
MIT 6.02 DRAFT Lecture Notes

Fall 2010 (Last update: October 7, 2010)

Comments, questions or bug reports?

Please contact 6.02-staff@mit.edu

LECTURE 6

Coping with Bit Errors

Recall our main goal in designing digital communication networks: to send information
both reliably and efficiently between nodes. Meeting that goal requires the use of tech-
niques to combat bit errors, which are an inevitable property of both commmunication
channels and storage media.

The key idea we will apply to achieve reliable communication is redundancy: by repli-
cating data to ensure that it can be reconstructed from some (correct) subset of the data
received, we can improve the likelihood of fixing errors. This approach, called error cor-

rection, can work quite well when errors occur according to some random process. Error
correction may not be able to correct all errors, however, so we will need a way to tell if
any errors remain. That task is called error detection, which determines whether the data
received after error correction is in fact the data that was sent. It will turn out that all the
guarantees we can make are probabilistic, but we will be able to make our guarantees on
reliabile data receptions with very high probability. Over a communication channel, the
sender and receiver implement the error correction and detection procedures. The sender
has an encoder whose job is to take the message and process it to produce the coded bits

that are then sent over the channel. The receiver has a decoder whose job is to take the re-
ceived (coded) bits and to produce its best estimate of the message. The encoder-decoder
procedures together constitute channel coding.

Our plan is as follows. First, we will define a model for the kinds of bit errors we’re
going to handle and revisit the previous lectures to see why errors occur. Then, we will
discuss and analyze a simple redundancy scheme called a replication code, which will sim-
ply make c copies of any given bit. The replication code has a code rate of 1/c—that is, for
every useful bit we receive, we will end up encoding c total bits. The overhead of the repli-
cation code of rate c is 1− 1/c, which is rather high for the error correcting power of the
code. We will then turn to the key ideas in that allow us to build powerful codes capable
of correcting errors without such a high overhead (or, capable of correcting far more errors
at a given code rate than the trivial replication code).

There are two big ideas that are used in essentially all channel codes: the first is the
notion of embedding, where the messages one wishes to send are placed in a geometrically
pleasing way in a larger space so that the distance between any two valid points in the

1



2 LECTURE 6. COPING WITH BIT ERRORS

embedding is large enough to enable the correction and detection of errors. The second big
idea is to use parity calculations (or more generally, linear functions) over the bits we wish
to send to produce the bits that are actually sent. We will study examples of embeddings
and parity calculations in the context of two classes of codes: linear block codes, which
are an instance of the broad class of algebraic codes, and convolutional codes, which are
an instance of the broad class of graphical codes.1

� 6.1 Bit error models

In the previous lectures, we developed a model for how channels behave using the idea of
linear time-invariance and saw how noise corrupted the information being received at the
other end of a channel. We characterized the output of the channel, Y , as the sum of two
components

y[n] = ynf[n] + noise, (6.1)

where y[n] is the sum of two terms. The first term is the noise-free prediction of the channel
output, which can be computed as the convolution of the channel’s unit sample response
with the input X , and the second is a random additive noise term. A good noise model for
many real-world channels is Gaussian; such a model is has a special name: additive white

Gaussian noise, or AWGN.2 AWGN has mean 0 and is fully characterized by the variance,
σ2. The larger the variance, the more intense the noise.

One of the properties of AWGN is that there is always a non-zero probability that a
voltage transmitted to represent a 0 will arrive at the receiver with enough noise that it
will be interpreted as a 1, and vice versa. For such a channel, if we know the transmitter’s
signaling levels and receiver’s digitizing threshold, we know (from the earlier lecture on
noise) how to calculate the probability of bit error (BER). For the most part, we will assume
a simple (but useful) model that follows from the properties of AWGN: a transmitted 0
bit may be digitized at the receiver as a 1 (after deconvolution) with some probability p

(the BER), and a transmitted 1 may be digitized as a 0 at the receiver (after deconvolution)
with the same probability p. Such a model is also called a binary symmetric channel, or BSC.
The “symmetric” refers to the property that a 0 becomes a 1 and vice versa with the same
probability, p.

BSC is perhaps the simplest error model that is realistic, but real-world channels exhibit
more complex behaviors. For example, over many wireless and wired channels as well as
on storage media (like CDs, DVDs, and disks), errors can occur in bursts. That is, the prob-
ability of any given bit being received wrongly depends on (recent) history: the probability
is higher if the bits in the recent past were received incorrectly.

Our goal is to develop techniques to mitigate the effects of both the BSC and burst
errors. We’ll start with techniques that work well over a BSC and then discuss how to deal
with bursts.

A BSC error model is characterized by one number, p. We can determine p empirically
by noting that if we send N bits over the channel, the expected number of erroneously

1Graphical codes are sometimes also called “probabilistic codes” in the literature, for reasons we can’t get
into here.

2The “white” part of this term refers to the variance being the same over all the frequencies being used to
communicate.



SECTION 6.2. THE SIMPLEST CODE: REPLICATION 3

received bits is N · p. Hence, by sending a known bit pattern and counting the fraction or
erroneously received bits, we can estimate p. In practice, even when BSC is a reasonable
error model, the range of p could be rather large, between 10−2 (or even a bit higher) all the
way to 10−10 or even 10−12. A value of p of about 10−2 means that messages longer than a
100 bits will see at least one error on average; given that the typical unit of communication
over a channel (a “packet”) is generally at least 1000 bits long (and often bigger), such an
error rate is too high.

But is a p of 10−12 small enough that we don’t need to bother about doing any error
correction? The answer often depends on the data rate of the channel. If the channel has
a rate of 10 Gigabits/s (available today even on commodity server-class computers), then
the “low” p of 10−12 means that the receiver will see one error every 10 seconds on average
if the channel is continuously loaded. Unless we take some mechanisms to mitigate the
situation, the applications using the channel may find this error rate (in time) too frequent.
On the other hand, a p of 10−12 may be quite fine over a communication channel running
at 10 Megabits/s, as long as there is some way to detect errors when they occur.

It is important to note that the error rate is not a fixed property of the channel: it de-
pends on the strength of the signal relative to the noise level (aka the “signal to noise
ratio”, or SNR). Moreover, almost every communication channel trades-off between the
raw transmission rate (“samples per bit” in this course) and the BER. As you increase the
bit rate at which data is sent (say, by reducing the number of samples per bit), the BER will
also increase, and then you need mechanisms to bring the BER down to acceptable values
once more—and those mechanisms will reduce the achievable bit rate.

� 6.2 The Simplest Code: Replication

In a replication code, each bit b is encoded as c copies of b, and the result is delivered. If
we consider bit b to be the message word, then the corresponding code word is bc (i.e., bb...b,
c times). Clearly, there are only two possible message words (0 and 1) and corresponding
code words. The beauty of the replication code is how absurdly simple it is.

But how well might it correct errors? To answer this question, we will write out the
probability of decoding error for the BSC error model with the replication code. That is, if
the channel corrupts each bit with probability p, what is the probability that the receiver
decodes the received code word correctly to produce the message word that was sent?

The answer depends on the decoding method used. A reasonable decoding method is
maximum likelihood decoding: given a received code word, r, which is some c-bit combina-
tion of 0’s and 1’s, the decoder should produce the most likely message that could have
caused r to be received. If the BSC error probability is smaller than 1/2, which will always
be true for the realm in which coding should be used, then the most likely option is the
message word that has the most number of bits in common with r.

Hence, the decoding process is as follows. First, count the number of 1’s in r. If there
are more than c

2 1’s, then decode the message as 1. If there are more than c
2 0’s, then decode

the message as 0. When c is odd, each code word will be decoded unambiguously. When
c is even, and has an equal number of 0’s and 1’s, the decoder can’t really tell whether the
message was a 0 or 1, and the best it can do is to make an arbitrary decision. (We have
tacitly assumed that the a priori probability of the sender sending a message 0 is the same



4 LECTURE 6. COPING WITH BIT ERRORS

Figure 6-1: Probability of a decoding error with the replication code that replaces each bit b with c copies

of b. The code rate is 1/c.

as a 1.)
We can write the probability of decoding error for the replication code as, being a bit

careful with the limits of the summation:

P (decoding error) =

� �c
i=� c

2 �
�c
i

�
pi(1− p)c−i if c odd

�c
i=� c

2 �
�c
i

�
pi(1− p)c−i + 1

2

� c
c/2

�
pc/2(1− p)c/2 if c even

(6.2)

When c is even, we add a term at the end to account for the fact that the decoder has a
fifty-fifty chance of guessing correctly when it receives a codeword with an equal number
of 0’s and 1’s.

Figure 6-1 shows the probability of decoding error from Eq.(6.2) as a function of the
code rate for the replication code. The y-axis is on a log scale, and the probability of error
is more or less a straight line with negative slope (if you ignore the flat pieces), which
means that the decoding error probability decreases exponentially with the code rate. It is
also worth noting that the error probability is the same when c = 2� as when c = 2�− 1.
The reason, of course, is that the decoder obtains no additional information that it already
didn’t know from any 2�− 1 of the received bits.

Given a chunk of data of size s bits, we can now calculate the probability that it will
be in error after the error correction code has been applied. Each message word (1 bit in
the case of the replication code) will be decoded incorrectly with probability q, where q is
given by Eq.(6.2). The probability that the entire chunk of data will be decoded correctly is
given by (1− q)s, and the desired error probability is therefore equal to 1− (1− q)s. When
q << 1, that error probability is approximately qs. This result should make intuitive sense.

Despite the exponential reduction in the probability of decoding error as c increases,



SECTION 6.3. EMBEDDINGS AND HAMMING DISTANCE 5

the replication code is extremely inefficient in terms of the overhead it incurs. As such, it
is used only in situations when bandwidth is plentiful and there isn’t much computation
time to implement a more complex decoder.

We now turn to developing more sophisticated codes. There are two big ideas: embed-

ding messages into spaces in a way that achieves structural separation and parity (linear) compu-

tations over the message bits.

� 6.3 Embeddings and Hamming Distance

Let’s start our investigation into error correction by examining the situations in which
error detection and correction are possible. For simplicity, we will focus on single error
correction (SEC) here.

There are 2n possible n-bit strings. Let’s define the Hamming distance (HD) between two
n-bit words, w1 and w2, as the number of bit positions in which the messages differ. Thus
0 ≤ HD(w1,w2) ≤ n.

Suppose that HD(w1,w2) = 1. Consider what happens if we transmit w1 and there’s
a single bit error that inconveniently occurs at the one bit position in which w1 and w2

differ. From the receiver’s point of view it just received w2—the receiver can’t detect the
difference between receiving w1 with a unfortunately placed bit error and receiving w2.
In this case, we cannot guarantee that all single bit errors will be corrected if we choose a
code where w1 and w2 are both valid code words.

What happens if we increase the Hamming distance between any two valid code
words to at least 2? More formally, let’s restrict ourselves to only sending some subset
S = {w1,w2, ...,ws} of the 2n possible words such that

HD(wi,wj) ≥ 2 for all wi,wj ∈ S where i �= j (6.3)

Thus if the transmission of wi is corrupted by a single error, the result is not an element
of S and hence can be detected as an erroneous reception by the receiver, which knows
which messages are elements of S . A simple example is shown in Figure 6-2: 00 and 11 are
valid code words, and the receptions 01 and 10 are surely erroneous.

It should be easy to see what happens as we use a code whose minimum Hamming
distance between any two valid code words is D. We state the property formally:

Theorem 6.1 A code with a minimum Hamming distance of D can detect any error pattern of

D − 1 or fewer errors. Moreover, there is at least one error pattern with D errors that cannot be

detected reliably.

Hence, if our goal is to detect errors, we can use an embedding of the set of messages
we wish to transmit into a bigger space, so that the minimum Hamming distance between
any two code words in the bigger space is at least one more than the number of errors
we wish to detect. (We will discuss how to produce such embeddings in the subsequent
sections.)

But what about the problem of correcting errors? Let’s go back to Figure 6-2, with S =
{00,11}. Suppose the receiver receives 01. It can tell that a single error has occurred, but
it can’t tell whether the correct data sent was 00 or 11—both those possible patterns are
equally likely under the BSC error model.



6 LECTURE 6. COPING WITH BIT ERRORS

Figure 6-2: Code words separated by a Hamming distance of 2 can be used to detect single bit errors. The

code words are shaded in each picture. The picture on the left is a (2,1) repetition code, which maps 1-bit

messages to 2-bit code words. The code on the right is a (3,2) code, which maps 2-bit messages to 3-bit code

words.

Ah, but we can extend our approach by producing an embedding with more space
between valid codewords! Suppose we limit our selection of messages in S even further,
as follows:

HD(wi,wj) ≥ 3 for all wi,wj ∈ S where i �= j (6.4)

How does it help to increase the minimum Hamming distance to 3? Let’s define one
more piece of notation: let Ewi be the set of messages resulting from corrupting wi with a
single error. For example, Eo00 = {001,010,100}. Note that HD(wi,an element of Ewi) = 1.

With a minimum Hamming distance of 3 between the valid code words, observe that
there is no intersection between Ewi and Ewj when i �= j. Why is that? Suppose there was a
message wk that was in both Ewi and Ewj . We know that HD(wi,wk) = 1 and HD(wj ,wk) =
1, which implies that wi and wj differ in at most two bits and consequently HD(wi,wj)≤ 2.
That contradicts our specification that their minimum Hamming distance be 3. So the Ewi

don’t intersect.
Now we can correct single bit errors as well: the received message is either a mem-

ber of S (no errors), or is a member of some particular Ewi (one error), in which case
the receiver can deduce the original message was wi. Here’s another simple example: let
S = {000,111}. So E000 = {001,010,100} and E111 = {110,101,011} (note that E000 doesn’t
intersect E111). Suppose the receiver receives 101. It can tell there’s been a single error since
101 /∈ S . Moreover it can deduce that the original message was 111 since 101 ∈ E111.

We can formally state some properties from the above discussion, and state what the
error-correcting power of a code whose minimum Hamming distance is at least D.

Theorem 6.2 The Hamming distance between n-bit words satisfies the triangle inequality. That

is, HD(x, y) + HD(y, z) ≥ HD(x, z).

Theorem 6.3 For a BSC error model with bit error probability < 1/2, the maximum likelihood

decoding strategy is to map any received word to the valid code word with smallest Hamming

distance from the received one (ties may be broken arbitrarily).

Theorem 6.4 A code with a minimum Hamming distance of D can correct any error pattern of



SECTION 6.4. LINEAR BLOCK CODES AND PARITY CALCULATIONS 7

�D−1
2 � or fewer errors. Moreover, there is at least one error pattern with �D−1

2 �+ 1 errors that

cannot be corrected reliably.

Equation (6.4) gives us a way of determining if single-bit error correction can always
be performed on a proposed set S of transmission messages—we could write a program
to compute the Hamming distance between all pairs of messages in S and verify that the
minimum Hamming distance was at least 3. We can also easily generalize this idea to
check if a code can always correct more errors. And we can use the observations made
above to decode any received word: just find the closest valid code word to the received
one, and then use the known mapping between each distinct message and the code word
to produce the message. That check may be exponential in the number of message bits we
would like to send, but would be reasonable if the number of bits is small.

But how do we go about finding a good embedding (i.e., good code words)? This task
isn’t straightforward, as the following example shows. Suppose we want to reliably send
4-bit messages so that the receiver can correct all single-bit errors in the received words.
Clearly, we need to find a set of messages S with 24 elements. Quick, what should the
members of S be?

The answer isn’t obvious. Once again, we could write a program to search through
possible sets of n-bit messages until it finds a set of size 16 with a minimum Hamming
distance of 3. An exhaustive search shows that the minimum n is 7, and one example of S
is:

0000000 1100001 1100110 0000111
0101010 1001011 1001100 0101101
1010010 0110011 0110100 1010101
1111000 0011001 0011110 1111111

But such exhaustive searches are impractical when we want to send even modestly
longer messages. So we’d like some constructive technique for building S . Much of the
theory and practice of coding is devoted to finding such constructions and developing
efficient encoding and decoding strategies.

Broadly speaking, there are two classes of code constructions, each with an enormous
number of example instances. The first is the class of algebraic block codes. The second
is the class of graphical codes. We will study two simple examples of linear block codes,
which themselves are a sub-class of algebraic block codes: Hamming codes and rectan-
gular parity codes. We also note that the replication code discussed in Section 6.2 is an
example of a linear block code.

In later lectures, we will study convolutional codes, a sub-class of graphical codes.

� 6.4 Linear Block Codes and Parity Calculations

Linear block codes are examples of algebraic block codes, which take the set of k-bit mes-
sages we wish to send (there are 2k of them) and produce a set of 2k code words, each n

bits long (n ≥ k) using algebraic operations over the block. The word “block” refers to the
fact that any long bit stream can be broken up into k-bit blocks, which are then expanded
to produce n-bit code words that are sent.



8 LECTURE 6. COPING WITH BIT ERRORS

Such codes are also called (n,k) codes, where k message bits are combined to produce
n code bits (so each code word has n− k “redundancy” bits). Often, we use the notation
(n,k, d), where d refers to the minimum Hamming distance of the block code. The rate of a
block code is defined as k/n; the larger the rate, the less the overhead incurred by the code.

A linear code (whether a block code or not) produces code words from message bits
by restricting the algebraic operations to linear functions over the message bits. By linear,
we mean that any given bit in a valid code word is computed as the weighted sum of
one or more original message bits. Linear codes, as we will see, are both powerful and
efficient to implement. They are widely used in practice. In fact, all the codes we will
study—including convolutional codes—are linear, as are most of the codes widely used in
practice. We already looked at the properties of a simple linear block code: the replication
code we discussed in Section 6.2 is a linear block code with parameters (c,1, c).

To develop a little bit of intuition about the linear operations, let’s start with a “hat”
puzzle, which might at first seem unrelated to coding.

There are N people in a room, each wearing a hat colored red or blue, standing
in a line in order of increasing height. Each person can see only the hats of the
people in front, and does not know the color of his or her own hat. They play
a game as a team, whose rules are simple. Each person gets to say one word:
“red” or “blue”. If the word they say correctly guesses the color of their hat,
the team gets 1 point; if they guess wrong, 0 points. Before the game begins,
they can get together to agree on a protocol (i.e., what word they will say under
what conditions). Once they determine the protocol, they stop talking, form the
line, and are given their hats at random.

Can you think of a protocol that will maximize their score? What score does your

protocol achieve?

A little bit of thought will show that there is a way to use the concept of parity to enable
N − 1 of the people to correctly decode the colors of their hats. In general, the “parity”
of a set of bits x1, x2, . . . , xn is simply equal to (x1 + x2 + . . .+ xn), where the addition is
performed modulo 2 (it’s the same as taking the exclusive OR of the bits). Even parity
occurs when the sum is 0 (i.e., the number of 1’s is even), while odd parity is when the
sum is 1.

Parity, or equivalently, arithmetic modulo 2, has a special name: algebra in a Galois

Field of order 2, also denoted F2. A field must define rules for addition and multiplication.
Addition in F2 is as stated above: 0 + 0 = 1+ 1 = 0;1 + 0 = 0+ 1 = 1. Multiplication is as
usual: 0 · 0 = 0 · 1 = 1 · 0 = 0; 1 · 1 = 1. Our focus in 6.02 will be on linear codes over F2,
but there are natural generalizations to fields of higher order (in particular, Reed Solomon
codes, which are over Galois Fields of order 2q).

A linear block code is characterized by the following rule (which is both a necessary
and a sufficient condition for a code to be a linear block code):

Definition 6.1 A block code is said to be linear if, and only if, the sum of any two code words is

another code word.

For example, the code defined by code words 000,101,011 is not a linear code, because
101 + 011 = 110 is not a code word. But if we add 110 to the set, we get a linear code



SECTION 6.4. LINEAR BLOCK CODES AND PARITY CALCULATIONS 9

because the sum of any two code words is another code word. The code 000,101,011,110
has a minimum Hamming distance of 2 (that is, the smallest Hamming distance between
any two code words in 2), and can be used to detect all single-bit errors that occur during
the transmission of a code word. You can also verify that the minimum Hamming distance
of this code is equal to the smallest number of 1’s in a non-zero code word. In fact, that’s a
general property of all linear block codes, which we state formally below.

Theorem 6.5 Define the weight of a code word as the number of 1’s in the word. Then, the mini-

mum Hamming distance of a linear block code is equal to the weight of the non-zero code word with

the smallest weight.

To see why, use the property that the sum of any two code words must also be a code
word, and that the Hamming distance between any two code words is equal to the weight
of their sum (i.e., weight(u+ v) = HD(u, v)). We leave the complete proof of this theorem
as a useful and instructive exercise for the reader.

The rest of this section shows how to construct linear block codes over F2. For sim-
plicity, and without much loss of generality, we will focus on correcting single-bit errors.
We will show two ways of building the set S of transmission messages such that the size
of S will allow us to send messages of some specific length, and to describe how the re-
ceiver can perform error correction on the (possibly corrupted) received messages. These
are both examples of single error correcting (SEC) codes.

We will start with a simple rectangular parity code, then discuss the cleverer and more
efficient Hamming code in Section 6.4.3.

� 6.4.1 Rectangular Parity SEC Code

Let parity(w) equal the sum over F2 of all the bits in word w. We’ll use · to indicate the
concatenation (sequential joining) of two messages or a message and a bit. For any mes-
sage (sequence of one or more bits), let w = M · parity(M). You should be able to confirm
that parity(w) = 0. Parity lets us detect single errors because the set of code words w (each
defined as M · parity(M)) has a Hamming distance of 2.

If we transmit w when we want to send some message M , then the receiver can take the
received word, r, and compute parity(r) to determine if a single error has occurred. The
receiver’s parity calculation returns 1 if an odd number of the bits in the received message
have been corrupted. When the receiver’s parity calculation returns a 1, we say there has
been a parity error.

This section describes a simple approach to building a SEC code by constructing multi-
ple parity bits, each over various subsets of the message bits, and then using the resulting
parity errors (or non-errors) to help pinpoint which bit was corrupted.

Rectangular code construction: Suppose we want to send a k-bit message M . Shape the
k bits into a rectangular array with r rows and c columns, i.e., k = rc. For example, if
k = 8, the array could be 2× 4 or 4× 2 (or even 8× 1 or 1× 8, though those are a little
less interesting). Label each data bit with subscript giving its row and column: the first bit
would be d11, the last bit drc. See Figure 6-3.



10 LECTURE 6. COPING WITH BIT ERRORS

d11 d12 d13 d14 p row(M,1)
d21 d22 d23 d24 p row(M,2)

p col(M,1) p col(M,2) p col(M,3) p col(M,4)

Figure 6-3: A 2× 4 arrangement for an 8-bit message with row and column parity.

0 1 1 0 0
1 1 0 1 1
1 0 1 1

(a)

1 0 0 1 1
0 0 1 0 1
1 0 1 0

(b)

0 1 1 1 1
1 1 1 0 1
1 0 0 0

(c)

Figure 6-4: Example received 8-bit messages. Which have an error?

Define p row(i) to be the parity of all the bits in row i of the array and let R be all the
row parity bits collected into a sequence:

R = [p row(1),p row(2), . . . ,p row(r)]

Similarly, define p col(j) to be the parity of all the bits in column j of the array and let C
be the all the column parity bits collected into a sequence:

C = [p col(1),p col(2), . . . ,p col(c)]

Figure 6-3 shows what we have in mind when k = 8.
Let w = M ·R · C, i.e., the transmitted code word consists of the original message M ,

followed by the row parity bits R in row order, followed by the column parity bits C in
column order. The length of w is n = rc+ r + c. This code is linear because all the parity
bits are linear functions of the message bits. The rate of the code is rc/(rc+ r+ c).

We now prove that the rectangular parity code can correct all single-bit errors.

Proof of single-error correction property: This rectangular code is an SEC code for all
values of r and c. We will show that it can correct all single bit errors by showing that
its minimum Hamming distance is 3 (i.e., the Hamming distance between any two code
words is at least 3). Consider two different uncoded messages, Mi and Mj . There are three
cases to discuss:

• If Mi and Mj differ by a single bit, then the row and column parity calculations
involving that bit will result in different values. Thus, the corresponding code words,
wi and wj , will differ by three bits: the different data bit, the different row parity bit,
and the different column parity bit. So in this case HD(wi,wj) = 3.

• If Mi and Mj differ by two bits, then either (1) the differing bits are in the same
row, in which case the row parity calculation is unchanged but two column parity
calculations will differ, (2) the differing bits are in the same column, in which case the
column parity calculation is unchanged but two row parity calculations will differ,
or (3) the differing bits are in different rows and columns, in which case there will be
two row and two column parity calculations that differ. So in this case HD(wi,wj) ≥



SECTION 6.4. LINEAR BLOCK CODES AND PARITY CALCULATIONS 11

4.

• If Mi and Mj differ by three or more bits, then in this case HD(wi,wj) ≥ 3 because wi

and wj contain Mi and Mj respectively.

Hence we can conclude that HD(wi,wj) ≥ 3 and our simple “rectangular” code will be
able to correct all single-bit errors.

Decoding the rectangular code: How can the receiver’s decoder correctly deduce M

from the received w, which may or may not have a single bit error? (If w has more than
one error, then the decoder does not have to produce a correct answer.)

Upon receiving a possibly corrupted w, the receiver checks the parity for the rows and
columns by computing the sum of the appropriate data bits and the corresponding parity
bit (all arithmetic in F2). This sum will be 1 if there is a parity error. Then:

• If there are no parity errors, then there has not been a single error, so the receiver can
use the data bits as-is for M . This situation is shown in Figure 6-4(a).

• If there is single row or column parity error, then the corresponding parity bit is in
error. But the data bits are okay and can be used as-is for M . This situation is shown
in Figure 6-4(c), which has a parity error only in the fourth column.

• If there is one row and one column parity error, then the data bit in that row and
column has an error. The decoder repairs the error by flipping that data bit and then
uses the repaired data bits for M . This situation is shown in Figure 6-4(b), where
there are parity errors in the first row and fourth column indicating that d14 should
be flipped to be a 0.

• Other combinations of row and column parity errors indicate that multiple errors
have occurred. There’s no “right” action the receiver can undertake because it
doesn’t have sufficient information to determine which bits are in error. A common
approach is to use the data bits as-is for M . If they happen to be in error, that will be
detected when validating by the error detection method.

This recipe will produce the most likely message, M , from the received code word if there
has been at most a single transmission error.

In the rectangular code the number of parity bits grows at least as fast as
√
k (it should

be easy to verify that the smallest number of parity bits occurs when the number of rows,
r, and the number of columns, c, are equal). Given a fixed amount of communication
bandwidth, we’re interested in devoting as much of it as possible to sending message bits,
not parity bits. Are there other SEC codes that have better code rates than our simple
rectangular code? A natural question to ask is: how little redundancy can we get away with

and still manage to correct errors?

The Hamming code uses a clever construction that uses the intuition developed while
answering the question mentioned above. We answer this question next.

� 6.4.2 How many parity bits are needed in a SEC code?

Let’s think about what we’re trying to accomplish with a SEC code: the goal is to correct
transmissions with at most a single error. For a transmitted message of length n there are



12 LECTURE 6. COPING WITH BIT ERRORS

Figure 6-5: A code word in systematic form for a block code. Any linear code can be transformed into an

equivalent systematic code.

n+1 situations the receiver has to distinguish between: no errors and a single error in any
of the n received bits. Then, depending on the detected situation, the receiver can make, if
necessary, the appropriate correction.

Our first observation, which we will state here without proof, is that any linear code can
be transformed into a systematic code. A systematic code is one where every n-bit code
word can be represented as the original k-bit message followed by the n− k parity bits
(it actually doesn’t matter how the original message bits and parity bits are interspersed).
Figure 6-5 shows a code word in systematic form.

So, given a systematic code, how many parity bits do we absolutely need? We need
to choose n so that single error correction is possible. Since there are n − k parity bits,
each combination of these bits must represent some error condition that we must be able
to correct (or infer that there were no errors). There are 2n−k possible distinct parity bit
combinations, which means that we can distinguish at most that many error conditions.
We therefore arrive at the constraint

n+ 1 ≤ 2n−k (6.5)

i.e., there have to be enough parity bits to distinguish all corrective actions that might need
to be taken. Given k, we can determine the number of parity bits (n− k) needed to satisfy
this constraint. Taking the log base 2 of both sides, we can see that the number of parity
bits must grow at least logarithmically with the number of message bits. Not all codes
achieve this minimum (e.g., the rectangular code doesn’t), but the Hamming code, which
we describe next, does.

� 6.4.3 Hamming Codes

Intuitively, it makes sense that for a code to be efficient, each parity bit should protect
as many data bits as possible. By symmetry, we’d expect each parity bit to do the same
amount of ”work” in the sense that each parity bit would protect the same number of data
bits. If some parity bit is shirking its duties, it’s likely we’ll need a larger number of parity
bits in order to ensure that each possible single error will produce a unique combination
of parity errors (it’s the unique combinations that the receiver uses to deduce which bit, if
any, had a single error).

The class of Hamming single error correcting codes is noteworthy because they are
particularly efficient in the use of parity bits: the number of parity bits used by Hamming



SECTION 6.4. LINEAR BLOCK CODES AND PARITY CALCULATIONS 13

d1 p1 p2 

p3 

d2 d3 

d4 

(a) (7,4) code

d1 
p1 p2 

p3 

d2 d3 

d4 

p4 

d9 

d11 

d10 

d6 

d7 d5 

d8 

(b) (15,11) code

Figure 6-6: Venn diagrams of Hamming codes showing which data bits are protected by each parity bit.

codes grows logarithmically with the size of the code word.
Figure 6-6 shows two examples of the class: the (7,4) and (15,11) Hamming codes. The

(7,4) Hamming code uses 3 parity bits to protect 4 data bits; 3 of the 4 data bits are involved
in each parity computation. The (15,11) Hamming code uses 4 parity bits to protect 11 data
bits, and 7 of the 11 data bits are used in each parity computation (these properties will
become apparent when we discuss the logic behind the construction of the Hamming code
in Section 6.4.4).

Looking at the diagrams, which show the data bits involved in each parity computation,
you should convince yourself that each possible single error (don’t forget errors in one of
the parity bits!) results in a unique combination of parity errors. Let’s work through the
argument for the (7,4) Hamming code. Here are the parity-check computations performed
by the receiver:

E1 = (d1 + d2 + d4 + p1) mod 2

E2 = (d1 + d3 + d4 + p2) mod 2

E3 = (d2 + d3 + d4 + p3) mod 2

where each Ei is called a syndrome bit because it helps the receiver diagnose the “illness”
(errors) in the received data. For each combination of syndrome bits, we can look for the
bits in each code word that appear in all the Ei computations that produced 1; these bits are
potential candidates for having an error since any of them could have caused the observed
parity errors. Now eliminate from the candidates bits that appear in any Ei computations
that produced 0 since those calculations prove those bits didn’t have errors. We’ll be left
with either no bits (no errors occurred) or one bit (the bit with the single error).

For example, if E1 = 1, E2 = 0 and E3 = 1, we notice that bits d2 and d4 both appear
in the computations for E1 and E3. However, d4 appears in the computation for E2 and
should be eliminated, leaving d2 as the sole candidate as the bit with the error.

Another example: suppose E1 = 1, E2 = 0 and E3 = 0. Any of the bits appearing in the



14 LECTURE 6. COPING WITH BIT ERRORS

computation for E1 could have caused the observed parity error. Eliminating those that
appear in the computations for E2 and E3, we’re left with p1, which must be the bit with
the error.

Applying this reasoning to each possible combination of parity errors, we can make a
table that shows the appropriate corrective action for each combination of the syndrome
bits:

E3E2E1 Corrective Action
000 no errors
001 p1 has an error, flip to correct
010 p2 has an error, flip to correct
011 d1 has an error, flip to correct
100 p3 has an error, flip to correct
101 d2 has an error, flip to correct
110 d3 has an error, flip to correct
111 d4 has an error, flip to correct

� 6.4.4 Is There a Logic to the Hamming Code Construction?

So far so good, but the allocation of data bits to parity-bit computations may seem rather
arbitrary and it’s not clear how to build the corrective action table except by inspection.

The cleverness of Hamming codes is revealed if we order the data and parity bits in a
certain way and assign each bit an index, starting with 1:

index 1 2 3 4 5 6 7
binary index 001 010 011 100 101 110 111

(7,4) code p1 p2 d1 p3 d2 d3 d4

This table was constructed by first allocating the parity bits to indices that are powers
of two (e.g., 1, 2, 4, . . . ). Then the data bits are allocated to the so-far unassigned indicies,
starting with the smallest index. It’s easy to see how to extend this construction to any
number of data bits, remembering to add additional parity bits at indices that are a power
of two.

Allocating the data bits to parity computations is accomplished by looking at their re-
spective indices in the table above. Note that we’re talking about the index in the table, not
the subscript of the bit. Specifically, di is included in the computation of pj if (and only if)
the logical AND of index(di) and index(pj) is non-zero. Put another way, di is included in
the computation of pj if, and only if, index(pj) contributes to index(di) when writing the
latter as sums of powers of 2.

So the computation of p1 (with an index of 1) includes all data bits with odd indices: d1,
d2 and d4. And the computation of p2 (with an index of 2) includes d1, d3 and d4. Finally,
the computation of p3 (with an index of 4) includes d2, d3 and d4. You should verify that
these calculations match the Ei equations given above.

If the parity/syndrome computations are constructed this way, it turns out that E3E2E1,
treated as a binary number, gives the index of the bit that should be corrected. For exam-
ple, if E3E2E1 = 101, then we should correct the message bit with index 5, i.e., d2. This
corrective action is exactly the one described in the earlier table we built by inspection.



SECTION 6.5. PROTECTING LONGER MESSAGES WITH SEC CODES 15

Figure 6-7: Dividing a long message into multiple SEC-protected blocks of k bits each, adding parity bits

to each constituent block. The red vertical rectangles refer are bit errors.

The Hamming code’s syndrome calculation and subsequent corrective action can be ef-
ficiently implemented using digital logic and so these codes are widely used in contexts
where single error correction needs to be fast, e.g., correction of memory errors when fetch-
ing data from DRAM.

� 6.5 Protecting Longer Messages with SEC Codes

SEC codes are a good building block, but they correct at most one error. As messages
get longer, they are unlikely to provide much correction if we use the entire message as a
single block of k bits. The solution, of course, is to break up a longer message into smaller
blocks of k bits each, and to protect each one with its own SEC code. The result might look
as shown in Figure 6-7.

� 6.5.1 Coping with Burst Errors

Over many channels, errors occur in bursts and the BSC error model is invalid. For ex-
ample, wireless channels suffer from interference from other transmitters and from fading,
caused mainly by multi-path propagation when a given signal arrives at the receiver from
multiple paths and interferes in complex ways because the different copies of the signal
experience different degrees of attenuation and different delays. Another reason for fad-
ing is the presence of obstacles on the path between sender and receiver; such fading is
called shadow fading.

The behavior of a fading channel is complicated and beyond the scope of 6.02, but the
impact of fading on communication is that the random process describing the bit error
probability is no longer independent and identically distributed. The BSC model needs to
be replaced with a more complicated one in which errors may occur in bursts. Many such
theoretical models guided by empirical data exist, but we won’t go into them here. Our
goal is to understand how to develop error correction mechanisms when errors occur in
bursts.

But what do we mean by a “burst”? The simplest model is to model the channel as
having two states, a “good” state and a “bad” state. In the “good” state, the bit error



16 LECTURE 6. COPING WITH BIT ERRORS

Figure 6-8: Interleaving can help recover from burst errors: code each block row-wise with an SEC, but

transmit them in interleaved fashion in columnar order. As long as a set of burst errors corrupts some set

of kth
bits, the receiver can recover from all the errors in the burst.

probability is pg and in the “bad” state, it is pb; pb > pg. Once in the good state, the channel
has some probability of remaining there (generally > 1/2) and some probability of moving
into the “bad” state, and vice versa. It should be easy to see that this simple model has
the property that the probability of a bit error depends on whether the previous bit (or
previous few bits) are in error or not. The reason is that the odds of being in a “good” state
are high if the previous few bits have been correct.

At first sight, it might seem like the SEC schemes we studied are poorly suited for a
channel experiencing burst errors. The reason is shown in Figure 6-8 (left), where each
block of the message is protected by its SEC parity bits. The different blocks are shown as
different rows. When a burst error occurs, multiple bits in an SEC block are corrupted, and
the SEC can’t recover from them.

Interleaving is a commonly used technique to recover from burst errors on a channel
even when the individual blocks are protected with a code that, on the face of it, is not
suited for burst errors. The idea is simple: code the blocks as before, but transmit them in
a “columnar” fashion, as shown in Figure 6-8 (right). That is, send the first bit of block 1,
then the first bit of block 2, and so on until all the first bits of each block are sent. Then,
send the second bits of each block in sequence, then the third bits, and so on.

What happens on a burst error? Chances are that it corrupts a set of “first” bits, or a
set of “second” bits, or a set of “third” bits, etc., because those are the bits sent in order on
the channel. As long as only a set of kth bits are corrupted, the receiver can correct all the
errors. The reason is that each coded block will now have at most one error. Thus, SEC
codes are a useful primitive to correct against burst errors, in concert with interleaving.

� Acknowledgments

Many thanks to Katrina LaCurts for carefully reading these notes and making several use-
ful comments.



SECTION 6.5. PROTECTING LONGER MESSAGES WITH SEC CODES 17

� Problems and Questions

These questions are to help you improve your understanding of the concepts discussed in
this lecture. The ones marked *PSet* are in the online problem set or lab.

1. Show that the Hamming distance satisfies the triangle inequality. That is, show that
HD(x, y) + HD(y, z) ≥ HD(x, z) for any three n-bit binary numbers in F2.

2. Consider the following rectangular linear block code:

D0 D1 D2 D3 D4 | P0
D5 D6 D7 D8 D9 | P1
D10 D11 D12 D13 D14 | P2
-------------------------
P3 P4 P5 P6 P7 |

Here, D0–D14 are data bits, P0–P2 are row parity bits and P3–P7 are column parity
bits. What are n, k, and d for this linear code?

3. *PSet* Consider a rectangular parity code as described in Section 6.4.1. Ben Bitdiddle
would like use this code at a variety of different code rates and experiment with them
on some channel.

(a) Is it possible to obtain a rate lower than 1/3 with this code? Explain your an-
swer.

(b) Suppose he is interested in code rates like 1/2, 2/3, 3/4, etc.; i.e., in general a
rate of n−1

n , for integer n > 1. Is it always possible to pick the parameters of
the code (i.e, the block size and the number of rows and columns over which to
construct the parity bits) so that any such code rate is achievable? Explain your
answer.

4. Two-Bit Communications (TBC), a slightly suspect network provider, uses the fol-
lowing linear block code over its channels. All arithmetic is in F2.

P0 = D0, P1 = (D0 +D1), P2 = D1.

(a) What are n and k for this code?

(b) Suppose we want to perform syndrome decoding over the received bits. Write
out the three syndrome equations for E0,E1,E2.

(c) For the eight possible syndrome values, determine what error can be detected
(none, error in a particular data or parity bit, or multiple errors). Make your
choice using maximum likelihood decoding, assuming a small bit error prob-
ability (i.e., the smallest number of errors that’s consistent with the given syn-
drome).

(d) Suppose that the the 5-bit blocks arrive at the receiver in the following order:
D0,D1, P0, P1, P2. If 11011 arrives, what will the TBC receiver report as the re-
ceived data after error correction has been performed? Explain your answer.



18 LECTURE 6. COPING WITH BIT ERRORS

(e) TBC would like to improve the code rate while still maintaining single-bit error
correction. Their engineer would like to reduce the number of parity bits by 1.
Give the formulas for P0 and P1 that will accomplish this goal, or briefly explain
why no such code is possible.

5. For any linear block code over F2 with minimum Hamming distance at least 2t+ 1
between code words, show that:

2n−k ≥ 1 +

�
n

1

�
+

�
n

2

�
+ . . .

�
n

t

�
.

Hint: How many errors can such a code always correct?

6. Using the Hamming code construction for the (7,4) code, construct the parity equa-
tions for the (15,11) code. How many equations does this code have? How many
message bits contribute to each parity bit?

7. Prove Theorems 6.2 and 6.3. (Don’t worry too much if you can’t prove the latter; we
will give the proof when we discuss convolutional codes in Lecture 8.)

8. The weight of a code word in a linear block code over F2 is the number of 1’s in the
word. Show that any linear block code must either: (1) have only even weight code
words, or (2) have an equal number of even and odd weight code words.
Hint: Proof by contradiction.


