we set £y = C/A;—it is an elliptic
curve over C. Note that we have constructed maps

Xo(N) = Jae(Xo(N)) — Ej.

The inverse image of the differential on E represented by dz is the differential on X, (V)
represented by fdz.

Construction of the elliptic curve over Q. We briefly explain why the above construc-
tion in fact gives an elliptic curve over Q. There will be a few more details in the next
section.

For a compact Riemann surface X, we defined
Jac(X) = QYX)V/H\(X,Z) =~ CI/A, g=genusX.

This is a complex manifold, but as in the case of an elliptic curve, it is possible to construct
enough functions on it to embed it into projective space, and so realize it as a projective
algebraic variety.

Now suppose X is a nonsingular projective curve over an field k. Weil showed (as part of
the work mentioned on p102) that it is possible to attach to X a projective algebraic variety
Jac(X) over k, which, in the case k = C becomes the variety defined in the last paragraph.
There is again a map X — Jac(X), well-defined up to translation by the choice of a point
Py € X (k). The variety Jac(X) is an abelian variety, i.e., not only is it projective, but it
also has a group structure. (An abelian variety of dimension 1 is an elliptic curve.)

In particular, there is such a variety attached to the curve Xy(NN) defined in Section
24. Moreover (see the next section), the Hecke operators T'(n) define endomorphisms of
Jac(Xo(N)). Because it has an abelian group structure, any integer m defines an endomor-
phism of Jac(Xo(N)), and we define E; to be the largest “quotient” of Jac(Xo(N)) on which
T(n) and c¢(n) agree for all n relatively prime to N. One can prove that this operation of
“passing to the quotient” commutes with change of the ground field, and so in this way we
obtain an elliptic curve over QQ that becomes equal over C to the curve defined in the last
subsection. On composing Xo(N) — Jac(Xo(N)) with Jac(Xo(N)) — Ef we obtain a map
Xo(N) — Ey. In summary:

Theorem 28.3. Let f =3 c(n)q™ be a newform in Sa(I'o(N)), normalized to have ¢(1) =1,
and assume that all ¢(n) € Z. Then there exists an elliptic curve Ey and a map o : Xo(N) —
E; with the following properties:

(a) «a factors uniquely through Jac(Xo(N)),
Xo(N) — Jac(Xo(N)) — Ey,
and the second map realizes Ey as the largest quotient of Jac(Xo(N)) on which the
endomorphisms T (n) and c¢(n) of Jac(Xo(N)) agree.

(b) The inverse image of an invariant differential w on Ey under HH — Xo(N) — Ef is a
nonzero rational multiple of fdz.
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29. WHY THE L-SERIES OF E AGREES WITH THE L-SERIES OF f

In this section we sketch a proof of the identity of Eichler and Shimura relating the Hecke
correspondence T'(p) to the Frobenius map, and hence the L-series of Ey to that of f.

The ring of correspondences of a curve. Let X and X’ be projective nonsingular curves
over a field k which, for simplicity, we take to be algebraically closed.

A correspondence T between X and X', written T : X F X', is a pair of finite surjective
regular maps
x &y Ly
It can be thought of as a many-valued map X — X’ sending a point P € X (k) to the set
{B(Q;)} where the @; run through the elements of a~'(P) (the @Q; need not be distinct).

Better, define Div(X) to be the free abelian group on the set of points of X; thus an element
of Div(X) is a finite formal sum

D=) npP, npeZ, PeX(k).
A correspondence T' then defines a map
Div(X) — Div(X'), P —> B(Q).
(notations as above). This map multiplies the degree of a divisor by deg(«). It therefore sends
the divisors of degree zero on X into the divisors of degree zero on X', and one can show that
it sends principal divisors to principal divisors. Hence it defines a map 7" : J(X) — J(X’)
where
J(X) =4 Div’(X)/{principal divisors}.
We define the ring of correspondences A(X) on X to be the subring of End(J(X)) generated
by the maps defined by correspondences.
If T is the correspondence
x2y ey,
then the transpose T of T is the correspondence
x&eyox
A morphism o : X — X’ can be thought of as a correspondence
X«—TI—-X

where I' C X x X’ is the graph of o and the maps are the projections. The transpose of a
morphism « is the many valued map P — o~ !(P).

Remark 29.1. Let U and U’ be the curves obtained from X and X’ by removing a finite
number of points. Then, it follows from the theory of algebraic curves, that a regular map
a U — U’ extends uniquely to a regular map a : X — X': take & to be the regular map
whose graph is the Zariski closure of the graph of a. On applying this remark twice, we see
that a correspondence U F U’ extends uniquely to a correspondence X + X'.

Remark 29.2. Let

xey L x
be a correspondence T : X + X', For any regular function f on X', we define T'(f) to be
the regular function P — 3 f(8Q;) on X (notation as above). Similarly, 7" will define a
homomorphism Q'(X’) — Q'(X).
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The Hecke correspondence. For p{ N, the Hecke correspondence T'(p) : Yo(N) — Yi(NV)
is defined to be

Yo(N) < Ya(pN) £ Yo(N)
where « is the obvious projection map and [ is the map induced by z — pz : H — H.

On points, it has the following description. Recall that a point of Yy(pN) is represented
by a pair (£, S) where E is an elliptic curve and S is a cyclic subgroup of E of order pN.
Because p { N, any such subgroup decomposes uniquely into subgroups of order N and p,
S = Sy x Sp. The map « sends the point represented by (£, .S) to the point represented by
(E,Sn), and [ sends it to the point represented by (E/S,, S/S,). Since E, has p + 1 cyclic
subgroups, the correspondence is 1: p + 1.

The unique extension of T'(p) to a correspondence Xo(N) — Xo(N) acts on Q' (Xo(N)) =
S2(Xo(NV)) as the Hecke correspondence defined in Section 26. This description of T'(p),

p1 N, makes sense, and is defined on, the curve X,(N) over Q. Similar remarks apply®? to
the T'(p) for p|N.

The Frobenius map. Let C' be a curve defined over the algebraic closure F of F,,. If C' is
defined by equations

Z aioil...XéOXfl e = 0,
then C'®) is defined by equations
> iy X XY =0,

and the Frobenius map ¢, : C — C® sends the point (b : by : by :...) to (bh 6} : b5 :...).
If C is defined over F,, then C' = C'®) and ¢, is the Frobenious map defined earlier.

Recall that a nonconstant morphism « : C — (" of curves defines an inclusion o* :
k(C") — k(C) of function fields, and that the degree of « is defined to be [k(C) : o k(C")].
The map « is said to be separable or purely inseparable according as k(C') is a separable of
purely inseparable extension of a*k(C"). If the separable degree of k(C') over a*k(C") is m,
then the map C'(k*) — C"(k*) is m : 1, except over the finite set where it is ramified.

Proposition 29.3. The Frobenius map ¢, : C' — C'®) is purely inseparable of degree p, and
any purely inseparable map ¢ : C' — C" of degree p (of complete nonsingular curves) factors
as

c 2 ow = o

Proof. For C' = P!, this is obvious, and the general case follows because F(C') is a separable
extension of F(T"). See [S1, 11.2.12] for the details. O

Brief review of the points of order p on elliptic curves. Let E be an elliptic curve
over an algebraically closed field k. The map p : E — E (multiplication by p) is of degree
p?. If k has characteristic zero, then the map is separable, which implies that its kernel has
order p?. If k has characteristic p, the map is never separable: either it is purely inseparable
(and so E has no points of order p) or its separable and inseparable degrees are p (and so F
has p points of order dividing p). The first case occurs for only finitely many values of j.

32These T(p)’s are sometimes denoted U (p).
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The Eichler-Shimura relation. The curve X,(/N) and the Hecke correspondence T'(p)
are defined over Q. For almost all primes p t N, Xo(N) will reduce to a nonsingular curve
Xo(N).33 For such a prime p, the correspondence T'(p) defines a correspondence T'(p) on
Xo(N).

Theorem 29.4. For a prime p where Xo(N) has good reduction,
T(p) = p + ¥}

(Equality in the ring A(Xo(N)) of correspondences on Xo(N) over the algebraic closure F
of Fp.)

Proof. We sketch a proof that they agree as many-valued maps on an open subset of XVO(N ).

Over Q' we have the following description of T'(p) (see above): a point P on Yy(N) is
represented by a homomorphism of elliptic curves o : £ — E’ with cyclic kernel of order
N; let Sp, ..., S, be the subgroups of order p in E; then T,(P) = {Qo, ... ,Q,} where Q; is
represented by F/S; — E'/a(S;).

Consider a point P on YO(N ) with coordinates in F—by Hensel’s lemma it will lift to a
point on Xo(N) with coordinates in le. Ignoring a finite number of points of Xo(N), we
can suppose P € 170(]\7) and hence is represented by a map @ : E — E' where a: E — FE'
has cyclic kernel of order N. By ignoring a further finite number of points, we may suppose
that E has p points of order dividing p.

Let a : E — E' be a lifting of & to Q. The reduction map E,(Q3) — EP(FZI) has a
kernel of order p. Number the subgroups of order p in E so that Sy is the kernel of this map.
Then each S;, © # 0, maps to a subgroup of order p in E.

The map p : E — E has factorizations
ESE/S S E i=0,1,....p.

When i = 0, ¢ is a purely inseparable map of degree p (it is the reduction of the map
E — E/Sy—it therefore has degree p and has zero kernel), and so ¢ must be separable of
degree p (we are assuming E has p points of order dividing p). Proposition 29.3 shows that
there is an isomorphism E® — E /So. Similarly E'® ~ F' /So. Therefore Q) is represented
by E® — E'®) which also represents ©p(P).

When i # 0, ¢ is separable (its kernel is the reduction of S;), and so ¥ is purely inseparable.
Therefore £ ~ E” ) and similarly B ~ E!®)| where E;/E/S; and E! = E'/S;. Tt follows
that {Q1,...,Qp} =, '(P) = ¢f(P). O

The zeta function of an elliptic curve revisited. We begin with an elementary result
from linear algebra.

Proposition 29.5. Let A be a free Z-module of finite rank, and let o : A — A be a Z-linear
map with nonzero determinant. Then the kernel of the map

a:(AeQ)/A— (A2 Q)/A
defined by o has order | det(a)|.

33n fact, it is known that Xo(N) has good reduction for all primes p { N, but this is hard to prove. It is
easy to see that Xo(N) does not have good reduction at primes dividing N.
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Proof. Consider the commutative diagram:

0 A ARQ — (A®Q)/A —— 0
S
0 A AwQ — (A®Q)/A —— 0.

Because det(«) # 0, the middle vertical map is an isomorphism. Therefore the snake lemma
gives an isomorphism

Ker(a) — Coker(a),
and it is easy to see that Coker(«) is finite with order equal to |det(«)|. O

We apply this to an elliptic curve E over C. Then E(C) = C/A for some lattice A, and
E(C)tors = QA/A where

QA={rA|reQ e A}l ={z€C|mzeAsomemeZ} =Q®A.

The degree of an endomorphism « of E is the order its kernel in E(C)os, and so we find
that deg(a) is the determinant of o acting on A. We shall need a generalization of this to
other fields.

Let E be an elliptic curve over an algebraically closed field k, and let ¢ be a prime not
equal to the characteristic of k. Then E(k)m ~ (Z/("Z)?. The Tate module T)E of E is
defined to be

Thus, it is a free Z,-module of rank 2 such that T, E/("T,FE = E(k) for all n. For example,
if k =C and E(C) = C/A, then

1

E(C)m = g—nA/A =AN/C"AN=A® (Z/I"Z),
and so
T\E=A® Zy.

More canonically,

TvE = Hi(E,Z) ® Zy.
Proposition 29.6. Let E and ¢ be as above. For an endomorphism « of E,

det(a|TyE) = deg a.

Proof. When k = C, then the statement follows from the above discussion. For k of charac-
teristic zero, it follows from the case k = C. For k of characteristic p # 0, see [S1]. O

When A is a free module over some ring R and o : A — A is R-linear, Tr(a|A) denotes
the trace (sum of diagonal terms) of the matrix of « relative to some basis for A—it is
independent of the choice of basis.

Corollary 29.7. Let E be an elliptic curve over F,. Then the trace of
Tr(pp| ToE) = ap =¢r p+ 1 — Np,.
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Proof. For any 2 x 2 matrix A, det(A — I5) = det A — Tr A+ 1. On applying this to the
matrix of ¢, acting on T,E, and using the proposition, we find that

deg(pp — 1) = deg(pp) — Tr(pp| TeE) + 1.
As we noted in Section 19, deg(y, — 1) = N, and deg(y¢,) =p. O

As we noted above, a correspondence 7' : X F X defines a map J(X) — J(X). When E
is an elliptic curve, E(k) = J(F), and so T acts on E(k), and hence also on Ty(E).

Corollary 29.8. Let E be an elliptic curve over F,. Then
TH(l|TLE) = Trlp,|TLE).

Proof. Because , has degree p, ¢, o 1" = p. Therefore, if a, 3 are the eigenvalues of ¢,, so
that in particular a8 = degy = p, then

Tr(y, [T:E) = p/a+p/B =6+
0

The action of the Hecke operators on H;(FE,Z). Again, we first need an elementary
result from linear algebra.

Let V be a real vector space and suppose that we are given the structure of a complex
vector space on V. This means that we are given an R-linear map J : V — V such that
J? = —1. The map J extends by linearity to V ®g C, and V ®g C splits as a direct sum

VerC=Vta V-,
with V* the £1 eigenspaces of J.
Proposition 29.9. (a) The map

®1 project
(RN 7 S RN )

s an isomorphism of complex vector spaces.

(b) Denote by w +— w the map v®@ z+— v Rz : V Qg C — V ®g C; this is an R-linear
involution of V ®g C interchanging V't and V.

Proof. Easy exercise. [

Corollary 29.10. Let « be an endomorphism of V' which is C-linear. Write A for the
matriz of o regarded as an R-linear endomorphism of V', and Ay for the matriz of o as a
C-linear endomorphism of V. Then

A~ A ® AL

. . . . . A
(By this I mean that the matriz A is equivalent to the matriz ( 01 ;—3 ) )
1
Proof. Follows immediately from the above Proposition. [In the case that V' has dimension
2, we can identify V' (as a real or complex vector space) with C. For the map “multiplication
by @ = a + 1b” the statement becomes,

a —b N a—+1b 0
b a 0 a—1b |’
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which is obviously true because the two matrices are semisimple and have the same trace
and determinant.] O

Corollary 29.11. For any pt N,

Te(T(p) | Hi(Xo(N),Z)) = Te(T(p) | 2 (Xo(N))) + Te(T(p) | Q'(Xo(N))).
Proof. To say that H;(Xo(N),Z) is a lattice in Q'(Xo(N))" means that
H1(Xo(N),Z) @z R = Q'(Xo(N))"
(as real vector spaces). Clearly
Te(T(p) | Hi(Xo(N), 2)) = Te(T(p) | Hi(Xo(N), Z) ®2 R),
and so we can apply the preceding corollary. [

The proof that ¢(p) = a,.

Theorem 29.12. Consider an f =3 c¢(n)q" and a map Xo(N) — E, as in (28.3). For all
PtN,
c(p) =ap =g p+1— Ny(E).

Proof. We assume first that X(/V) has genus 1, and so we may take the map to be an
isomorphism: F = X(V). Let p be a prime not dividing N. Then E has good reduction at
p, and for any ¢ # p, the reduction map T, F — T, yE is an isomorphism. The Eichler-Shimura
relation states that

T(p) = wp + ¢,
On taking traces on T,E, we find (using 29.7, 29.8, 29.11) that
2¢(p) = ap + ap.

The proof of the general case is very similar except that, at various places in the argument,
an elliptic curve has to be replace either by a curve or the Jacobian variety of a curve.
Ultimately, one uses that Ty E is the largest quotient of Ty Jac(Xo(N)) on which T'(p) acts
as multiplication by ¢(p) for all pt+ N (perhaps after tensoring with Q). O

Aside 29.13. Let X be a Riemann surface. The map [P]—[Fp] — /. ]]% w extends by linearity
to map Div?(X) — Jac(X). The famous theorem of Abel-Jacobi says that this induces an
isomorphism J(X) — Jac(X). The Jacobian variety Jac(X) of a curve X over a field k
(constructed in general by Weil) has the property that Jac(X)(k) = J(X), at least when
J(k) # 0. For more on Jacobian and Abelian varieties, see my articles in “Arithmetic
Geometry” (Eds. Cornell, G., and Silverman, J.).

Reference: The best reference for the material in Sections 23-29 is Knapp’s book.
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30. WILES’S PROOF

Somebody with an average or even good
mathematical background might feel that all
he ends up with after reading |[...|’s paper
1s what he suspected before anyway: The
proof of Fermat’s Last Theorem is indeed
very complicated. (M. Flach)

In this section, I explain the strategy of Wiles’s proof of the Taniyama conjecture for
semistable elliptic curves over Q (i.e., curves with at worst nodal reduction).

Recall, that if S denotes the sphere, then © =4 7 (S \ {P1,..., Ps}, O) is generated by
loops 71, ... ,7s around each of the points Py, ..., Ps, and that 7 classifies the coverings of
S unramified except over Py, ..., P;.

Something similar is true for Q. Let K be a finite extension of Q, and let Ok be the ring
of integers in K. In Ok, the ideal pOg factors into a product of powers of prime ideals:
pOxk = [Ip®. The prime p is said to be unramified in K if no e, > 1.

Now assume K/Q is Galois with Galois group G. Let p be unramified in K and choose a
prime ideal p dividing pOk (so that p NZ = (p)). Let G(p) be the subgroup of G of ¢ such
that op = p. One shows that the action of G(p) on Ok /p = k(p) defines an isomorphism
G(p) — Gal(k(p)/F,). The element F, € G(p) C G mapping to the Frobenius element
x +— P in Gal(k(p)/F,) is called the Frobenius element at p. Thus F, € G is characterised
by the conditions:

Fpp = p,
Fyrx = 2P mod p, for all z € Ok.

If p" also divides pOf, then there exists a 0 € G such that op = p’, and so Fy = cF,o™".
Therefore, the conjugacy class of F, depends on p—I'll often write F), for any one of the Fj,.
It is known that the F}, (varying p) generate G.

The above discussion extends to infinite extensions. Fix a finite nonempty set S of prime
numbers, and let Kg be the union of all K C C that are of finite degree over Q and
unramified outside S—it is an infinite Galois extension of Q. For each p € S, there is an
element F, € Gal(Kg/Q), well-defined up to conjugation, called the Frobenius element at p.

Proposition 30.1. Let E be an elliptic curve over Q. Let £ be a prime, and let
S = {p| E has bad reduction at p} U {¢}.
Then all points of order (™ on E have coordinates in Kg, i.e., E(Kg)m = E(Q%)m for all n.

Proof. See [S1, VIL.4.1]. O

Example 30.2. The smallest field containing the coordinates of the points of order 2 on the
curve B : Y?2Z = X3 +aXZ? 4+ bZ3 is the splitting field of X3 + aX +b. Those who know a
little algebraic number theory will recognize that this field is unramified at the primes not
dividing the discriminant A of X3 4 aX + b, i.e., at the primes where E has good reduction
(ignoring 2)

The Galois group Gg acts on F(Kg)m for all n. Recall from p156 that T,F is the free
Zo-module of rank 2 such that

T E/0"T)E = E(Ks)m = E(QY)m
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for all n. The action of Gg on the quotients defines a continuous action of Gg on T, F, i.e.,
a continuous homomorphism (also referred to as a representation)

pe: Gg — Aut(TgE) ~ GLQ(Zg).
Proposition 30.3. Let E,(,S be as in the previous proposition. For all p ¢ S,
Tr(pe(Fp) | TeE) = ap =qr p+ 1 — Np(E).

Proof. Because p ¢ S, E has good reduction to an elliptic curve E, over F,, and the re-
duction map P +— P induces an isomorphism T;E — T,E,. [For an elliptic curve E over a
nonalgebraically closed field k, T;E = lim E(k™)s.] By definition F, maps to the Frobenius
element in Gal(F/F),), and the two have the same action on 7, E. Therefore the proposition
follows from (29.7). O

Definition 30.4. A continuous homomorphism p : Gg — GL2(Z,) is said to be modular if
Tr(p(F,)) € Z for all p ¢ S and there exists a cusp form f = > ¢(n)g" in So(Lo(N)) for
some k and IV such that

forallp ¢ S.

Thus, in order to prove that E is modular one must prove that p, : Gg — Aut(T,E) is
modular for some ¢. Note that then p, will be modular for all /.

Similarly, one says that a continuous homomorphism p : Gg — GLy(F,) is modular if
there exists a cusp form f =3 ¢(n)¢™ in Sar(Fo(N)) for some k and N such that

Tr(p(F})) = c(p) mod ¢
for all p ¢ S. There is the following remarkable conjecture.

Conjecture 30.5 (Serre). Every odd irreducible representation p : Gg — GLo(Fy) is mod-
ular.

“Odd” means that det p(c) = —1, where ¢ is complex conjugation. “Irreducible” means
that there is no one-dimensional subspace of F? stable under the action of Gg. The Weil
pairing [S1,I11.8] shows that A* B, = p (the group of f-roots of 1 in Q). Since ¢{ = (™!, this
shows that the representation of Gg on Ej is odd. It need not be irreducible, for example, if
FE has a point of order ¢ with coordinates in Q.

As we shall discuss in the next section, Serre in fact gave a recipe for defining the level N
and weight 2k of modular form.

There is much numerical evidence supporting Serre’s conjecture, but few theorems. The
most important of these is the following.

Theorem 30.6 (Langlands, Tunnell). If p : Gs — GLy(Fs) is odd and irreducible, then
it is modular.

Note that GLg(F3) has order 8 - 6 = 48. The action of PGL2(FF3) on the projective plane

over Fy identifies it with Sy, and so GLy(F3) is a double cover Sy of Sj.

The theorem of Langlands and Tunnell in fact concerned representations Gg — GL2(C).
In the last century, Klein classified the finite subgroups of GL2(C): their images in PGL2(C)
are cyclic, dihedral, A4, Sy, or As. Langlands constructed candidates for the modular forms,
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and verified they had the correct property in the A4 case. Tunnell verified this in the Sy
case, and, since GLy(F3) embeds into GLg(C), this verifies Serre’s conjecture for Fs.

Fix a representation py : Gs — GLa(F,). In future, R will always denote a complete local
Noetherian ring with residue field F, for example, Fy, Zy, or Z,[[X]]. Two homomorphism
p1,p2 : Gs — GLa(R) will be said to be strictly equivalent if

pr=Mps M, M € Ker(GLy(R) — GLy(k)).

A deformation of py is a strict equivalence class of homomorphisms p : Gs — GLy(R) whose
composite with GLo(R) — GL2(F,) is po.

Let * be a set of conditions on representations p : Gs — GL(R). Mazur showed, for
certain *, that there is a universal #-deformation of py, i.e., a ring R and a deformation

p : Gg — GLa(R) satistying * such that for any other deformation p : Gg — GL2(R), there

is a unique homomorphism R — R such that the composite G 2 GLy(R) — GLy(R) is p.

Now assume pg is modular. Work of Hida and others show that, for certain %, there exists
a deformation py : Gg — GLo(T) that is universal for modular deformations satisfying .

_ Because p is universal for all *-representations, there exists a unique homomorphism 0 :
R — T carrying p into pr. It is onto, and it is injective if and only if every x-representation
is modular.

It is now possible to explain Wiles’s strategy. First, state conditions * as strong as possible
but which are satisfied by the representation of G's on Ty E for E a semistable elliptic curve
over Q. Fixing a modular py we get a homomorphism ¢ : R — T.

Theorem 30.7 (Wiles). The homomorphism § : R — T is an isomorphism (and so every
x-representation lifting po is modular).

Now let E be an elliptic curve over Q, and assume initially that the representation of
Gs on FEj is irreducible. By the Theorem of Langlands and Tunnell, the representation
po : Gs — Aut(E(Kg)s) is modular, and by Wiles’s theorem, every s-representation is
modular. In particular, ps3 : Gg — Aut(73F) is modular, which implies that £ is modular.

What if the representation of Gs on E(Kg)s is not irreducible, for example, if E(Q)
contains a point of order three. It is not hard to show that the representations of G'g on
E(Kgs)s and E(Kg)s can’t both be reducible, because otherwise either E or a curve isogenous
to E will have rational points of order 3 and 5, hence a point 15, which is impossible.
Unfortunately, there is no Langlands-Tunnell theorem for 5. Instead, Wiles uses the following
elegant argument.

He shows that there is a semistable elliptic curve £’ over Q such that:
(a) E'(Kg)s is irreducible;
(b) E'(Kg)s ~ E(Kg)s as Gg-modules.
Because of (a), the preceding argument applies to E’ and shows it to be modular. Hence the

representation ps : Gg — Aut(75E’) is modular, and so also is pg : Gg — Aut(E'(Kg)s) =~
Aut(E(Ks)s). Now, Wiles can apply his original argument with 3 replaced by 5.
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31. FERMAT, AT LAST

Fix a prime number ¢, and let E be an elliptic curve over Q. For a prime p it is possible
to decide whether or not E has good reduction at p purely by considering the action of
G = Gal(Q*/Q) on the modules E(Q)sm, for all n > 1.

Let M be a finite abelian group, and let p : G — Aut(M) be a continuous homomorphism
(discrete topology on Aut(M)). The kernel H of p is an open subgroup of G, and therefore its
fixed field Q¥ is a finite extension of Q. We say that p is unramified at p if p is unramified
in Q*#. With this terminology, we can now state a converse to Proposition 30.1.

Theorem 31.1. Let £ be a prime. The elliptic curve E has good reduction at p if and only
if the representation of G on E(Q™)sm is unramified for all n.

The proof makes use of the theory of Néron models.
There is a similar criterion for p = /.

Theorem 31.2. Let ¢ be a prime. The elliptic curve E has good reduction at £ if and only
if the representation of G on Epm s flat for all n.

For the experts, the representation of G on E(Q). is flat if there is a finite flat group
scheme H over Z, such that H(Q3') ~ E(Q3) as G-modules. Some authors say “finite” or
“crystalline” instead of flat.

These criteria show that it is possible to detect whether E has bad reduction at p, and
hence whether p divides the conductor of E, from knowing how G acts on E(Q) for all
n—it may not be possible to detect bad reduction simply by looking at F(Q¥), for example.

Recall that Serre conjectured that every odd irreducible representation p : G — GLy(F))
is modular, i.e., that there exists an f =Y ¢(n)q" € Sar(I'0(N)), some k and N, such that
Tr(p(F,)) = ¢(n) mod ¢

whenever p is unramified at p.

Conjecture 31.3 (Refined Serre conjecture). Every odd irreducible representation p :
G — GLa(Fy) is modular for a specific k and N. For example, a prime p # { divides N if
and only if p is ramified at p, and ¢ divides N if and only if p is not flat.

Theorem 31.4 (Ribet and others). If p: G — GLy(F)) is modular, then it is possible to
choose the cusp form to have the weight 2k and level N predicted by Serre.

This proof is difficult.

Now let E be the curve defined in (26.22) corresponding to a solution to X‘+Y* = Z* ¢ >
3. It is not hard to verify, using nontrivial facts about elliptic curves, that the representation
po of G on E(Q¥), is irreducible. Moreover, that it unramified for p # 2, ¢, and that it is flat
for p = ¢. The last statement follows from the facts that E has at worst nodal reduction at
p, and if it does have bad reduction at p, then p‘|A.

Now
E modular = py modular 2iber po modular for a cusp form of weight 2, level 2.

But Xy(N) has genus 0, and so there is no such cusp form. Wiles’s theorem proves that £
doesn’t exist.
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Of the growing number of sources attempting to explain Wiles’s theorem, I'll cite just
three.

Ribet: Bull AMS, 32.4, 375-402. This is reliable, easy to read, and contains a great list
of references.

Murty, Kumar (Ed.). Seminar on Fermat’s last theorem, Canadian Math. Soc.. This
was mostly written before Wiles found the correct proof, but nevertheless gives much of the
background required for the proof.

Darmon, Diamond, Taylor. Fermat’s Last Theorem. Contains the most thorough intro-
duction to the proof. A preliminary version was published in: Current Developments in
Mathematics, 1995.
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