
A Time-Memory Tradeoff using

Distinguished Points:

New Analysis & FPGA Results

Standaert Francois-Xavier, Rouvroy Gael
Quisquater Jean-Jacques, Legat Jean-Didier

{standaert,rouvroy,quisquater,legat}@dice.ucl.ac.be

UCL Crypto Group,
Laboratoire de Microelectronique, Universite Catholique de Louvain,

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium

Abstract. In 1980, Martin Hellman [1] introduced the concept of crypt-
analytic time-memory tradeoffs, which allows the cryptanalysis of any

N key symmetric cryptosystem in O(N
2
3) operations with O(N

2
3) stor-

age, provided a precomputation of O(N) is performed beforehand. This
procedure is well known but did not lead to realistic implementations.
This paper considers a cryptanalytic time-memory tradeoff using distin-
guished points, a method referenced to Rivest [2]. The algorithm pro-
posed decreases the expected number of memory accesses with sensible
modifications of the other parameters and allows much more realistic im-
plementations of fast key search machines. We present a detailed analysis
of the algorithm and solve theoretical open problems of previous mod-
els. We also propose efficient mask functions in terms of hardware cost
and probability of success. These results were experimentally confirmed
and we used a purpose-built FPGA design to perform realistic tradeoffs
against DES. The resulting online attack is feasible on a single PC and
we recover a 40-bit key in about 10 seconds.

1 Introduction

Generally speaking, a block cipher allows to encrypt a n-bit text using a k-bit
key to produce a n-bit ciphertext. Let q = d k

n
e. If q plaintext/ciphertext pairs

are known, with a high probability, the key can be determined by exhaustive key
search, but it usually requires a too long processing time. Another possibility
is a chosen plaintext attack using a precomputation table where an attacker
precomputes the encryptions of q chosen plaintexts under all possible keys and
stores the corresponding ciphertext/key pairs, but it usually requires a too large
memory. The aim of a time-memory tradeoff is to mount an attack of which
the online processing complexity is lower than an exhaustive key search and the
memory complexity is lower than a precomputation table.
In [3–5], Borst et Al. propose a theoretical analysis of the time-memory tradeoff
using distinguished points. They conclude that of theoretical interest remains
the problem of determining two parameters: the expected number of chains and

average chain length after sort. In this paper, we present a theoretical analysis
of a time-memory tradeoff using distinguished points and evaluate the different
parameters introduced by this variant of Hellman’s method. We discuss the
complexity of the attack as well as the resulting probability of success, isolate
the different phenomenons involved in a tradeoff using distinguished points and
evaluate their practical influence. Precisely, we propose approximations to solve
the open problem of [5] and correct the probability of success to correspond with
practical implementations. The resulting analysis was confirmed by experimental
results and allowed to mount realistic attacks against the block cipher DES.
The paper is organized as follows. In section 2, some basic schemes are given
to help the understanding of the tradeoff. Formal definitions and algorithms are
in section 3 and 4. Section 5 identifies the critical situations due to the use of
distinguished points in the tradeoff. Section 6 proposes efficient mask functions
in terms of success rate and hardware cost. The main contribution of this paper
lies in section 7 and 8. We evaluate the different parameters of the tradeoff
and compare the resulting theory with experimental results. Conclusions are in
section 9.

2 Basic scheme

The time-memory tradeoff method for breaking ciphers is composed of a pre-
computation task and an online attack. We briefly introduce these steps with
two intuitive schemes:

Fig. 1. Precomputation task

1. A chain is formed by a number l of encryptions using a chosen plaintext and
l different keys. A defined property holds for the first and last keys and we
call them distinguished points. During the precomputation, we compute a
number of chains and store start points, end points and the corresponding
chain length in a table.

2. Let the chosen plaintext be encrypted with a secret key. During the attack,
we can use the resulting ciphertext as a key and start a chain until we find a
distinguished point. Then, we check if this end point is in our table, take the
corresponding start point and restart chaining until we find the ciphertext
again. The secret key is its predecessor in the computed chain.

This basic scheme illustrates that the success rate of the attack depends on
how well the computed chains ”cover” the key space. In the next sections, we
develop these two schemes and present effective algorithms for precomputation
and online attack.

2

Fig. 2. Online attack

3 Definitions

Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher with block length n and
key length k. The encryption of one block is written as:

C = EK(P) (1)

Where C ∈ {0,1}n, K ∈ {0,1}k and P ∈ {0,1}n denote the ciphertext, the secret
key and the plaintext.
We define two functions. The first one just mixes its arguments and rejects z

bits to reach the key size k = n − z.

g : {0, 1}n → {0, 1}k. (2)

We call g a mask function. There are many possibilities to define g. Earlier papers
proposed to use permutations. In section 6, we suggest efficient mask functions
in terms of implementation cost and probability of success.
We also define a function f : {0, 1}k → {0, 1}k

f(K) = g(EK(P)) (3)

Finally, for a random start point SP ∈ {0, 1}k, we define a chain K0,K1,K2, ...,Kt

of length t as

K0 = SP (4)

Ki = f(Ki−1) = f i(K0) (5)

In the tradeoff, only the start point SP and end point EP = Kt are stored.

Definition of a DP -property: Let {0, 1}k be the key space and d ∈ {1,2,3,...,k-
1}. Then DP-d is a DP-property of order d if there is an easily checked property
which holds for 2k−d different elements of {0, 1}k. In our application, having d

bits locked to a fixed value, say 0, is a DP-property of order d.

3

Definition of a distinguished point: Let K ∈ {0, 1}k and d ∈ {1,2,3,...,k-1}.
Then K is a distinguished point (DP) of order d if the DP-property defined
beforehand holds for K. Note that using this definition of distinguished point,
we do not need to store the fixed bits and reduce the memory requirements of
the tradeoff.

4 Algorithms

The algorithm proposed requires to choose a DP-property of order d and a
maximum chain length t. We precompute r tables by choosing r different mask
functions. For each mask function m different start points (which are distin-
guished) will be randomly chosen. For each start point a chain will be computed
until a DP is encountered or until the chain length is t + 1. Only start points
iterating to a DP in less than t iterations will be stored with the corresponding
chain length, the others will be discarded. Moreover, if the same DP is an end
point for different chains, then only the chain of maximal length will be stored.
This involves a lower memory complexity than Hellman’s tradeoff.

Precomputation algorithm: Generate r tables with (SP,EP,l)-triples, sorted on
EP.

1. Choose a DP-property of order d.
2. Choose r different mask functions gi, i = 1, 2, ..., r. It defines r different f

functions: fi = gi(EK(P)), i = 1, 2, ..., r.
3. Choose the maximum chain length t.
4. For i = 1 to r

(a) Choose m random start points SP
(i)
1 , SP

(i)
2 , ..., SP

(i)
m .

(b) For j = 1 to m, l = 1 to t

i. Compute f l
i (SP

(i)
j).

ii. If f l
i (SP

(i)
j) is a DP then store the triple (SP

(i)
j , EP

(i)
j = f l

i (SP
(i)
j), l)

and take next j.

iii. If l > t ”forget” SP
(i)
j and take next j.

(c) Sort triples on end points. If several end points are identical, only store
the triple with the largest l.

(d) Store the maximum l for each table: limax.

For the search algorithm, a table only has to be accessed when a DP is encoun-
tered during an iteration which allows efficient implementations of the online
attack. Moreover, if the encountered DP is not in the table, then one will not
find the target key by iterating further. Hence the current search can skip the
rest of this table.

Search algorithm: Given C = EK(P) find K.

1. For i = 1 to r

(a) Look up limax.

(b) Y = gi(C).
(c) For j = 1 to limax

4

i. If Y is a DP then
A. If Y in table i, then

– Take the corresponding SP (i) and length l in the table.
– If j < l

• Compute predecessor K̃ = f
l−1−j
i (SP

(j)
l).

• If C = EK̃(P) then K = K̃: STOP.
• If C 6= EK̃(P), take next i.

B. Else take next i.
ii. Set Y = f(Y).

5 Overlap situations

In the tradeoff method described, one tries to store information about as many
different keys as possible by taking as long chains as possible. Consequently,
the very short chains increase the memory complexity of the tradeoff and could
be rejected. However, different critical overlap situations can appear and add
constraints to the tradeoff.

1. A chain can cycle. This is the case where we find i and j with i 6= j and
Ki+1 = Kj+1.

2. Two chains computed with the same mask function can merge. This is the
case where two different start points have the same image. This means that
from the moment of the merge until the end of at least one chain, both chains
contain the same keys.

3. A chain can collide with another chain computed with a different mask
function. This is the situation where two chains computed with different
mask functions have some common points between SP and EP. It means
that some keys are stored several times, which is not efficient.

As suggested by the precomputation algorithm, we dealt with cycles by choosing
an adequate maximum chain length t and the mergers were rejected after the
precomputation by keeping the longest of two merging chains. Consequently,
the effectiveness of the tradeoff highly depends on the choice of its parameters.
In the section 7, we evaluate the different parameters of the tradeoff as well as
the resulting complexity and probability of success of both precomputation and
online attack.

6 Efficient mask functions

In previous papers about time-memory tradeoffs, mask functions were imple-
mented as permutations. We propose efficient mask functions in terms of colli-
sions and implementation cost.
Basically, the problem when using a permutation is the possibility that two
mask functions have some common keys after a collision. For example, if the
mask function corresponds to a permutation of two bits, the common length
after a collision is obviously 1

2 + 1
4 + 1

8+...
Moreover, if a large number of mask functions is needed (which is practically

5

probable), their implementation becomes fastidious (specially in hardware de-
signs that are particularly efficient in time-memory tradeoffs). We suggest the
following definition of efficient mask functions. Let mi(x) and mj(x) be two mask
functions:

mi(x) : {0, 1}n → {0, 1}n

mj(x) : {0, 1}n → {0, 1}n

Let n(x) = mi(x)−mj(x). Efficient mask functions are such that for every i 6= j,
we have

Ker(n(x)) = 01. (6)

We define mask functions as:

mi(x) : {0, 1}n → {0, 1}n : x → mi(x) = x ⊕ i (7)

Where ⊕ denotes the bitwise XOR operator. These mask functions fulfill condi-
tion 6 and are specially easy to implement in hardware or software.

7 Theoretical analysis

As mentioned in section 5, the effectiveness of the tradeoff highly depends on the
choice of its parameters. Consequently, their correct prediction before implemen-
tation is crucial. Although existing papers evaluate the processing complexity,
memory complexity and success rate of the tradeoff and mention that length of
chains, number of chains and number of mask functions play a crucial role in
the performance of the tradeoff, there exist no precise indications about how to
choose these parameters. Actually, only [3–5] focus on the distinguished points
variant but their analysis is not complete and some problems remained open. In
the next section, we propose a theoretical model for cryptanalytic time-memory
tradeoffs using distinguished points that takes into account the new situations
due to distinguished points. Approximations are proposed to solve the open
problem of [5].

7.1 Probability to reach a distinguished point

The main modification caused by the introduction of distinguished points is the
variable chain length. Consequently, we computed the probability to reach a
distinguished point in less than l iterations. In the following computation, we
guess that the maximum chain length is such that no cycle could appear. Let
P1(l) be the probability that a DP is reached in less than (≤) l iterations. Let
P2(l) be the probability that no DP is reached in less than l iterations. We have
P1 = 1 − P2 and we can easily compute P2(l):

P2(l) =

l−1
∏

i=0

(1 −
2k−d

2k − i
) (8)

1 Ker(n(x)) = {x ∈ {0, 1}n|n(x) = 0}

6

An approximate expression can be obtained knowing that i � 2k, by fixing i to
l−1
2 :

P2(l) ' (1 −
2k−d

2k − l−1
2

)l (9)

Finally, we have

P1(l) = 1 −
l−1
∏

i=0

(1 −
2k−d

2k − i
) (10)

P1(l) ' 1 − (1 −
2k−d

2k − l−1
2

)l (11)

Obviously, the probability to reach a distinguished point in exactly l iterations
can be derived from P1(l) - P1(l − 1) if we guess that P1(0) = 0. Important
information about the efficient areas of computation can be observed when rep-
resenting the amount l×P (A DP is reached in exactly l iterations) as shown by
Figure 3 for the DP-10 property.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 3. X = l, Y=l × P (A DP is reached in exactly l iterations)

7.2 Compute the average chain length β

Figure 3 suggests that practical precomputations should possibly be performed
for an efficient interval of chain lengths. Therefore, we evaluate the average chain
length in a region between lengths tmin and tmax:

β =

∑tmax

l=tmin
l.P (DP.in.exactly.l.iterations)

∑tmax

l=tmin
P (DP.in.exactly.l.iterations)

(12)

The denominator is easy to estimate and corresponds to the quotient between
the number of chains included in region [tmin, tmax] and the total number of
chains. We call it cover and denote it γ:

γ =

tmax
∑

l=tmin

P (DP.in.exactly.l.iterations) = P1(tmax) − P1(tmin − 1) (13)

7

Numerator can be estimated with the next formula:

tmax
∑

l=tmin

l.P (DP.in.exactly.l.iterations)

=

tmax
∑

l=tmin

l.(
l−2
∏

i=0

(1 −
2k−d

2k − i
) − (

l−1
∏

i=0

(1 −
2k−d

2k − i
))

'

tmax
∑

l=tmin

l.((1 −
2k−d

2k − t
2

)l−2 − (1 −
2k−d

2k − t
2

)l−1) (14)

Where t = tmax+tmin

2 . We can rewrite equation 14 in a simpler form:

tmax
∑

l=tmin

l.((1 − x)l−2 − (1 − x)l−1) (15)

Where x = 2k−d

2k
−

t
2

. Hence

tmax
∑

l=tmin

l.((1 − x)l−2 − (1 − x)l−1)

= tmin.(1 − x)tmin−2 − tmax.(1 − x)tmax−1 +

tmax−2
∑

l=tmin−1

(1 − x)l

= (1 − x)tmin−2.(tmin +
1 − x

x
) − (1 − x)tmax−1.(tmax +

1

x
) (16)

Finally, the average chain length is:

β '
(1 − x)tmin−2.(tmin + 1−x

x
) − (1 − x)tmax−1.(tmax + 1

x
)

γ
(17)

We designed some experiments in order to confirm this analysis and computed
chains using a block cipher DES with a reduced key of 40 bits. First, we evaluated
the influence of the DP-property:

DP-property Length region (log2) Experimental β (log2) Theoretical β (log2)

DP-11 9-13 11.2140 11.2140

DP-12 10-14 12.2137 12.2139

DP-13 12-14 13.0965 13.0966

DP-14 13-15 14.0967 14.0966

DP-15 11-18 15.0771 15.0836

Then, we observed the influence of the chain lengths:

DP-property Length region (log2) Experimental β (log2) Theoretical β (log2)

DP-13 10-13 11.9790 11.9987

DP-13 12-14 13.0965 13.0966

DP-13 13-16 14.0107 13.9955

8

7.3 Previous proposals for the success rate

In this section, we consider the success rate when using one table generated
with one mask function and denote it SR. The probability of success when
using several mask functions is evaluated later and we denote it PS. For all
the following computations, the function f is modeled as a random function
mapping the key set onto itself if the key K is randomly chosen. Actually, earlier
evaluations of the success rate, [1, 7], do not consider the distinguished point
variant and SR was always estimated in the following way: first the probability
P (Kij is new) that a newly generated key Kij is different from all keys generated
previously is evaluated by:

P (Kij .is.new) ≥ (1 −
it

N
)j+1 (18)

Where i is the number of chains already computed, j the length of current chain,
t the fixed chain length and N = 2k is the size of the key space. Then a lower
bound of the success rate is evaluated:

SR ≥
1

N

m
∑

i=1

t
∑

j=1

(1 −
it

N
)j+1 (19)

Where m is the number of chains computed. Using e−x ' 1 − x, we have the
following approximation:

(1 −
it

N
) ' e

−it
N

(1 −
it

N
)j+1 ' e

−ijt

N (20)

Equation 20 indicates that for a fixed value of N , there is not much to be gained
by increasing m and t beyond the point at which mt2 = N . Because when

e
−ijt

N ' e
−mt2

N and mt2 � N , most terms will be small. Finally, we can evaluate
the success rate:

SR ≥
1

N

m
∑

i=1

t
∑

j=1

(1 −
it

N
)j+1

'
1

t

m
∑

i=1

1 − e
−it2

N

it
N

t

N

'
1

t

∫ mt
N

0

1 − e−tx

x
dx

' h(u)
mt

N
(21)

Where u = mt2

N
and h(u) = 1

u

∫ u

0
1−e−x

x
dx. The function h(u) denotes a lower

bound of coverage. The next table evaluates h(u) for different values of u and
illustrates that h(u) rapidly decreases after u exceeds 1.

9

u h(u) u h(u) u h(u)

2−4 0.99 2−1 0.89 22 0.49

2−3 0.97 20 0.80 23 0.33

2−2 0.94 21 0.66 24 0.21

However, in case of a tradeoff using distinguished points, equation 19 is not
correct anymore when the merger problem appears. Indeed, the keys are stored
in terms of a number of chains and the relevant probability is the probability to
find a new chain, not a new key. The practical consequence is that the success rate
(21) does not correctly take the mergers into account. This point was neglected
in [5] and in the next section, we propose other approximations and show that
the possibility to carry on computing chains after mt2 = N has to be considered
if the objective is to get the fastest online attack.

7.4 A prediction of the mergers

Let s(j) be a storage function denoting the number of keys stored after sort and
rejection of mergers and j = γm be the number of chains computed in region
[tmin, tmax] (γ is the cover defined in section 7.2 and m is the number of start
points considered). Let p(j) be the probability that a new chain is found after a
storage s(j). We have:

s(j) = s(j − 1) + β × p(j − 1) (22)

p(j) =

β−1
∏

l=0

2k − s(j) − l

2k
(23)

Because l � 2k, e can reduce this system to a non-linear difference equation:

s(j + 1) = s(j) + β ×

β−1
∏

l=0

1 −
s(j)

2k
−

l

2k

s(j + 1) ' s(j) + β × (1 −
s(j)

2k
)β (24)

First proposal for s(j): We computed a lower bound for s(j) by using the linear

approximation: (1− s(j)
2k)β = (1− β × s(j)

2k + O(s(j)2)) and solving the resulting
linear recurrence:

s(j + 1) ' (1 −
β2

2k
) × s(j) + β (25)

Which has solution:

s(j) ' (s(0) −
2k

β
) × (1 −

β2

2k
)j +

2k

β
(26)

The function (1 − s(j)
2k)β represents the probability that a new chain is found.

If we define the saturation as the moment when we have s(j + 1) = s(j) cor-
responding to a probability zero that a new chain is found, Figure 4 illustrates

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Linear approximation of (1 − x)k with k = 210

that our linear approximation involves a too fast saturation. As a consequence,

we can derive a lower bound for the success rate: SR ≤ s(γm)
2k .

Comparing this result with precedent conclusions about the success rate, we ob-
serve that the amount s(γm) is defined as a number of keys stored and β is the

average chain length. This means that s(γm)
β

is a number of chains like m. There-

fore the condition suggested by Hellman: mt2 = N is similar to the condition of
saturation when considering a linear approximation of the probability to find a

new chain: s(γm) = 2k

β
is equivalent to s(γm)

β
= 2k

β2 . This last point suggests that

the decision to stop computations as soon as mt2 = N is not always optimal.
For example if the objective is to get the fastest online attack, we will try to
minimize the number of mask functions which involves the largest number of
chains stored for every mask function.

Second proposal for s(j): An improved approximation of the storage function
is based on the convergence of Euler’s methods described in [8]. The following
equation:

sn+1 − sn

1
= β × (1 −

sn

2k
)β (27)

Can be approximated by

s′(j) = f(s, j) (28)

Where f(s, j) = β × (1 − s(j)
2k)β if | df

ds
| < L and |s′′(j)| < Y (L and Y are fixed

constants). Because s(j) is a storage function, it is obvious that s′′(j) < 0 and

lim(s′′(j)) = 0. As df
ds

= −β2

2k (1− s
2k)β−1 and s ∈ [0, 2k], the second condition is

also fulfilled. Therefore, we solved the following differential equation:

s′(j)

β
= (1 −

s(j)

2k
)β (29)

11

Using t(j) := (1 − s(j)
2k) and t′(j) := −s′(j)

2k , equation 29 is equivalent to:

−2k

β
× t′(j) = t(j)β (30)

Which has an exact solution. Finally, we found

s(j) = 2k ×
(

1 − (
2k

−βj + β2j + K
)

1
β−1

)

(31)

With K = 2k × (1 − s(0)
2k) × (1

1−
s(0)

2k

)β and the discretization error is estimated

by:

en+1 − en =
df

ds
(j, s) × en +

1

2
s′′(j) (32)

These computations are in accordance with experimental results presented in
section 8. We can conclude that:

1. The success rate evaluated in precedent papers is not directly applicable to
tradeoffs using distinguished points. Mergers were not correctly taken into
account.

2. The decision to stop precomputations at mt2 = N is not always optimal,
depending on the objective: optimal precomputation time or optimal attack
time.

7.5 A prediction of the average chain length after sort

An important consequence of the mergers is the possible modification of the
average chain length after sort. Intuitively, this modification depends on the
number of chains rejected and the choice of tmin and tmax. Looking at equation
23, we can observe that the probability that a chain merges is increasing with
the length of this chain. Consequently, the average length of rejected chains is
larger than the initial average chain length predicted by equation 17.
Practically, the rejection process is such that if two chains merge, only the longest
one is stored. Therefore, a possible prediction of the modification of the average
chain length could be achieved by computing the mergers prediction for every
possible chain length, using initial conditions for the storage:

βmod =

∑tmax

tmin
l.nl

∑tmax

tmin
nl

(33)

Where nl denotes the number of chains of length l after sort and is evaluated
using the storage function of section 7.4. As the evaluation of tmax − tmin differ-
ence equations is fastidious, we can divide the chain lengths in a number of sets.
Let m be the number of chains computed, with average length β and cover γ.
Let p be the number of sets used to evaluate βmod (we chose p = 4). According
to section 7.2, we evaluate β and γ for each set and denote them βi and γi (good

12

approximations need γi ' γj for every i, j). If m is the total number of chains
computed, the number of chains computed in each region, say Ni is:

Ni = m × γi (34)

Then we solve for i = p to 1:

si(j + 1) ' si(j) + βi × (1 −
si(j)

2k
)βi (35)

With the initial condition sp(0) = 0 and si−1(0) = si(Ni). From equation (26) or
(31), we can derive the quantities si(Ni) and s1(N1) denotes the final number of
keys stored. Finally, we compute the number of chains in each region: ci(Ni) =
si(Ni)−si(0)

βi
and approximate the modified average length of chains as:

βmod '

∑p
i=1 ci(Ni) × βi
∑p

i=1 ci(Ni)
(36)

7.6 Prediction of collisions and final probability of success

According to previous sections, the expected success rate using only one mask
function is:

SR '
s(γm)

2k
(37)

If we use r different mask functions, the resulting probability of success is:

PS(r) = 1 − (1 − SR)r (38)

7.7 Memory complexity

Storage is needed for r tables. Each table contains about s(γm)
βmod

chains. These
are in the form of triples and if we denote by e the actual size of an entry in
the table, using the result of the previous section for r, the memory complexity
Cmem can be expressed as:

Cmem ' e ×
s(γm)

βmod

× r (39)

7.8 Precomputation complexity

During the precomputation, we iterate for each point until either a distinguished
point is reached or tmax iterations have been made. If a distinguished point is
reached, then on average β iterations are computed. If a distinguished point is
not reached, then tmax iterations are computed. We define the expected number
of iterations for one chain as δ:

δ = tmax × (1 − P1(tmax)) + β × P1(tmax) (40)

As iterations are made on r × m start points, the precomputation complexity
Cprec can be estimated by:

Cprec ' r × m × δ (41)

13

7.9 Processing complexity

In a tradeoff using distinguished points, a table only has to be accessed when a
DP is encountered during an iteration which means that for every mask function,
only one chain has to be computed. Moreover, if the encountered DP is not in
the table, then one will not find the target key by iterating further. Therefore,
if r is the number of tables generated and βmod is the average length of chains
after sort, the processing complexity Cproc can be lower bounded by:

Cproc ≤ r × βmod (42)

Note that the possible reduction of the average chain length improves Cproc and
the resulting online attack is faster. This last point strengthens the assump-
tion that, for a fixed DP-property, computations beyond mt2 = N should be
considered if the fastest online attack is to be reached.

8 Practical experiments

To confirm our analysis, we compare some theoretical predictions with exper-
imental results. All our precomputations were carried out on a VIRTEX1000
FPGA board developed by the Microelectronics Laboratory at UCL. The board
is composed of a control FPGA (FLEX10K) and a VIRTEX1000 FPGA as-
sociated with several processors (ARM, PIC) and fast access memories. The
description of the hardware/software co-design used to perform the tradeoff and
the complete experimental results can be found in [6].

Practically, we implemented two tradeoffs:

1. A first one against DES with a 40-bit key where we optimized the online
attack. In this way, we illustrated a situation where condition mt2 = N is
not optimal. The 40-bit DES is obtained from DES by fixing 16 key bits to
arbitrary values.

2. A second one against DES with a 56-bit key where the precomputation task
was critical. Therefore, we only implemented one mask function in order to
evaluate the mergers and average chain length.

Both experiments confirmed our theoretical estimations. It is important to notice
that experimental storage values were counted in terms of chains and therefore
s(γm)
βmod

is the most significant data to compare. β and βmod were evaluated on a
sample of the results.

8.1 DES-40

Precomputation task: Table 1 summarizes our experimental results and theo-
retical predictions (in a log2 scale) with a DP-property DP-11 and chain lengths
∈ [29 − 213]. It confirms our analysis to be a correct prediction of the tradeoff.
Remark that mt2 = N would mean to limit the precomputations to m = 217.5738

which would not lead to an optimal online attack. As the precomputation com-
plexity was easily reachable using FPGA’s, we maximized the storage s(γm).
Moreover the diminution of the average chain length also improves the online
attack efficiency.

14

Table 1. Experimental results - Theoretical predictions

m β βmod s(γm) s(γm)
βmod

23.4219 11.2140 10.9721 30.4181 19.4460

m β βmod s(γm) s(γm)
βmod

21 11.2140 11.0400 29.7609 18.7209

22 11.2140 10.9653 30.0504 19.0851

23 11.2140 10.8847 30.2713 19.3866

24 11.2140 10.8040 30.4447 19.6407

Online attack: As the success rate of one single table is 230.4181

240 , we can derive
the final probability of success in terms of a number of mask functions r. Ex-
perimentally, we used 210 mask functions and observed a probability of success
of 72% which is to compare with the 73.74% theoretically predicted. The online
attack2 was performed on a single PC3. Thanks to the optimized Cproc, we re-
covered a key in about 10 seconds. An exhaustive key search on the same PC
would have taken about 50 days.

8.2 DES-56

Precomputation task: For this experiment, we experimentally observed the stor-
age function s(γm) at different levels of precomputation. Table 2 summarizes
our experimental results and theoretical experiments (in a log2 scale) with a
DP-property DP-18 and chain lengths ∈ [20 − 230]. Due to the critical pre-

Table 2. Experimental results - Theoretical predictions

m β βmod s(γm) s(γm)
βmod

20 18 17.8284 37.3781 19.5497

21 18 17.8261 38.1309 20.3048

22 18 17.6150 38.6140 20.9990

23 18 17.2983 38.9408 21.6425

m β βmod s(m) s(γm)
βmod

20 18 17.8310 37.3022 19.4712

21 18 17.7242 37.8599 20.1357

22 18 17.5819 38.2685 20.6866

23 18 17.4104 38.5461 21.1357

computation task, this experiment was not likely to be optimized in terms of
processing complexity. Anyway, it confirms our analysis to be a correct predic-
tion of the tradeoff. Online attacks against DES-56 offer a variety of compromises
between time and memory. The average chain lengths and number of mask func-
tions needed to reach high success rates (β = 218 and r ' 218 in our example)
will make FPGA’s the relevant tools to mount efficient online attacks. They
offer the high encryption rates and reconfigurability needed for cryptanalytic
applications.

2 First presented at the rump session of CRYPTO2001
3 18Gbytes ROM/256Mbytes RAM/350MHz

15

9 Conclusion

Confirmed by experimental results, we propose a new theoretical analysis of
cryptanalytic time-memory tradeoffs using distinguished points and underline
particularities of this variant of Hellman’s proposal. The model allows the pre-
diction of both precomputation and online attack parameters: the complexity
of the tradeoff is evaluated as well as its resulting probability of success. Pre-
dictions of earlier papers are modified in order to correctly take the mergers
into account and we suggest situations where our theoretical predictions induce
practical improvements.

We implemented the tradeoff against DES with a 40-bit key and recovered a key
in 10 seconds, with a success rate of 72%, using one PC. The exhaustive search
of the key on the same PC would have taken about 50 days. In parallel, practical
experiments against DES with a 56-bit key confirmed the effectiveness of FPGA’s
in cryptanalytic applications. We used FPGA’s to perform precomputation tasks
but in case of tradeoffs implemented against ciphers with large keys, an FPGA-
based implementation of the online attack would be very efficient and reasonably
expensive compared with software ones.

References

1. M.Hellman, A Cryptanalytic Time-Memory Tradeoff, IEEE transactions on Infor-
mation Theory, Vol 26, 1980, pp.401-406.

2. D.Denning, Cryptography and Data Security, p.100, Addison-Wesley, 1982, Out of
Print.

3. J.Borst, B.Preneel and J.Vandewalle, On the Time-Memory Tradeoff Between ex-

haustive key search and table precomputation, Proc. of the 19th Symposium in In-
formation Theory in the Benelux, WIC, 1998, pp.111-118.

4. J.Borst, B.Preneel and J.Vandewalle, A Time-Memory Tradeoff using Distinguished

Points, Technical report ESAT-COSIC Report 98-1, Departement of Electrical En-
gineering, Katholieke Universiteit Leuven, 1998.

5. J.Borst, Block Ciphers: Design, Analysis and Side-Channel Analysis, Chapter 3: A
Time-Memory Tradeoff attack, Phd Thesis, Departement of Electrical Engineering,
Katholieke Universiteit Leuven, 2001.

6. J.J.Quisquater, F.X.Standaert, G.Rouvroy, J.P.David, J.D.Legat, A Cryptanalytic

Time-Memory Tradeoff: First FPGA Implementation, To appear in the Proceedings
of FPL 2002 (The Field Programmable Logic Conference) .

7. K.Kusuda and T.Matsumoto, Optimization of Time-Memory Tradeoff Cryptanalysis

and its Applications to DES, FEAL-32 and Skipjack, IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Science, EP79-A, 1996,
pp.35-48.

8. S.D.Conte, C.de Boor, Elementary of Numerical Analysis, Chapter 8.4, Mc Graw-
Hill, 1981.

9. Amos Fiat and Moni Naor, Rigorous Time/Space Tradeoffs for Inverting Functions,
SIAM J. Computing 29(3), 1999 pp. 790-803.

16

