

Common Internet File System (CIFS)

Technical Reference
Revision: 1.0

“Publication of this SNIA Technical Proposal has been approved by the SNIA. This document
represents a stable proposal for use as agreed upon by the SNIA CIFS Technical Work Group. The
SNIA does not endorse this proposal for any other purpose than the use described. This proposal may
not represent the preferred mode, and the SNIA may update, replace, or release competing proposal
at any time. If the intended audience for this release is a liaison standards body, the future support
and revision of this proposal may be outside the control of the SNIA or originating SNIA CIFS
Technical Work Group. Suggestion for revision should be directed to snia-cifs@snia.org”

SNIA Technical Proposal

USE OF THIS DOCUMENT IS GOVERNED BY THE TERMS AND
CONDITIONS SPECIFIED ON PAGES iii-v

Release Date: 3/1/2002

CIFS Technical Reference SNIA Technical Proposal ii
Revision 1.0

Revision History

Date By: Comments
Feb 27, 2002 SNIA CIFS Technical Work Group Version 1.0

Suggestion for changes or modifications to this document should be sent to the SNIA CIFS Technical Work Group at
snia-cifs@snia.org

CIFS Technical Reference SNIA Technical Proposal iii
Revision 1.0

Abstract
The Common Internet File System (CIFS) is a file sharing protocol. Client systems use this
protocol to request file access services from server systems over a network. It is based on the
Server Message Block protocol widely in use by personal computers and workstations running a
wide variety of operating systems. This document is a collaborative effort to produce more
comprehensive documentation of the network protocol used by existing CIFS (Common Internet
File System) implementations. Based on the widely used SMB (Server Message Block) network
protocol, CIFS has become a key file sharing protocol due to its widespread distribution and its
inclusion of enhancements that improve its suitability for internet authoring and file sharing. It is
an integral part of workstation and server operating systems as well as embedded and appliance
systems. In addition there has been a recent expansion of NAS (Network Attached Storage) and
SAN-like (Storage Area Network) network storage server products based on CIFS. Although
primarily a file sharing and authoring protocol, CIFS assumes even more importance due to the
indirect use of CIFS as a transport protocol for various higher level NT and Windows9x
communication protocols, as well as for network printing, resource location services, remote
management/administration, network authentication (secure establishment services) and RPC
(Remote Procedure Calls).

Intended Usage
The improved CIFS documentation, used as a development aid, will assist in decreased time-to-
market for product developers and improved interoperability for products in the market place. It is
the intent of the SNIA that this document reflect the best information available about the CIFS
protocol. In certain places within the document indicated by MISSING, additional information is
needed. The CIFS Technical Reference will be maintained by SNIA with the assistance of the
collaborating organizations. This is not a standards document nor CIFS specification. It is a best
effort at documenting the CIFS protocol as used by existing implementations. Inaccuracies or
errors can be brought to the attention of the SNIA as well as new information on the existing
protocol or new implementations. As new information or new implementations become available,
it is the desire of the SNIA to collect and evaluate this information for possible incorporation into
any future CIFS documentation that the SNIA CIFS documentation work group may choose to
create.

While the authors did not intend to include any licensable material in the document, some
licensable material may be present. If such material is brought to the attention of the SNIA, this
material will be identified in future versions of this document, if any. The SNIA desires that any
licensable material would be made available by the license owner in a reasonable and non-
discriminatory fashion. If this material cannot be made available in a reasonable and non-
discriminatory fashion, a best effort will be made to remove this material from any future versions
of this document, if any. This intention does not reduce or diminish any rights reserved by the
contributing companies with respect to their licensable material.

USE OF THIS DOCUMENT INDICATES THE USERS ASSENT TO THE DISCLAIMERS,
LIMITATIONS, USAGE AGREEMENT AND OTHER TERMS AND CONDITIONS SPECIFIED ON
PAGES iii-v.

CIFS Technical Reference SNIA Technical Proposal iv
Revision 1.0

DISCLAIMER OF WARRANTIES AND REPRESENTATIONS

This document is provided “as is”, without any express or implied warranties or representations of
any kind. Without limitation, there is no warranty of merchantability, no warranty of
noninfringement, and no warranty of fitness for a particular purpose. All such warranties are
expressly disclaimed.

The SNIA and the SNIA member organizations do not warrant or assume any responsibility for
the accuracy or completeness of any information, text, graphics, links, cross-references, or other
items contained herein.

No express or implied license to any intellectual property exists due to the presentation,
publication, distribution, or other dissemination of this document, or due to any use or
implementation based on the subject matter in this document.

This document is an informal Technical Reference and not a formal Standards Document or
formal specification intended for adoption as a Standard. By releasing this document, the SNIA
and the SNIA member organizations are neither guaranteeing nor implying that any CIFS
implementation(s) distributed or sold by them, presently or in the future, are compliant or
compatible with the implementation(s) described in this document. The release of this document
does not prevent SNIA or any SNIA member organization from modifying and/or extending their
CIFS implementation(s) at any time.

LIMITATION OF LIABILITY
The SNIA and the SNIA member organizations are not liable for any damages whatsoever arising out of the
use of or inability to use this document, even if the SNIA or any SNIA member organization has been
notified of the possibility of such damages.

INTELLECTUAL PROPERTY RIGHTS
The SNIA and the SNIA member organizations take no position regarding the validity or scope of
any intellectual property or other rights that might be claimed to pertain to the implementation or
use of the technology described in this document or the extent to which any license under such
rights might or might not be available; neither do they represent that they have made any effort to
identify any such rights.

CIFS Technical Reference SNIA Technical Proposal v
Revision 1.0

COPYRIGHT AND USAGE AGREEMENT

The SNIA hereby grants permission for individuals to use this document for personal use only, and
for corporations and other business entities to use this document for internal use only (including
internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety
with no alteration,

2. No modification or creation of derivative documents based on this document, or any part of
this document, is allowed, and

3. Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced must acknowledge the SNIA copyright on that material, and must
credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document,
sell any or all of this document, or distribute this document to third parties. All rights not explicitly
granted are expressly reserved to SNIA.
Permission to use this document for purposes other than those enumerated above may be requested
by e-mailing snia-tc@snia.org; please include the identity of the requesting individual and/or
company and a brief description of the purpose, nature, and scope of the requested use.

Copyright © 2001, 2002 Storage Networking Industry Association.

CIFS Technical Reference SNIA Technical Proposal vi
Revision 1.0

Acknowledgements
The SNIA CIFS Documentation is a cooperative effort of the SNIA CIFS Documentation
Work Group, bringing together the perspectives of system architects and developers from
diverse backgrounds and perspectives in the storage industry. An effort of this scope
could only be successful with support from each of the SNIA member organizations that
sponsored the individuals contributing their time and knowledge to the creation and review
of this document. The SNIA Board of Directors would like to extend its gratitude to this
dedicated group of individuals and their sponsoring companies:

Work Group Chairman Jim Norton, IBM
Co-Author Bob Mastors, EMC
Co-Author Byron Deadwiler, Hewlett-Packard
Co-Author Bob Griswold & Jason Goodman, Microsoft
Co-Author Christopher R. Hertel, Univ. of Minnesota
Co-Author Dennis Chapman, Network Appliance
Co-Author George Colley, Thursby Software Systems
Co-Author Steve French, IBM
Co-Author Tamir Ram, Veritas
The companies of the SNIA CIFS Documentation Work Group reflector: ADIC, AMI, Cereva,

CommVault, EMC, Eurologic, HP, IBM, KOM
Networks, LSI Logic, Microsoft, Network Appliance,
Novell, NSS, Quantum, Samba and Veritas

CIFS Technical Reference SNIA Technical Proposal vii
Revision 1.0

Table of Contents
ABSTRACT..III
INTENDED USAGE...III
DISCLAIMER OF WARRANTIES AND REPRESENTATIONS...IV
LIMITATION OF LIABILITY ...IV
INTELLECTUAL PROPERTY RIGHTS ...IV
COPYRIGHT AND USAGE AGREEMENT...V
ACKNOWLEDGEMENTS ...VI

1. INTRODUCTION ..1
1.1. SUMMARY OF FEATURES..1

1.1.1. File access...1
1.1.2. File and record locking...2
1.1.3. Safe caching, read-ahead, and write-behind ..2
1.1.4. File change notification ..2
1.1.5. Protocol version negotiation ..2
1.1.6. Extended attributes ...2
1.1.7. Distributed replicated virtual volumes ...2
1.1.8. Server name resolution independence ..2
1.1.9. Batched requests ...3
1.1.10. Obsolescence ..3

2. PROTOCOL OPERATION OVERVIEW...4
2.1. SERVER NAME DETERMINATION ...4
2.2. SERVER NAME RESOLUTION..4
2.3. SAMPLE MESSAGE FLOW...5
2.4. CIFS PROTOCOL DIALECT NEGOTIATION ..5
2.5. MESSAGE TRANSPORT...5

2.5.1. Connection Management ..6
2.6. OPPORTUNISTIC LOCKS ...6

2.6.1. Oplock Types ..7
2.6.1.1. Exclusive and Batch Oplocks .. 7
2.6.1.2. Level II Oplocks .. 8

2.6.2. Comparison with Other File Locking Methods...9
2.6.3. Oplock SMBs ..10

2.6.3.1. Obtaining an Oplock.. 10
2.6.3.2. Releasing an Oplock .. 10
2.6.3.3. Revoking an Oplock .. 10

2.6.4. Other Issues ..11
2.7. SECURITY MODEL..11
2.8. AUTHENTICATION..12

2.8.1. Overview ...12
2.8.2. Base Algorithms..12
2.8.3. Authentication Algorithms ..13

2.8.3.1. NT Session Key ... 13
2.8.3.2. LM Session Key... 14
2.8.3.3. Response .. 14
2.8.3.4. MAC key ... 14
2.8.3.5. Message Authentication Code ... 14

2.8.4. Session Authentication Protocol ...15
2.8.4.1. Plain Text Password... 15
2.8.4.2. Challenge/Response... 15

2.8.5. Message authentication code..15
2.8.6. Security Level..17

2.9. DISTRIBUTED FILE SYSTEM (DFS) SUPPORT ...17
3. SMB MESSAGE FORMATS AND DATA TYPES ..19

3.1. NOTATION ...19
3.2. SMB HEADER ..19

3.2.1. Command field..20

CIFS Technical Reference SNIA Technical Proposal viii
Revision 1.0

3.2.2. Flags field ...20
3.2.3. Flags2 Field ..21
3.2.4. Tid Field..21
3.2.5. Pid Field..22
3.2.6. Uid Field ...22
3.2.7. Mid Field...22
3.2.8. Status Field ...22
3.2.9. Timeouts..22
3.2.10. Data Buffer (BUFFER) and String Formats...23

3.3. NAME RESTRICTIONS...24
3.4. FILE NAMES...24
3.5. WILDCARDS...24
3.6. DFS PATHNAMES ..25
3.7. TIME AND DATE ENCODING ..26
3.8. ACCESS MODE ENCODING ...27
3.9. ACCESS MASK ENCODING ...27
3.10. OPEN FUNCTION ENCODING ..28
3.11. OPEN ACTION ENCODING ..28
3.12. FILE ATTRIBUTE ENCODING...29
3.13. EXTENDED FILE ATTRIBUTE ENCODING ..30
3.14. BATCHING REQUESTS ("ANDX" MESSAGES) ...31
3.15. "TRANSACTION" STYLE SUBPROTOCOLS ...32

3.15.1. SMB_COM_TRANSACTION2 Format ...32
3.15.2. SMB_COM_NT_TRANSACTION Formats...34
3.15.3. Functional Description ...35
3.15.4. SMB_COM_TRANSACTION Operations ...38

3.15.4.1. Mail Slot Transaction Protocol.. 38
3.15.4.2. Server Announcement Mailslot Transaction ... 38
3.15.4.3. Named Pipe Transaction Protocol ... 40
3.15.4.4. CallNamedPipe.. 41
3.15.4.5. WaitNamedPipe... 42
3.15.4.6. PeekNamedPipe... 42
3.15.4.7. GetNamedPipeHandleState ... 42
3.15.4.8. SetNamedPipeHandleState.. 43
3.15.4.9. GetNamedPipeInfo .. 43
3.15.4.10. TransactNamedPipe... 44
3.15.4.11. RawReadNamedPipe... 44
3.15.4.12. RawWriteNamedPipe .. 45

3.16. VALID SMB REQUESTS BY NEGOTIATED DIALECT..45
4. SMB REQUESTS ...47

4.1. SESSION REQUESTS..47
4.1.1. NEGOTIATE: Negotiate Protocol ..47

4.1.1.1. Errors ... 50
4.1.2. SESSION_SETUP_ANDX: Session Setup...51

4.1.2.1. Pre NT LM 0.12... 51
4.1.2.2. NT LM 0.12... 52
4.1.2.3. Errors ... 55

4.1.3. LOGOFF_ANDX: User Logoff...55
4.1.3.1. Errors ... 55

4.1.4. TREE_CONNECT_ANDX: Tree Connect..55
4.1.4.1. Errors ... 57

4.1.5. TREE_DISCONNECT: Tree Disconnect ...57
4.1.5.1. Errors ... 58

4.1.6. TRANS2_QUERY_FS_INFORMATION: Get File System Information ...58
4.1.6.1. SMB_INFO_ALLOCATION .. 58
4.1.6.2. SMB_INFO_VOLUME... 59
4.1.6.3. SMB_QUERY_FS_VOLUME_INFO... 59
4.1.6.4. SMB_QUERY_FS_SIZE_INFO ... 59
4.1.6.5. SMB_QUERY_FS_DEVICE_INFO ... 59
4.1.6.6. SMB_QUERY_FS_ATTRIBUTE_INFO.. 61
4.1.6.7. SMB_QUERY_CIFS_UNIX_INFO.. 61

CIFS Technical Reference SNIA Technical Proposal ix
Revision 1.0

4.1.6.8. SMB_QUERY_MAC_FS_INFO... 62
4.1.6.9. Errors ... 63

4.1.7. ECHO: Ping the Server ..63
4.1.7.1. Errors ... 64

4.1.8. NT_CANCEL: Cancel request ..64
4.2. FILE REQUESTS..64

4.2.1. NT_CREATE_ANDX: Create or Open File..64
4.2.1.1. Errors ... 67

4.2.2. NT_TRANSACT_CREATE: Create or Open File with EAs or SD ...67
4.2.2.1. Errors ... 68

4.2.3. CREATE_TEMPORARY: Create Temporary File..69
4.2.3.1. Errors ... 69

4.2.4. READ_ANDX: Read Bytes...70
4.2.4.1. Errors ... 71

4.2.5. WRITE_ANDX: Write Bytes to file or resource...71
4.2.5.1. Errors ... 72

4.2.6. LOCKING_ANDX: Lock or Unlock Byte Ranges..72
4.2.6.1. Errors ... 74

4.2.7. SEEK: Seek in File..75
4.2.7.1. Errors ... 75

4.2.8. FLUSH: Flush File ...75
4.2.8.1. Errors ... 76

4.2.9. CLOSE: Close File ...76
4.2.9.1. Errors ... 76

4.2.10. CLOSE_AND_TREE_DISCONNECT ..76
4.2.10.1. Errors... 77

4.2.11. DELETE: Delete File..77
4.2.11.1. Errors... 78

4.2.12. RENAME: Rename File ..78
4.2.12.1. Errors... 78

4.2.13. NT_RENAME: ..79
4.2.13.1. Errors... 79

4.2.14. MOVE: Rename File..79
4.2.14.1. Errors... 80

4.2.15. COPY: Copy File ..81
4.2.15.1. Errors... 82

4.2.16. TRANS2_QUERY_PATH_INFORMATION: Get File Attributes Given Path ..82
4.2.16.1. SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE .. 83
4.2.16.2. SMB_INFO_QUERY_EAS_FROM_LIST & SMB_INFO_QUERY_ALL_EAS.. 83
4.2.16.3. SMB_INFO_IS_NAME_VALID.. 84
4.2.16.4. SMB_QUERY_FILE_BASIC_INFO.. 84
4.2.16.5. SMB_QUERY_FILE_STANDARD_INFO.. 85
4.2.16.6. SMB_QUERY_FILE_EA_INFO .. 85
4.2.16.7. SMB_QUERY_FILE_NAME_INFO.. 85
4.2.16.8. SMB_QUERY_FILE_ALL_INFO.. 85
4.2.16.9. SMB_QUERY_FILE_ALT_NAME_INFO .. 88
4.2.16.10. SMB_QUERY_FILE_STREAM_INFO ... 88
4.2.16.11. SMB_QUERY_FILE_COMPRESSION_INFO.. 88
4.2.16.12. SMB_QUERY_FILE_UNIX_BASIC ... 89
4.2.16.13. SMB_QUERY_FILE_UNIX_LINK ... 89
4.2.16.14. SMB_MAC_DT_GET_APPL... 89
4.2.16.15. SMB_MAC_DT_GET_ICON... 90
4.2.16.16. SMB_MAC_DT_GET_ICON_INFO.. 90
4.2.16.17. Errors... 91

4.2.17. TRANS2_QUERY_FILE_INFORMATION: Get File Attributes Given FID...91
4.2.18. TRANS2_SET_PATH_INFORMATION: Set File Attributes given Path ..91

4.2.18.1. SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE .. 92
4.2.18.2. SMB_INFO_QUERY_ALL_EAS... 92
4.2.18.3. SMB_SET_FILE_UNIX_BASIC.. 93
4.2.18.4. SMB_SET_FILE_UNIX_LINK.. 93
4.2.18.5. SMB_SET_FILE_UNIX_HLINK ... 94
4.2.18.6. SMB_MAC_SET_FINDER_INFO ... 94
4.2.18.7. SMB_MAC_DT_ADD_APPL .. 94
4.2.18.8. SMB_MAC_DT_REMOVE_APPL .. 95

CIFS Technical Reference SNIA Technical Proposal x
Revision 1.0

4.2.18.9. SMB_MAC_DT_ADD_ICON .. 95
4.2.18.10. Errors... 95

4.2.19. TRANS2_SET_FILE_INFORMATION: Set File Attributes Given FID..96
4.2.19.1. SMB_FILE_BASIC_INFO ... 96
4.2.19.2. SMB_FILE_DISPOSITION_INFO... 97
4.2.19.3. SMB_FILE_ALLOCATION_INFO ... 97
4.2.19.4. SMB_FILE_END_OF_FILE_INFO ... 97
4.2.19.5. Errors... 97

4.3. DIRECTORY REQUESTS ..97
4.3.1. TRANS2_CREATE_DIRECTORY: Create Directory (with optional EAs) ...97

4.3.1.1. Errors ... 98
4.3.2. DELETE_DIRECTORY: Delete Directory ...98

4.3.2.1. Errors ... 98
4.3.3. CHECK_DIRECTORY: Check Directory ...99

4.3.3.1. Errors ... 99
4.3.4. TRANS2_FIND_FIRST2: Search Directory using Wildcards ..99

4.3.4.1. SMB_INFO_STANDARD .. 101
4.3.4.2. SMB_INFO_QUERY_EA_SIZE .. 101
4.3.4.3. SMB_INFO_QUERY_EAS_FROM_LIST ... 101
4.3.4.4. SMB_FIND_FILE_DIRECTORY_INFO.. 101
4.3.4.5. SMB_FIND_FILE_FULL_DIRECTORY_INFO.. 102
4.3.4.6. SMB_FIND_FILE_BOTH_DIRECTORY_INFO... 102
4.3.4.7. SMB_FIND_FILE_NAMES_INFO .. 103
4.3.4.8. SMB_FIND_FILE_UNIX ... 103
4.3.4.9. SMB_ FINDBOTH_ MAC_HFS_INFO.. 104
4.3.4.10. Errors... 105

4.3.5. TRANS2_FIND_NEXT2: Resume Directory Search Using Wildcards...105
4.3.5.1. Errors ... 106

4.3.6. FIND_CLOSE2: Close Directory Search ...106
4.3.6.1. Errors ... 106

4.3.7. NT_TRANSACT_NOTIFY_CHANGE: Request Change Notification...106
4.3.7.1. Errors ... 108

4.4. DFS OPERATIONS ..108
4.4.1. TRANS2_GET_DFS_REFERRAL: Retrieve Distributed Filesystem Referral..108

4.4.1.1. Errors ... 110
4.4.2. TRANS2_REPORT_DFS_INCONSISTENCY: Inform a server about DFS Error ...110

4.4.2.1. Errors ... 111
4.5. MISCELLANEOUS OPERATIONS ..111

4.5.1. NT_TRANSACT_IOCTL ...111
4.5.1.1. Errors ... 111

4.5.2. NT_TRANSACT_QUERY_SECURITY_DESC..112
4.5.2.1. Errors ... 112

4.5.3. NT_TRANSACT_SET_SECURITY_DESC..112
4.5.3.1. Errors ... 113

5. SMB SYMBOLIC CONSTANTS..114
5.1. SMB COMMAND CODES ..114
5.2. SMB_COM_TRANSACTION2 SUBCOMMAND CODES ...115
5.3. SMB_COM_NT_TRANSACTION SUBCOMMAND CODES..116
5.4. SMB PROTOCOL DIALECT CONSTANTS ...116

6. ERROR CODES AND CLASSES...118

7. SECURITY CONSIDERATIONS ..123

8. REFERENCES..124

9. APPENDIX A -- NETBIOS TRANSPORT OVER TCP ..125
9.1. CONNECTION ESTABLISHMENT ..125
9.2. CONNECTING TO A SERVER USING THE NETBIOS NAME ..125
9.3. CONNECTING TO A SERVER USING A DNS NAME OR IP ADDRESS ...125

9.3.1. NetBIOS Adapter Status..125

CIFS Technical Reference SNIA Technical Proposal xi
Revision 1.0

9.3.2. Generic Server Name..126
9.3.3. - Parsing the DNS Name (guessing) ...126

9.4. NETBIOS NAME CHARACTER SET ...126
10. APPENDIX B -- TCP TRANSPORT..127

11. APPENDIX C – SHARE LEVEL SERVER SECURITY...128

12. APPENDIX D – CIFS UNIX EXTENSION...129
12.1. INTRODUCTION ..129
12.2. PRINCIPLES ..129
12.3. CIFS PROTOCOL MODIFICATIONS ...129
12.4. MODIFIED SMBS ...130
12.5. GUIDELINES FOR IMPLEMENTERS...130

13. APPENDIX E – CIFS MACINTOSH EXTENSION ..132
13.1. INTRODUCTION ..132
13.2. PRINCIPLES ..132
13.3. CIFS PROTOCOL MODIFICATIONS ...132
13.4. MODIFIED SMBS ...133
13.5. GUIDELINES FOR IMPLEMENTERS...133

14. APPENDIX F – API NUMBERS FOR TRANSACT BASED RAP CALLS ..134

CIFS Technical Reference SNIA Technical Proposal 1
Revision 1.0

Common Internet File System (CIFS)

1. Introduction
This document describes the file sharing protocol for a Common Internet File System (CIFS).
CIFS is intended to provide an open cross-platform mechanism for client systems to request file
services from server systems over a network. It is based on the standard Server Message Block
(SMB) protocol widely in use by personal computers and workstations running a wide variety of
operating systems. An earlier version of this protocol was documented as part of the X/OPEN
(now Open Group) CAE series of standards [7]; this document updates the document to include
the latest shipping versions, and is published to allow the creation of implementations that inter-
operate with those implementations.

The scope of this document is limited to describing requests and responses for file services.
Separate documents exist for clients requesting services other than file services, e.g. print
services.

Use of the Internet and the World Wide Web has been characterized by read-only access.
Existing protocols such as FTP are good solutions for one-way file transfer. However, new
read/write interfaces will become increasingly necessary as the Internet becomes more interactive
and collaborative. Adoption of a common file sharing protocol having modern semantics such as
shared files, byte-range locking, coherent caching, change notification, replicated storage, etc.
would provide important benefits to the Internet community.

1.1. Summary of features
The protocol supports the following features:

• File access

• File and record locking

• Safe caching, read-ahead, and write-behind

• File change notification

• Protocol version negotiation

• Extended attributes

• Distributed replicated virtual volumes

• Server name resolution independence

• Batched requests

• Unicode file names

1.1.1. File access

The protocol supports the usual set of file operations: open, close, read, write, and seek.

CIFS Technical Reference SNIA Technical Proposal 2
Revision 1.0

1.1.2. File and record locking

The protocol supports file and record locking, as well as unlocked access to files. Applications
that lock files cannot be improperly interfered with by applications that do not; once a file or record
is locked, non-locking applications are denied access to the file.

1.1.3. Safe caching, read-ahead, and write-behind

The protocol supports caching, read-ahead, and write-behind, even for unlocked files, as long as
they are safe. All these optimizations are safe as long as only one client is accessing a file; read-
caching and read-ahead are safe with many clients accessing a file as long as all are just reading.
If many clients are writing a file simultaneously, then none are safe, and all file operations have to
go to the server. The protocol notifies all clients accessing a file of changes in the number and
access mode of clients accessing the file, so that they can use the most optimized safe access
method.

1.1.4. File change notification

Applications can register with a server to be notified if and when file or directory contents are
modified. They can use this to (for example) know when a display needs to be refreshed, without
having to constantly poll the server.

1.1.5. Protocol version negotiation

There are several different versions and sub-versions of this protocol; a particular version is
referred to as a dialect. When two machines first come into network contact they negotiate the
dialect to be used. Different dialects can include both new messages as well as changes to the
fields and semantics of existing messages in other dialects.

1.1.6. Extended attributes

In addition to many built-in file attributes, such as creation and modification times, non-file system
attributes can be added by applications, such as the author's name, content description, etc.

1.1.7. Distributed replicated virtual volumes

The protocol supports file system subtrees which look like to clients as if they are on a single
volume and server, but which actually span multiple volumes and servers. The files and
directories of such a subtree can be physically moved to different servers, and their names do not
have to change, isolating clients from changes in the server configuration. These subtrees can
also be transparently replicated for load sharing and fault tolerance. When a client requests a file,
the protocol uses referrals to transparently direct a client to the server that stores it.

1.1.8. Server name resolution independence

The protocol allows clients to resolve server names using any name resolution mechanism. In
particular, it allows using the DNS, permitting access to the file systems of other organizations
over the Internet, or hierarchical organization of servers' names within an organization. Earlier
versions of the protocol only supported a flat server name space.

CIFS Technical Reference SNIA Technical Proposal 3
Revision 1.0

1.1.9. Batched requests

The protocol supports the batching of multiple requests into a single message, in order to
minimize round trip latencies, even when a later request depends on the results of an earlier one.

1.1.10. Obsolescence

Throughout this document, references are made to obsolescent elements of the CIFS protocol.
Note that these obsolescent elements are still observed in implementations. The “obsolescent”
label only describes that these elements may be removed from implementations, in the future.

CIFS Technical Reference SNIA Technical Proposal 4
Revision 1.0

2. Protocol Operation Overview
In order to access a file on a server, a client has to:

• Parse the full file name to determine the server name, and the relative name within that
server

• Resolve the server name to a transport address (this may be cached)

• Make a connection to the server (if no connection is already available)

• Exchange CIFS messages (see below for an example)

This process may be repeated as many times as desired. Once the connection has been idle for a
while, it may be torn down.

2.1. Server Name Determination
How the client determines the name of the server and the relative name within the server is
outside of the scope of this document. However, just for expository purposes, here are three
examples.

In the URL "file://fs.megacorp.com/users/fred/stuff.txt", the client could take the part between the
leading double slashes and the next slash as the server name and the remainder as the relative
name – in this example "fs.megacorp.com" and "/users/fred/stuff.txt", respectively.

In the path name "\\corpserver\public\policy.doc" the client could take the part between the
leading double backslashes and the next slash as the server name, and the remainder as the
relative name -- in this example, "corpserver" and "\public\policy.doc" respectively.

In the path name "x:\policy.doc" the client could use "x" as an index into a table that contains a
server name and a file name prefix. If the contents of such a table for "x" were "corpserver" and
"\public", then the server name and relative name would be the same as in the previous example.

2.2. Server Name Resolution
Like server name determination, how the client resolves the name to the transport address of the
server is outside the scope of this document. All that is required by CIFS is that a CIFS client
MUST have some means to resolve the name of a CIFS server to a transport address, and that a
CIFS server MUST register its name with a name resolution service known its clients.

Some examples of name resolution mechanisms include: using the Domain Name System (DNS)
[1,2], and using NETBIOS name resolution (see RFC 1001 and RFC 1002 [3,4]). The server
name might also be specified as the string form of an IPv4 address in the usual dotted decimal
notation, e.g., "157.33.135.101"; in this case, "resolution" consists of converting to the 32 bit IPv4
address.

Which method is used is configuration dependent; the default SHOULD be DNS to encourage
interoperability over the Internet.

Note: The name resolution mechanism used may place constraints on the form of the server
name; for example, in the case of NETBIOS, the server name must be 15 characters or less, and
MUST be upper case.

CIFS Technical Reference SNIA Technical Proposal 5
Revision 1.0

2.3. Sample Message Flow
The following illustrates a typical message exchange sequence for a client connecting to a user
level server, opening a file, reading its data, closing the file, and disconnecting from the server.
Note: using the CIFS request batching mechanism (called the "AndX" mechanism), the second to
sixth messages in this sequence can be combined into one, so that there are really only three
round trips in the sequence. The last trip can be handled asynchronously by the client.

Client Command Server Response

SMB_COM_NEGOTIATE Must be the first message sent by a client to the server. Includes a
list of SMB dialects supported by the client. Server response
indicates which SMB dialect should be used.

SMB_COM_SESSION_SETUP_ANDX Transmits the user's name and credentials to the server for
verification. Successful server response has Uid field set in SMB
header used for subsequent SMBs on behalf of this user.

SMB_COM_TREE_CONNECT_ANDX Transmits the name of the disk share (exported disk resource) the
client wants to access. Printer device and interprocess
communication devices are outside the scope of this document.
Successful server response has Tid field set in SMB header used
for subsequent SMBs referring to this resource.

SMB_COM_OPEN_ANDX Transmits the name of the file, relative to Tid, the client wants to
open. Successful server response includes a file id (Fid) the client
should supply for subsequent operations on this file.

SMB_COM_READ Client supplies Tid, Fid, file offset, and number of bytes to read.
Successful server response includes the requested file data.

SMB_COM_CLOSE Client closes the file represented by Tid and Fid. Server responds
with success code.

SMB_COM_TREE_DISCONNECT Client disconnects from resource represented by Tid.

2.4. CIFS Protocol Dialect Negotiation

The first message sent from a CIFS client to a CIFS server must be one whose Command field is
SMB_COM_NEGOTIATE. The format of this client request includes an array of NULL terminated
strings indicating the dialects of the CIFS protocol which the client supports. The server
compares this list against the list of dialects the server supports and returns the index of the
chosen dialect in the response message.

2.5. Message Transport
CIFS is transport independent. The CIFS protocol assumes:

• A reliable connection oriented message-stream transport, and makes no higher level
attempts to ensure sequenced delivery of messages between the client and server.

• A well known endpoint for the CIFS service, such as a designated port number.

• Some mechanism to detect failures of either the client or server node, and to deliver such
an indication to the client or server software so they can clean up state. When a reliable
transport connection from a client terminates, all work in progress by that client is
terminated by the server and all resources open by that client on the server are closed.

It can run over any transport that meets these requirements. Some transports do not natively
meet all the requirements, and a standard encapsulation of CIFS for that transport may need to

CIFS Technical Reference SNIA Technical Proposal 6
Revision 1.0

be defined. Appendix A defines how to run CIFS over NETBIOS over TCP; Appendix B defines
how to run CIFS over TCP.

2.5.1. Connection Management

Once a connection is established, the rules for reliable transport connection dissolution are:

• If a server receives a transport establishment request from a client with which it is already
conversing, the server may terminate all other transport connections to that client. This is
to recover from the situation where the client was suddenly rebooted and was unable to
cleanly terminate its resource sharing activities with the server.

• A server may drop the transport connection to a client at any time if the client is generating
malformed or illogical requests. However, wherever possible the server should first return
an error code to the client indicating the cause of the abort.

• If a server gets a unrecoverable error on the transport (such as a send failure) the
transport connection to that client may be aborted.

• A server may terminate the transport connection when the client has no open resources
on the server, however, we recommend that the termination be performed only after some
time has passed or if resources are scarce on the server. This will help performance in
that the transport connection will not need to be reestablished if activity soon begins anew.
Client software is expected to be able to automatically reconnect to the server if this
happens.

2.6. Opportunistic Locks
The CIFS protocol includes a mechanism called “opportunistic locks”, or oplocks, that allows the
client to lock a file in such a manner that the server can revoke the lock. The purpose of oplocks
is to allow file data caching on the client to occur safely. It does this by defining the conditions
under which an oplock is revoked.

When a client opens a file it may request an oplock on the file. If the oplock is given the client may
safely perform caching. At some point in the future a second client may open the file. The
following steps provide an overview of the actions taken in response to the open from the second
client:

• The server holds off responding to the open from the second client.

• The server revokes the oplock of the first client.

• The first client flushes all cached data to the server.

• The first client acknowledges the revoke of the oplock.

• The server responds to the open from the second client.

As can be seen from the above steps, the first client has the opportunity to write back data and
acquire record locks before the second client is allowed to examine the file. Because of this a
client that holds an oplock can aggressively cache file data and state.

Anecdotal evidence suggests that oplocks provide a performance boost in many real-world
applications running on existing CIFS client implementations while preserving data integrity.

CIFS Technical Reference SNIA Technical Proposal 7
Revision 1.0

2.6.1. Oplock Types

There are three types of oplocks:

• Exclusive

• Batch

• Level II

Versions of the CIFS file sharing protocol including and newer than the "LANMAN1.0" dialect
support oplocks. Level II oplocks were introduced in NTLM 0.12.

2.6.1.1. Exclusive and Batch Oplocks

When a client has an exclusive oplock on a file, it is the only client to have the file open. The
exclusive oplock allows the client to safely perform file data read and write caching, metadata
caching, and record lock caching. All other operations on the file cannot be safely cached.

The server may revoke the exclusive oplock at any time. The client is guaranteed that the server
will revoke the exclusive oplock prior to another client successfully opening the file. This gives the
client that holds the oplock the opportunity to write back cached information to the file.

The batch oplock was introduced to allow a client to defer closing a file that was opened and re-
opened repetitively by an application. It has the same semantics as the exclusive oplock with the
following additional guarantee. The client holding a batch oplock has the additional guarantee that
the server will revoke the batch oplock prior to another client successfully making any change to
the file.

When a client opens a file it can specify that it wants an exclusive oplock, a batch oplock, or no
oplock. Exclusive and batch oplocks can only be obtained as a side effect of a file being opened.
The protocol does not support other means to obtain exclusive and batch oplocks.

Oplocks can only be obtained on files. Oplocks are not supported on directories and named
pipes. However it is not an error to request an oplock on directories and named pipes. In this case
the server must return that no oplock was granted.

The server response to a successful open request includes information about what type of oplock
was obtained. A server that does not support oplocks should always return that no oplock was
granted.

A client that requests an exclusive oplock will get one of the following:

• An exclusive oplock

• A level II oplock

• No oplock

A client that requests a batch oplock will get one of the following:

• A batch oplock

• A level II oplock

• No oplock

A client that requests no oplock will always get no oplock.

CIFS Technical Reference SNIA Technical Proposal 8
Revision 1.0

The following diagrams the behavior of various clients and the server when an exclusive oplock is
obtained on a file and subsequently revoked. The diagram also applies to a batch oplock.

Exclusive/Batch Protocol Oplock Example

Client A Client B < -- > Server

Open file "foo" - >

 < - Open response. Open succeeded.
Exclusive oplock granted

Read data - >

 < - Read response with data

Write data (cache)

Read data (cache)

 Open file "foo" - >

 < - Oplock break to Client A

Write data - >

 < - Write response

Discard cached data

Release oplock - >

 < - Open response to B. Open succeeded.
No oplock granted.

The revoking of an exclusive or batch oplock involves the server sending an oplock break
message to the client, followed by the client flushing file information to the server, followed by the
client releasing the oplock. If the client does not respond by releasing the oplock within a period of
time acceptable to the server, then the server may consider the oplock released and allow
pending operations to proceed. The protocol does not define the duration of the time out period.

When a client opens a file that already has an exclusive oplock, the server first checks the share
mode on the file. If the sharing allows the client open to succeed then the exclusive oplock is
broken, after which the open is allowed to proceed.

When a client opens a file that already has a batch oplock, the server first revokes the batch
oplock. Then the open is allowed to proceed. The reason for this server behavior is that it gives
the holder of the oplock the opportunity to close the file. This in turn allows the open to obtain an
exclusive or batch oplock.

When a client opens a file that has a security descriptor, the server first checks if the open for the
desired access is allowed by the security descriptor. If access is not allowed, the open fails. Any
exclusive or batch oplock on the file is not disturbed. Because of this behavior a client holding an
exclusive or batch oplock cannot safely cache security descriptor information

2.6.1.2. Level II Oplocks

When a client has a level II oplock on a file, it is an indication to the client that other clients may
also have the file open. The level II oplock allows the client to safely perform file data read
caching. All other operations on the file cannot be safely cached.

CIFS Technical Reference SNIA Technical Proposal 9
Revision 1.0

The server may revoke the level II oplock at any time. The client is guaranteed that the server will
revoke the level II oplock prior to another client successfully writing the file. This gives the client
that holds the level II oplock the opportunity to discard its cached data.

Note however that the level II oplock is revoked differently than an exclusive or batch oplock. A
level II oplock break is sent to the client, but a response from the client is not expected. The
server allows the write to proceed immediately after the level II oplock break is sent to the client.

A client cannot explicitly request that a level II oplock be granted. A level II oplock is granted
either when a file is opened or when a server revokes an exclusive or batch oplock.

When a file is opened the client may request an exclusive or batch oplock. The server has the
option of granting a level II oplock instead of the requested type of oplock. This is the only way to
obtain a level II oplock when a file is opened.

When a server revokes an exclusive or batch oplock, it may indicate to the client that in
conjunction with the revocation that the client is being granted a level II oplock.

The following diagrams the behavior of various clients and the server when a level II oplock is
obtained on a file and subsequently revoked.

Level II Oplock Protocol Example
Client A Client B < -- > Server

Open file "foo" - >

 < - Open response. Open succeeded. Exclusive oplock
granted

Read data - >

 < - Read response with data

 Open file "foo" - >

 < - Oplock break to Client A. Oplock downgraded to
level II.

Release oplock to level II - >

 < - Open response to B. Open succeeded. Oplock level
II granted.

2.6.2. Comparison with Other File Locking Methods

The CIFS protocol has three mechanisms to enable a client to control how other clients access a
file.

• Opportunistic locks

• Byte range locks

• Sharing locks

Of the three, the server may revoke only opportunistic locks. Byte range and sharing locks are
held for as long as the client desires.

Historically on client systems, byte range and sharing locks are exposed to the application. This
allows the application to have explicit control over the obtaining and releasing of these types of
locks.

CIFS Technical Reference SNIA Technical Proposal 10
Revision 1.0

Typically however oplocks are not exposed to the application. They are implemented inside the
client operating system. The client operating system decides when it is appropriate to obtain and
release oplocks. It also handles all of the issues related to revoking of oplocks by the server.

2.6.3. Oplock SMBs

This section summarizes the SMB commands that affect oplocks.

2.6.3.1. Obtaining an Oplock

The following SMB commands may be used to obtain an oplock:

• SMB_COM_OPEN

• SMB_COM_CREATE

• SMB_COM_CREATE_NEW

• SMB_COM_OPEN_ANDX

• SMB_COM_TRANSACTION2 (OPEN2)

• SMB_COM_NT_CREATE_ANDX

• SMB_COM_NT_TRANSACT (NT_CREATE)

The server may only grant a level II oplock to a client for a file when that file is opened using one
of “SMB_COM_NT_CREATE_ANDX” or “SMB_COM_NT_TRANSACT (NT_CREATE)”.

2.6.3.2. Releasing an Oplock

A client releases an oplock with the SMB_COM_LOCKING_ANDX command. Alternatively the
client may release the oplock by closing the file with the SMB_COM_CLOSE command. Any
operation that would invalidate the file handle results in the oplock being released. This includes
disconnecting the tree, logging off the user that opened the file, and any action that would
disconnect the session.

A client should release its exclusive or batch oplock on a file in response to the server revoking
the oplock. Failure to do so is a violation of the protocol.

A client does not need to release a level II oplock (i.e. respond to the server) on a file in response
to the server revoking the oplock. However doing so is not an error.

2.6.3.3. Revoking an Oplock

The server revokes a client’s oplock by sending a SMB_COM_LOCKING_ANDX command to the
client. The command is sent asynchronously sent from the server to the client. This message has
the LOCKING_ANDX_OPLOCK_RELEASE flag set indicating to the client that the oplock is being
broken. OplockLevel indicates the type of oplock the client now owns. If OplockLevel is 0, the
client possesses no oplocks on the file at all. If OplockLevel is 1, the client possesses a Level II
oplock. The client is expected to flush any dirty buffers to the server, submit any file locks, and
respond to the server with either an SMB_LOCKING_ANDX SMB having the
LOCKING_ANDX_OPLOCK_RELEASE flag set, or with a file close if the file is no longer in use by
the client.

CIFS Technical Reference SNIA Technical Proposal 11
Revision 1.0

2.6.4. Other Issues

Since a close being sent to the server and break oplock notification from the server could cross
on the wire, if the client gets an oplock notification on a file that it does not have open, that
notification should be ignored. The client is guaranteed that an oplock break notification will not
be issued before the server has sent the response to the file open.

Due to timing, the client could get an "oplock broken" notification in a user's data buffer as a result
of this notification crossing on the wire with an SMB_COM_READ_RAW request. The client must
detect this (use length of message, "FFSMB," MID of -1 and Command of
SMB_COM_LOCKING_ANDX) and honor the "oplock broken" notification as usual. The server must
also note on receipt of an SMB_COM_READ_RAW request that there is an outstanding
(unanswered) "oplock broken" notification to the client; it must then return a zero length response
denoting failure of the read raw request. The client should (after responding to the "oplock
broken" notification) use a non-raw read request to redo the read. This allows a file to actually
contain data matching an "oplock broken" notification and still be read correctly.

When an exclusive or batch oplock is being revoked, more than one client open request may be
paused until the oplock is released. Once the oplock is released, the order that the paused open
requests are processed is not defined.

The protocol allows a client to obtain an oplock and then issue an operation that causes the
oplock to be revoked. An example of this is a client obtaining an exclusive oplock on a file and
then opening the file a second time.

The protocol allows a client to have a file open multiple times, and each open could have a level II
oplock associated with it. A server may choose not to support this situation by simply not handing
out more than one level II oplock for a particular file to a particular client.

The protocol allows a server to grant on a single file a level II oplock for some opens and no
oplock for other opens. A server may have heuristics that indicate some file opens would not
benefit from a level II oplock.

A server that supports access to files via mechanisms other than this protocol must revoke
oplocks as necessary to preserve the semantics expected by the clients owning the oplocks.

A client that has an exclusive or batch oplock on a file may cache file metadata. This includes the
following information: create time, modify time, access time, change time, file size, file attributes,
and extended attributes size. However a server is not required to break an oplock when a second
client examines file metadata. Clients should be aware of this behavior when examining file
metadata without having the file open.

When a server revokes an exclusive or batch oplock it may grant a level II oplock in its place. The
client should consider the level II oplock in effect after the client has released the exclusive or
batch oplock. The server may decide to revoke the level II oplock before the client has released
the exclusive or batch oplock. In this situation the client should behave as if the revoke of the
level II oplock arrived just after the exclusive or batch oplock was released.

2.7. Security Model
Each server makes a set of resources available to clients on the network. A resource being
shared may be a directory tree, printer, etc. So far as clients are concerned, the server has no
storage or service dependencies on any other servers; a client considers the server to be the sole
provider of the file (or other resource) being accessed.

CIFS Technical Reference SNIA Technical Proposal 12
Revision 1.0

The CIFS protocol requires server authentication of users before file accesses are allowed, and
each server authenticates its own users. A client system must send authentication information to
the server before the server will allow access to its resources.

A server requires the client to provide a user name and some proof of identity (often something
cryptographically derived from a password) to gain access. The granularity of authorization is up
to the server. For example, it may use the account name to check access control lists on
individual files, or may have one access control list that applies to all files in the directory tree.

When a server validates the account name and password presented by the client, an identifier
representing that authenticated instance of the user is returned to the client in the Uid field of the
response SMB. This Uid must be included in all further requests made on behalf of the user from
that client.

2.8. Authentication
This section defines the CIFS user and message authentication protocols. User authentication
allows the server to verify that the client knows a password for a user. Message authentication
allows messages in a session to be verified by both the server and the client.

2.8.1. Overview

User authentication is based on the shared knowledge of the user’s password. There are two
styles of user authentication. The first involves the client sending passwords in plain text to the
server. The second involves a challenge/response protocol.

Plain text password authentication exposes the user’s password to programs that have access to
the CIFS protocol data on the network. For this reason plain text password authentication is
discouraged and by default should be disabled in CIFS protocol implementations.

With the challenge/response protocol the server sends a "challenge" to the client, which the client
responds to in a way that proves it knows the user's password. A "response" is created from the
challenge by encrypting it with a 168 bit "session key" computed from the user's password. The
response is then returned to the server, which can validate the response by performing the same
computation.

The user authentication protocol is described as if the CIFS server keeps a client’s password.
However an implementation might actually store the passwords on a key distribution server and
have servers use a protocol outside the scope of this document to enable them to perform the
steps required by this protocol.

Messages may be authenticated by computing a message authentication code (MAC) for each
message and attaching it to the message. The MAC used is a keyed MD5 construction similar to
that used in IPSec [RFC 1828], using a "MAC key" computed from the session key, and the
response to the server's challenge. The MAC is over both the message text and an implicit
sequence number, to prevent replay attacks.

2.8.2. Base Algorithms

Following are definitions of algorithms used by the authentication algorithms.

E(K, D)
denote the DES block mode encryption function [FIPS 81] , which accepts a seven byte key
(K) and an eight byte data block (D) and produces an eight byte encrypted data block as its
value.

CIFS Technical Reference SNIA Technical Proposal 13
Revision 1.0

Ex(K,D)
denote the extension of DES to longer keys and data blocks. If the data to be encrypted is
longer than eight bytes, the encryption function is applied to each block of eight bytes in
sequence and the results are concatenated together. If the key is longer than seven bytes, each
8 byte block of data is first completely encrypted using the first seven bytes of the key, then
the second seven bytes, etc., appending the results each time. For example, to encrypt the 16
byte quantity D0D1 with the 14 byte key K0K1,

 Ex(K0K1,D0D1) = concat(E(K0,D0),E(K0,D1),E(K1,D0),E(K1,D1))

concat(A, B, …, Z)
is the result of concatenating the byte strings A, B, … Z

head(S, N)
denote the first N bytes of the byte string S.

swab(S)
denote the byte string obtained by reversing the order of the bits in each byte of S, i.e., if S is
byte string of length one, with the value 0x37 then swab(S) is 0xEC.

zeros(N)
denote a byte string of length N whose bytes all have value 0 (zero).

ones(N)
denote a byte string of length N whose bytes all have value 255.

xor(A, B)
denote a byte string formed by the bytewise logical "xor" of each of the bytes in A and B.

and(A, B)
denote a byte string formed by the bytewise logical "and" of each of the bytes in A and B.

substr(S, A, B)
denote a byte string of length N obtained by taking N bytes of S starting at byte A. The first
byte is numbered zero. I.e., if S is the string "NONCE" then substr(S, 0, 2) is "NO".

2.8.3. Authentication Algorithms

Following are definitions of the authentication algorithms.

2.8.3.1. NT Session Key

The session key S21 and partial MAC key S16 are computed as
S16 = MD4(PN)

S21 = concat(S16, zeros(5))

where

• PN is a Unicode string containing the user’s password in clear text, case sensitive, no
maximum length

• MD4(x) of an byte string "x" is the 16 byte MD4 message digest [RFC 1320] of that string

CIFS Technical Reference SNIA Technical Proposal 14
Revision 1.0

2.8.3.2. LM Session Key

The session key S21 and partial MAC key S16 are computed as
S16X = Ex(swab(P14),N8)

S21 = concat(S16X, zeros(5))

S16 = concat(head(S16X, 8), zeros(8))

Where

• P14 is a 14 byte ASCII string containing the user’s password in clear text, upper cased,
padded with nulls

• N8 is an 8 byte string whose value is {0x4b, 0x47, 0x53, 0x21, 0x40, 0x23, 0x24, 0x25}

2.8.3.3. Response

The response to the challenge RN is computed as
RN = EX(S21, C8)

Where

• C8 is a 8 byte challenge selected by the server

• S21 is the LM session key or NT session key as determined above

2.8.3.4. MAC key

The MAC key is computed as follows:
K = concat(S16, RN)

Where

• S16 is the partial MAC key computed with the LM session key or NT session key as
determined above

• RN is the response to the challenge as determined above

• The result K is either 40 or 44 bytes long, depending on the length of RN. [ed: what
determines length of RN?]

2.8.3.5. Message Authentication Code

The MAC is the keyed MD5 construction:
MAC(K, text) = head(MD5(concat(K, text)), 8)

Where

• MD5 is the MD5 hash function; see RFC 1321

• K is the MAC key determined above

• text is the message whose MAC is being computed.

CIFS Technical Reference SNIA Technical Proposal 15
Revision 1.0

2.8.4. Session Authentication Protocol

2.8.4.1. Plain Text Password

If plaintext password authentication was negotiated, clients send the plaintext password in
SMB_COM_TREE_CONNECT, SMB_COM_TREE_CONNECT_ANDX, and/or
SMB_COM_SESSION_SETUP_ANDX. The SMB field used to contain the response depends upon
the request:

• Password in SMB_COM_TREE_CONNECT

• Password in SMB_COM_TREE_CONNECT_ANDX

• AccountPassword in SMB_COM_SESSION_SETUP_ANDX in dialects prior to "NTLM
0.12"

• CaseInsensitivePassword in SMB_COM_SESSION_SETUP_ANDX in the "NTLM 0.12"
dialect

• CaseSensitivePassword in SMB_COM_SESSION_SETUP_ANDX in the "NTLM 0.12"
dialect

2.8.4.2. Challenge/Response

The challenge C8 from the server to the client is contained in the EncryptionKey field in the
SMB_COM_NEGPROT response. Clients send the response to the challenge in
SMB_COM_TREE_CONNECT, SMB_COM_TREE_CONNECT_ANDX, and/or
SMB_COM_SESSION_SETUP_ANDX. The SMB field used to contain the response depends upon
the request:

• Password in SMB_COM_TREE_CONNECT

• Password in SMB_COM_TREE_CONNECT_ANDX

• AccountPassword in SMB_COM_SESSION_SETUP_ANDX in dialects prior to "NTLM
0.12"

• CaseInsensitivePassword in SMB_COM_SESSION_SETUP_ANDX for a response
computed using the "LM session key" in the "NTLM 0.12" dialect

• CaseSensitivePassword in SMB_COM_SESSION_SETUP_ANDX for a response
computed using the "NT session key" in the "NTLM 0.12" dialect

The challenge/response authentication protocol has the following steps:

• The server chooses an 8 byte challenge C8 and sends it to the client.

• The client computes RN as described above

• The client sends the 24 byte response RN to the server

• The server computes RN as described above and compares the received response with
its computed value for RN; if equal, the client has authenticated.

2.8.5. Message authentication code

Once a user logon has been authenticated, each message can be authenticated as well. This will
prevent man in the middle attacks, replay attacks, and active message modification attacks.

To use message authentication, the client sets SMB_FLAGS2_SMB_SECURITY_SIGNATURE in
SMB_COM_SESSION_SETUP_ANDX request to the server, and includes a MAC. If the resulting

CIFS Technical Reference SNIA Technical Proposal 16
Revision 1.0

logon is non-null and non-guest, then the SMB_COM_SESSION_SETUP_ANDX response and all
subsequent SMB requests and responses must include a MAC. The first non-null, non-guest
logon determines the key to be used for the MAC for all subsequent sessions.

Message authentication may only be requested when the "NTLM 0.12" dialect has been
negotiated. If message authentication is used, raw mode MUST not be used (because some raw
mode messages have no headers in which to carry the MAC).

Let

• SN be a request sequence number, initially set to 0. Both client and server have one SN
for each connection between them.

• RSN be the sequence number expected on the response to a request.

• req_msg be a request message

• rsp_msg be a response message

The SN is logically contained in each message and participates in the computation of the MAC.

For each message sent in the session, the following procedure is followed:

• Client computes MAC(req_msg) using SN, and sends it to the server in the request
message. If there are multiple requests in the message (using the "AndX" facility), then the
MAC is calculated as if it were a single large request.

• Client increments its SN and saves it as RSN

• Client increments its SN – this is the SN it will use in its next request

• Server receives each req_msg, validates MAC(req_msg) using SN, and responds
ACCESS_DENIED if invalid

• Server increments its SN and saves it as RSN

• Server increments its SN – this is the SN it will expect in the next request

• Server computes MAC(rsp_msg) using RSN, and sends it to client in the response
message. If there are multiple responses in the message (using the "AndX" facility) , then
the MAC is calculated as if it were a single large response.

• Client receives each rsp_msg, validates MAC(rsp_msg) using RSN, and discards the
response message if invalid

In each message that contains a MAC, the following bit is set in the flags2 field:
#define SMB_FLAGS2_SMB_SECURITY_SIGNATURES 0x0004

The sender of a message inserts the sequence number SSN into the message by putting it into
the first 4 bytes of the SecuritySignature field and zeroing the last 4 bytes, computes the MAC
over the entire message, then puts the MAC in the field. The receiver of a message validates the
MAC by extracting the value of the SecuritySignature field, putting its ESN into the first 4 bytes of
the SecuritySignature field and zeroing the last 4 bytes, computing the MAC, and comparing it to
the extracted value.

Oplock break messages from the server to the client may not use message authentication, even if
it has been negotiated.

CIFS Technical Reference SNIA Technical Proposal 17
Revision 1.0

2.8.6. Security Level

The SMB_COM_NEGPROT response from a server has the following bits in its SecurityMode
field:

#define NEGOTIATE_SECURITY_USER_LEVEL 0x01

#define NEGOTIATE_SECURITY_CHALLENGE_RESPONSE 0x02

#define NEGOTIATE_SECURITY_SIGNATURES_ENABLED 0x04

#define NEGOTIATE_SECURITY_SIGNATURES_REQUIRED 0x08

If NEGOTIATE_SECURITY_USER_LEVEL is set, then "user level" security is in effect for all the
shares on the server. This means that the client must establish a logon (with
SMB_COM_SESSION_SETUP_ANDX) to authenticate the user before connecting to a share,
and the password to use in the authentication protocol described above is the user's password. If
NEGOTIATE_SECURITY_USER_LEVEL is clear, then "share level" security is in effect for all the
shares in the server. In this case the authentication protocol is a password for the share.

If NEGOTIATE_SECURITY_CHALLENGE_RESPONSE is clear, then the server is requesting
plaintext passwords.

If NEGOTIATE_SECURITY_CHALLENGE_RESPONSE is set, then the server supports the
challenge/response session authentication protocol described above, and clients should use it.
Servers may refuse connections that do not use it.

If the dialect is earlier than "NTLM 0.12" then the client computes the response using the "LM
session key". If the dialect is "NTLM 0.12" then the client may compute the response either using
the "LM session key", or the "NT session key", or both. The server may choose to refuse
responses computed using the "LM session key".

If NEGOTIATE_SECURITY_SIGNATURES_ENABLED is set, then the server supports the
message authentication protocol described above, and the client may use it. This bit may only be
set if NEGOTIATE_SECURITY_CHALLENGE_RESPONSE is set.

If NEGOTIATE_SECURITY_SIGNATURES_REQUIRED is set, then the server requires the use
of the message authentication protocol described above, and the client must use it. This bit may
only be set if NEGOTIATE_SECURITY_SIGNATURES_ENABLED is set. This bit must not be set
if NEGOTIATE_SECURITY_USER_LEVEL is clear (i.e., for servers using "share level" security).

2.9. Distributed File System (DFS) Support
Protocol dialects of NT LM 0.12 and later support distributed filesystem operations. The
distributed filesystem gives a way for this protocol to use a single consistent file naming scheme
which may span a collection of different servers and shares. The distributed filesystem model
employed is a referral - based model. This protocol specifies the manner in which clients receive
referrals.

The client can set a flag in the request SMB header indicating that the client wants the server to
resolve this SMB's paths within the DFS known to the server. The server attempts to resolve the
requested name to a file contained within the local directory tree indicated by the TID of the
request and proceeds normally. If the request pathname resolves to a file on a different system,
the server returns the following error:

STATUS_DFS_PATH_NOT_COVERED - the server does not support the part of the DFS
namespace needed to resolve the pathname in the request. The client should request a referral
from this server for further information.

CIFS Technical Reference SNIA Technical Proposal 18
Revision 1.0

A client asks for a referral with the TRANS2_DFS_GET_REFERRAL request containing the DFS
pathname of interest. The response from the server indicates how the client should proceed.

The method by which the topological knowledge of the DFS is stored and maintained by the
servers is not specified by this protocol.

CIFS Technical Reference SNIA Technical Proposal 19
Revision 1.0

3. SMB Message Formats and Data Types
Clients exchange messages with a server to access resources on that server. These messages
are called Server Message Blocks (SMBs), and every SMB message has a common format.

This section describes the entire set of SMB commands and responses exchanged between CIFS
clients and servers. It also details which SMBs are introduced into the protocol as higher dialect
levels are negotiated.

3.1. Notation
This document makes use of "C"-like notation to describe the formats of messages. Unlike the "C"
language, which allows for implementation flexibility in laying out structures, this document adopts
the following rules. Multi-byte values are always transmitted least significant byte first. All fields,
except "bit-fields", are aligned on the nearest byte boundary (even if longer than a byte), and
there is no implicit padding. Fields using the "bit field" notation are defined to be laid out within the
structure with the first-named field occupying the lowest order bits, the next named field the next
lowest order bits, and so on. BOOLEAN is defined to be a single byte. The SHORT and LONG
types are little endian.

3.2. SMB header
While each SMB command has specific encodings, there are some fields in the SMB header,
which have meaning to all SMBs. These fields and considerations are described in the following
sections.

typedef unsigned char UCHAR; // 8 unsigned bits
typedef unsigned short USHORT; // 16 unsigned bits
typedef unsigned long ULONG; // 32 unsigned bits

typedef struct {
 ULONG LowPart;
 LONG HighPart;
} LARGE_INTEGER; // 64 bits of data

typedef struct {
 UCHAR Protocol[4]; // Contains 0xFF,'SMB'
 UCHAR Command; // Command code
 union {
 struct {
 UCHAR ErrorClass; // Error class
 UCHAR Reserved; // Reserved for future use
 USHORT Error; // Error code
 } DosError;
 ULONG Status; // 32-bit error code
 } Status;
 UCHAR Flags; // Flags
 USHORT Flags2; // More flags
 union {
 USHORT Pad[6]; // Ensure section is 12 bytes long
 struct {
 USHORT PidHigh; // High Part of PID
 UCHAR SecuritySignature[8]; // reserved for MAC
 } Extra;
 };

CIFS Technical Reference SNIA Technical Proposal 20
Revision 1.0

 USHORT Tid; // Tree identifier
 USHORT Pid; // Caller’s process ID, opaque for
client use
 USHORT Uid; // User id
 USHORT Mid; // multiplex id
 UCHAR WordCount; // Count of parameter words
 USHORT ParameterWords[WordCount]; // The parameter words
 USHORT ByteCount; // Count of bytes
 UCHAR Buffer[ByteCount]; // The bytes
} SMB_HEADER;

All SMBs in this document have an identical format up to the ParameterWords field. (However,
this is not true for some obsolescent SMBs.) For the last fields in the header, different SMBs have
a different number and interpretation of the ParameterWords and Buffer fields. All reserved fields
in the SMB header must be zero.

3.2.1. Command field

The Command is the operation code that this SMB is requesting or responding to. See section 5.1
below for number values, and section 4 for a description of each operation.

3.2.2. Flags field

This field contains 8 individual flags, numbered from least significant bit to most significant bit,
which are defined below. Flags that are not defined MUST be set to zero by clients and MUST be
ignored by servers.

Bit Meaning Earliest Dialect

0 Reserved for obsolescent requests LOCK_AND_READ,
WRITE_AND_CLOSE

LANMAN1.0

1 Reserved (must be zero).

2 Reserved (must be zero).

3 When on, all pathnames in this SMB must be treated as case-less.
When off, the pathnames are case sensitive.

LANMAN1.0

4 Obsolescent – client case maps (canonicalizes) file and directory
names; servers must ignore this flag.

5 Reserved for obsolescent requests – oplocks supported for
SMB_COM_OPEN, SMB_COM_CREATE and
SMB_COM_CREATE_NEW. Servers must ignore when
processing all other SMB commands.

LANMAN1.0

6 Reserved for obsolescent requests – notifications supported for
SMB_COM_OPEN, SMB_COM_CREATE and
SMB_COM_CREATE_NEW. Servers must ignore when
processing all other SMB commands.

LANMAN1.0

7 SMB_FLAGS_SERVER_TO_REDIR - When on, this SMB is
being sent from the server in response to a client request. The
Command field usually contains the same value in a protocol
request from the client to the server as in the matching response
from the server to the client. This bit unambiguously distinguishes
the command request from the command response.

PC NETWORK PROGRAM
1.0

CIFS Technical Reference SNIA Technical Proposal 21
Revision 1.0

3.2.3. Flags2 Field

This field contains nine individual flags, numbered from least significant bit to most significant bit,
which are defined below. Flags that are not defined MUST be set to zero by clients and MUST be
ignored by servers.

Bit Name: SMB_FLAGS2_ Meaning Earliest Dialect

0 KNOWS_LONG_NAMES If set in a request, the server may return long
components in path names in the response.

LM1.2X002

1 KNOWS_EAS If set, the client is aware of extended attributes (EAs).

2 SECURITY_SIGNATUR
E

If set, the SMB is integrity checked.

3 RESERVED1 Reserved for future use

6 IS_LONG_NAME If set, any path name in the request is a long name.

11 EXT_SEC If set, the client is aware of Extended Security
negotiation.

NT LM 0.12

12 DFS If set, any request pathnames in this SMB should be
resolved in the Distributed File System.

NT LM 0.12

13 PAGING_IO If set, indicates that a read will be permitted if the
client does not have read permission but does have
execute permission. This flag is only useful on a read
request.

14 ERR_STATUS If set, specifies that the returned error code is a 32 bit
error code in Status.Status. Otherwise the
Status.DosError.ErrorClass and Status.DosError.Error
fields contain the DOS-style error information. When
passing NT status codes is negotiated, this flag should
be set for every SMB.

NT LM 0.12

15 UNICODE If set, any fields of datatype STRING in this SMB
message are encoded as UNICODE. Otherwise, they
are in ASCII. The character encoding for Unicode
fields SHOULD be UTF-16 (little endian).

NT LM 0.12

3.2.4. Tid Field

Tid represents an instance of an authenticated connection to a server resource. The server
returns Tid to the client when the client successfully connects to a resource, and the client uses
Tid in subsequent requests referring to the resource.

In most SMB requests, Tid must contain a valid value. Exceptions are those used prior to getting
a Tid established, including SMB_COM_NEGOTIATE, SMB_COM_TREE_CONNECT_ANDX,
SMB_COM_ECHO, and SMB_COM_SESSION_SETUP_ANDX. 0xFFFF should be used for Tid
for these situations. The server is always responsible for enforcing use of a valid Tid where
appropriate.

On SMB_COM_TREE_DISCONNECT over a given transport connection, with a given Tid, the
server will close any files opened with that Tid over that connection.

CIFS Technical Reference SNIA Technical Proposal 22
Revision 1.0

3.2.5. Pid Field

Pid is the caller's process id, and is generated by the client to uniquely identify a process within
the client computer. Concurrency control is associated with Pid (and PidHigh)—sharing modes,
and locks are arbitrated using the Pid. For example, if a file is successfully opened for exclusive
access, subsequent opens from other clients or from the same client with a different Pid will be
refused.

Clients inform servers of the creation of a new process by simply introducing a new Pid value into
the dialogue for new processes. The client operating system must ensure that the appropriate
close and cleanup SMBs will be sent when the last process referencing a file closes it. From the
server's point of view, there is no concept of Fids "belonging to" processes. A Fid returned by the
server to one process may be used by any other process using the same transport connection
and Tid.

It is up to the client operating system to ensure that only authorized client processes gain access
to Fids (and Tids). On SMB_COM_TREE_DISCONNECT (or when the client and server session
is terminated) with a given Tid, the server will invalidate any files opened by any process on that
client.tid Field

3.2.6. Uid Field

Uid is a reference number assigned by the server after a user authenticates to it, and that it will
associate with that user until the client requests the association be broken. After authentication to
the server, the client SHOULD make sure that the Uid is not used for a different user that the one
that authenticated. (It is permitted for a single user to have more than one Uid.) Requests that do
authorization, such as open requests, will perform access checks using the identity associated
with the Uid.

3.2.7. Mid Field

The multiplex ID (Mid) is used along with the Pid to allow multiplexing the single client and server
connection among the client's multiple processes, threads, and requests per thread. Clients may
have many outstanding requests (up to the negotiated number, MaxMpxCount) at one time.
Servers MAY respond to requests in any order, but a response message MUST always contain
the same Mid and Pid values as the corresponding request message. The client MUST NOT have
multiple outstanding requests to a server with the same Mid and Pid.

3.2.8. Status Field

An SMB returns error information to the client in the Status field. Protocol dialects prior to NT LM
0.12 return status to the client using the combination of Status.DosError.ErrorClass and
Status.DosError.Error. Beginning with NT LM 0.12 CIFS servers can return 32 bit error
information to clients using Status.Status if the incoming client SMB has bit 14 set in the Flags2
field of the SMB header. The contents of response parameters are not guaranteed in the case of
an error return, and must be ignored. For write-behind activity, a subsequent write or close of the
file may return the fact that a previous write failed. Normally write-behind failures are limited to
hard disk errors and device out of space.

3.2.9. Timeouts

In general, SMBs are not expected to block at the server; they should return "immediately". There
are however a series of operations which may block for a significant time. The most obvious of
these is named-pipe operations, which may be dependent on another application completing a

CIFS Technical Reference SNIA Technical Proposal 23
Revision 1.0

write before they can fully complete their read. (Most named-pipe operations are never expired
unless cancelled). Similarly, with byte-range locking, the Timeout period is specified by the client,
so the server is not responsible for blocking on this operation as long as the client has specified it
may. A SMB server should put forth its best effort to handle operations as they arrive in an
efficient manner, such that clients do not timeout operations believing the server to be
unresponsive falsely. A client may timeout a pending operation by terminating the session. If a
server implementation can not support timeouts, then an error can be returned just as if a timeout
had occurred if the resource is not available immediately upon request.

3.2.10. Data Buffer (BUFFER) and String Formats

The data portion of SMBs typically contains the data to be read or written, file paths, or directory
paths. The format of the data portion depends on the message. All fields in the data portion have
the same format. In every case it consists of an identifier byte followed by the data.

Identifier Description Value

Data Block See below 1

Dialect Null terminated string 2

Pathname Null terminated string 3

ASCII Null terminated string 4

Variable Block See below 5

When the identifier indicates a data block or variable block then the format is a word indicating the
length followed by the data.

In all dialects prior to NT LM 0.12, all strings are encoded in ASCII. If the agreed dialect is NT LM
0.12 or later, Unicode strings may be exchanged. Unicode strings include file names, resource
names, and user names. This applies to null-terminated strings, length specified strings and the
type-prefixed strings. In all cases where a string is passed in Unicode format, the Unicode string
must be word-aligned with respect to the beginning of the SMB. Should the string not naturally
fall on a two-byte boundary, a null byte of padding will be inserted, and the Unicode string will
begin at the next address. In the description of the SMBs, items that may be encoded in Unicode
or ASCII are labeled as STRING. If the encoding is ASCII, even if the negotiated string is
Unicode, the quantity is labeled as UCHAR.

For type-prefixed Unicode strings, the padding byte is found after the type byte. The type byte is
4 (indicating SMB_FORMAT_ASCII) independent of whether the string is ASCII or Unicode. For
strings whose start addresses are found using offsets within the fixed part of the SMB (as
opposed to simply being found at the byte following the preceding field,) it is guaranteed that the
offset will be properly aligned.

Strings that are never passed in Unicode are:

• The protocol strings in the Negotiate SMB request.

• The service name string in the Tree_Connect_AndX SMB.

When Unicode is negotiated, the SMB_FLAGS2_UNICODE bit should be set in the Flags2 field of
every SMB header.

Despite the flexible encoding scheme, no field of a data portion may be omitted or included out of
order. In addition, neither a WordCount nor ByteCount of value 0 at the end of a message may
be omitted.

CIFS Technical Reference SNIA Technical Proposal 24
Revision 1.0

3.3. Name Restrictions
The following four reserved characters MUST not be used in share names (network names), user
names, group names or domain names.

“\”, “/”, “?”, “*”

The following ten characters SHOULD not be used in share names, user names, group names or
domain names as they are considered reserved by multiple existing implementations:

“[“, “]”, “:”, “;”, “|”, “=”, “,”, “+”, “<”, “>”

A share name or server or workstation name SHOULD not begin with a period (“.”) nor should it
include two adjacent periods (“..”).

The same naming considerations apply for RFC 1001 names for servers or workstations when
using Netbios over TCP/IP name resolution mechanisms.

3.4. File Names
File names in the CIFS protocol consist of components separated by a backslash ('\'). Early
clients of the CIFS protocol required that the name components adhere to an 8.3 format name.
These names consist of two parts: a basename of no more than 8 characters, and an extension
of no more than 3 characters. The basename and extension are separated by a '.'. All characters
are legal in the basename and extension except the space character (0x20) and:

“"”, “.”, “/”, “\”, “[“, “]”, “:”, “+”, “|”, “<”, “>”, “=”, “;”, “,”, “*”, “?”

If the client has indicated long name support by setting bit2 in the Flags2 field of the SMB header,
this indicates that the client is not bound by the 8.3 convention. Specifically this indicates that any
SMB which returns file names to the client may return names which do not adhere to the 8.3
convention, and have a total length of up to 255 characters. This capability was introduced with
the LM1.2X002 protocol dialect.

The two special path components "." and ".." MUST be recognized. They indicate the current
directory and the parent directory respectively. Although the use of ".." permits the specification of
resources "above" the root of the tree connection, servers SHOULD prevent access to files or
directories above the root of the exported share.

3.5. Wildcards
Some SMB requests allow wildcards to be given for the filename. The wildcard allows a number
of files to be operated on as a unit without having to separately enumerate the files and
individually operate on each one from the client. Two different sets of search semantics are
supported. DOS search semantics are used for searching by 8.3 (or short names). Normal search
semantics are used for searching by long names (those which support file names different from
8.3).

In the 8.3 naming scheme, each file name can contain up to 8 characters, a dot, and up to 3
trailing characters. Each part of the name (base (8) or extension (3)) is treated separately. The “*”,
the “?” and the “.” can be used as wildcards. The “*” matches 0 or more characters until
encountering and matching the “.” in the name. The “?” matches any single character, or upon
encountering a “.” or end of name string, advances the expression to the end of the set of
contiguous “?”s. So if the filename part commences with one or more “?”s then exactly that
number of characters will be matched by the wildcards, e.g., “??x” equals “abx” but not “abcx” or
“ax”. When a filename part has trailing “?”s then it matches the specified number of characters or
less, e.g., “x??” matches “xab”, “xa” and “x”, but not “xabc”. If only “?”s are present in the filename

CIFS Technical Reference SNIA Technical Proposal 25
Revision 1.0

part, then it is handled as for trailing “?”s. Finally, the “.” Matches either a “.” or an empty
extension string.

In the normal naming scheme, the “.” In the name is significant even though there is no longer a
restriction on the size of each of the file name components. A file name may have none, one or
more than one “.”s within its name. Spaces “ “ are also allowed within file names and both follow
normal wildcard searching rules. For example, if the files “foo bar none” and “foo.bar.none” exist,
the pattern “foo*” equals both, “foo.*” equals “foo.bar.none” and “foo *” equals “foo bar none”.

The ? character is a wildcard for a single character. If the match pattern commences with one or
more "?"s then exactly that number of characters will be matched by the wildcards, e.g., "??x"
equals "abx" but not "abcx" or "ax". When a match pattern has trailing "?"s then it matches the
specified number of characters or less, e.g., "x??" matches "xab", "xa" and "x", but not "xabc". If
only "?"s are present in the match pattern, then it is handled as for trailing "?"s.

The * character matches an entire name. For example, "*" matches all files in a directory.

If the negotiated dialect is "NT LM 0.12" or later, and the client requires MS-DOS wildcard
matching semantics, UNICODE wildcards should be translated according to the following rules:

• Translate the “?” literal to “>”

• Translate the “.” literal to “"” if it is followed by a “?” or a “*”

• Translate the “*” literal to “<” if it is followed by a “.”

The translation can be performed in-place.

3.6. DFS Pathnames
A DFS pathname adheres to the standard described in the FileNames section. A DFS enabled
client accessing a DFS share should set the Flags2 bit 12 in all name based SMB requests
indicating to the server that the enclosed pathname should be resolved in the Distributed File
System namespace. The pathname should always have the full file name, including the server
name and share name. If the server can resolve the DFS name to a piece of local storage, the
local storage will be accessed. If the server determines that the DFS name actually maps to a
different server share, the access to the name will fail with the 32-bit status
STATUS_PATH_NOT_COVERED (0xC0000257), or DOS error ERRsrv/ERRbadpath.

On receiving this error, the DFS enabled client should ask the server for a referral (see
TRANS2_GET_DFS_REFERRAL). The referral request should contain the full file name.

The response to the request will contain a list of server and share names to try, and the part of
the request file name that junctions to the list of server shares. If the ServerType field of the
referral is set to 1 (SMB server), then the client should resubmit the request with the original file
name to one of the server shares in the list, once again setting the Flags2 bit 12 bit in the SMB. If
the ServerType field is not 1, then the client should strip off the part of the file name that junctions
to the server share before resubmitting the request to one of servers in the list.

A response to a referral request may elicit a response that does not have the StorageServers bit
set. In that case, the client should resubmit the referral request to one of the servers in the list,
until it finally obtains a referral response that has the StorageServers bit set, at which point the
client can resubmit the request SMB to one of the listed server shares.

If, after getting a referral with the StorageServers bit set and resubmitting the request to one of
the server shares in the list, the server fails the request with STATUS_PATH_NOT_COVERED, it
must be the case that there is an inconsistency between the view of the DFS namespace held by
the server granting the referral and the server listed in that referral. In this case, the client may

CIFS Technical Reference SNIA Technical Proposal 26
Revision 1.0

inform the server granting the referral of this inconsistency via the
TRANS2_REPORT_DFS_INCONSISTENCY SMB.

3.7. Time And Date Encoding
When SMB requests or responses encode time values, the following describes the various
encodings used.

struct {
 USHORT Day : 5;
 USHORT Month : 4;
 USHORT Year : 7;
} SMB_DATE;

The Year field has a range of 0-119, which represents years 1980 - 2099. The Month is encoded
as 1-12, and the day ranges from 1-31.

struct {
 USHORT TwoSeconds : 5;
 USHORT Minutes : 6;
 USHORT Hours : 5;
} SMB_TIME;

Hours ranges from 0-23, Minutes range from 0-59, and TwoSeconds ranges from 0-29
representing two second increments within the minute.

typedef struct {
 ULONG LowTime;
 LONG HighTime;
} TIME;

TIME indicates a signed 64-bit integer representing either an absolute time or a time interval.
Times are specified in units of 100ns. A positive value expresses an absolute time. The time
base (the 64-bit integer with value 0) is the beginning of the year 1601 AD in the Gregorian
calendar UTC. However, file creation, modification and access times include an additional
correction factor as follows:

Tf = Tutc + Tdaf - Tdan

Where

Tf time reported for file creation/modification/deletion
Tutc UTC time (secs since 1601 AD)
Tdaf Daylight savings adjustment (positive quantity) in effect at Tf
Tdan Current daylight savings adjustment (positive quantity)

For example, if a file is created in the summer - when daylight savings time is in effect - the
creation time will be reported as

Summer: Tutc + 3600 - 3600 = Tutc
Winter: Tutc + 3600 - 0 = Tutc + 3600

If a file is created during the winter - when daylight savings time not in effect - the creation time
will be reported as:

Summer: Tutc + 0 - 3600 = Tutc - 3600
Winter: Tutc + 0 - 0 = Tutc

A negative value expresses a time interval relative to some base time, usually the current time.

typedef unsigned long UTIME;

UTIME is the number of seconds since Jan 1, 1970, 00:00:00.0.

CIFS Technical Reference SNIA Technical Proposal 27
Revision 1.0

3.8. Access Mode Encoding
Various client requests and server responses, such as SMB_COM_OPEN, pass file access
modes encoded into a USHORT. The encoding of these is as follows:

 1111 11
 5432 1098 7654 3210
 rWrC rLLL rSSS rAAA

 where:

 W - Write through mode. No read ahead or write behind allowed on
 this file or device. When the response is returned, data is
 expected to be on the disk or device.
 S - Sharing mode:
 0 - Compatibility mode
 1 - Deny read/write/execute (exclusive)
 2 - Deny write
 3 - Deny read/execute
 4 - Deny none
 A - Access mode
 0 - Open for reading
 1 - Open for writing
 2 - Open for reading and writing
 3 - Open for execute

 rSSSrAAA = 11111111 (hex FF) indicates FCB open (???)

 C - Cache mode
 0 - Normal file
 1 - Do not cache this file
 L - Locality of reference
 0 - Locality of reference is unknown
 1 - Mainly sequential access
 2 - Mainly random access
 3 - Random access with some locality
 4 to 7 - Currently undefined

3.9. Access Mask Encoding
The ACCESS_MASK structure is one 32-bit value containing standard, specific, and generic
rights. These rights are used in access-control entries (ACEs) and are the primary means of
specifying the requested or granted access to an object.

The bits in this value are allocated as follows: Bits 0-15 contain the access mask specific to the
object type associated with the mask. Bits 16-23 contain the object's standard access rights and
can be a combination of the following predefined flags:

Flag Value Meaning

DELETE 0x00010000 Delete access

READ_CONTROL 0x00020000 Read access to the owner, group, and
discretionary access-control list (ACL) of the
security descriptor

WRITE_DAC 0x00040000 Write access to the discretionary access-control
list (ACL)

CIFS Technical Reference SNIA Technical Proposal 28
Revision 1.0

WRITE_OWNER 0x00080000 Write access to owner

SYNCHRONIZE 0x00100000 Windows NT: Synchronize access

STANDARD_RIGHTS_REQUIRE
D

0x000F0000

STANDARD_RIGHTS_READ READ_CONTROL

STANDARD_RIGHTS_WRITE READ_CONTROL

STANDARD_RIGHTS_EXECUTE READ_CONTROL

STANDARD_RIGHTS_ALL 0x001F0000

SPECIFIC_RIGHTS_ALL 0x0000FFFF

22

23

ACCESS_SYSTEM_SECURITY 0x01000000 This flag is not a typical access type. It is used
to indicate access to a system ACL. This type of
access requires the calling process to have a
specific privilege.

MAXIMUM_ALLOWED 0x02000000

26 Reserved

27 Reserved

GENERIC_ALL 0x10000000

GENERIC_EXECUTE 0x20000000

GENERIC_WRITE 0x40000000

GENERIC_READ 0x80000000

3.10. Open Function Encoding
OpenFunction specifies the action to be taken depending on whether or not the file exists. This
word has the following format:

 1111 11
 5432 1098 7654 3210
 rrrr rrrr rrrC rrOO

where:

 C - Create (action to be taken if file does not exist)
 0 -- Fail
 1 -- Create file
 r - reserved (must be zero)
 O - Open (action to be taken if file exists)
 0 - Fail
 1 - Open file
 2 - Truncate file

3.11. Open Action Encoding
Action in the response to an open or create request describes the action taken as a result of the
request. It has the following format:

 1111 11

CIFS Technical Reference SNIA Technical Proposal 29
Revision 1.0

 5432 1098 7654 3210
 Lrrr rrrr rrrr rrOO

where:

 L - Lock (single user total file lock status)
 0 -- file opened by another user (or mode not supported by server)
 1 -- file is opened only by this user at the present time
 r - reserved (must be zero)
 O - Open (action taken on Open)
 1 - The file existed and was opened
 2 - The file did not exist but was created
 3 - The file existed and was truncated

3.12. File Attribute Encoding
When SMB messages exchange file attribute information, it is encoded in 16 bits as:

Value Description

0x01 Read only file

0x02 Hidden file

0x04 System file

0x08 Volume

0x10 Directory

0x20 Archive file

Others Reserved – Must be 0

CIFS Technical Reference SNIA Technical Proposal 30
Revision 1.0

3.13. Extended File Attribute Encoding
The extended file attributes is a 32 bit value composed of attributes and flags.

Any combination of the following attributes is acceptable, except all other file attributes override
FILE_ATTR_NORMAL:

Name Value Meaning

ATTR_ARCHIVE 0x020 The file has not been archived since it was last modified. Applications use
this attribute to mark files for backup or removal.

ATTR_COMPRESSED 0x800 The file or directory is compressed. For a file, this means that all of the
data in the file is compressed. For a directory, this means that
compression is the default for newly created files and subdirectories. The
state of the attribute ATTR_COMPRESSED does not affect how data is
read or written to the file or directory using the SMB operations. The
attribute only indicates how the server internally stores the data.

ATTR_NORMAL 0x080 The file has no other attributes set. This attribute is valid only if used
alone.

ATTR_HIDDEN 0x002 The file is hidden. It is not to be included in an ordinary directory listing.

ATTR_READONLY 0x001 The file is read only. Applications can read the file but cannot write to it
or delete it.

ATTR_TEMPORARY 0x100 The file is temporary.

ATTR_DIRECTORY 0x010 The file is a directory.

ATTR_SYSTEM 0x004 The file is part of or is used exclusively by the operating system.

Any combination of the following flags is acceptable:

Name Value Meaning

WRITE_THROUGH 0x80000000 Instructs the operating system to write through any intermediate
cache and go directly to the file. The operating system can still
cache write operations, but cannot lazily flush them.

NO_BUFFERING 0x20000000 Requests the server to open the file with no intermediate buffering
or caching; the server is not obliged to honor the request. An
application must meet certain requirements when working with
files opened with FILE_FLAG_NO_BUFFERING. File access
must begin at offsets within the file that are integer multiples of
the volume's sector size; and must be for numbers of bytes that are
integer multiples of the volume's sector size. For example, if the
sector size is 512 bytes, an application can request reads and
writes of 512, 1024, or 2048 bytes, but not of 335, 981, or 7171
bytes.

RANDOM_ACCESS 0x10000000 Indicates that the application intends to access the file randomly.
The server MAY use this flag to optimize file caching.

CIFS Technical Reference SNIA Technical Proposal 31
Revision 1.0

Name Value Meaning

SEQUENTIAL_SCAN 0x08000000 Indicates that the file is to be accessed sequentially from
beginning to end. Windows uses this flag to optimize file caching.
If an application moves the file pointer for random access,
optimum caching may not occur; however, correct operation is
still guaranteed. Specifying this flag can increase performance for
applications that read large files using sequential access.
Performance gains can be even more noticeable for applications
that read large files mostly sequentially, but occasionally skip
over small ranges of bytes.

DELETE_ON_CLOSE 0x04000000 Requests that the server is delete the file immediately after all of
its handles have been closed.

BACKUP_SEMANTICS 0x02000000 Indicates that the file is being opened or created for a backup or
restore operation. The server SHOULD allow the client to
override normal file security checks, provided it has the necessary
permission to do so.

POSIX_SEMANTICS 0x01000000 Indicates that the file is to be accessed according to POSIX rules.
This includes allowing multiple files with names differing only in
case, for file systems that support such naming. (Use care when
using this option because files created with this flag may not be
accessible by applications written for MS-DOS, Windows 3.x, or
Windows NT.)

3.14. Batching Requests ("AndX" Messages)
LANMAN1.0 and later dialects of the CIFS protocol allow multiple SMB requests to be sent in one
message to the server. Messages of this type are called AndX SMBs, and they obey the
following rules:

• The embedded command does not repeat the SMB header information. Rather the next
SMB starts at the WordCount field.

• All multiple (chained) requests must fit within the negotiated transmit size. For example, if
SMB_COM_TREE_CONNECT_ANDX included SMB_COM_OPEN_ANDX and
SMB_COM_WRITE, they would all have to fit within the negotiated buffer size. This would
limit the size of the write.

• There is one message sent containing the chained requests and there is one response
message to the chained requests. The server may NOT elect to send separate responses
to each of the chained requests.

• All chained responses must fit within the negotiated transmit size. This limits the maximum
value on an embedded SMB_COM_READ for example. It is the client's responsibility to
not request more bytes than will fit within the multiple response.

• The server will implicitly use the result of the first command in the "X" command. For
example the Tid obtained via SMB_COM_TREE_CONNECT_ANDX would be used in the
embedded SMB_COM_OPEN_ANDX, and the Fid obtained in the
SMB_COM_OPEN_ANDX would be used in the embedded SMB_COM_READ.

• Each chained request can only reference the same Fid and Tid as the other commands in
the combined request. The chained requests can be thought of as performing a single
(multi-part) operation on the same resource.

• The first Command to encounter an error will stop all further processing of embedded
commands. The server will not back out commands that succeeded. Thus if a chained
request contained SMB_COM_OPEN_ANDX and SMB_COM_READ and the server was

CIFS Technical Reference SNIA Technical Proposal 32
Revision 1.0

able to open the file successfully but the read encountered an error, the file would remain
open. This is exactly the same as if the requests had been sent separately.

• If an error occurs while processing chained requests, the last response (of the chained
responses in the buffer) will be the one which encountered the error. Other unprocessed
chained requests will have been ignored when the server encountered the error and will
not be represented in the chained response. Actually the last valid AndXCommand (if
any) will represent the SMB on which the error occurred. If no valid AndXCommand is
present, then the error occurred on the first request/response and Command contains the
command which failed. In all cases the error information are returned in the SMB header
at the start of the response buffer.

• Each chained request and response contains the offset (from the start of the SMB header)
to the next chained request/response (in the AndXOffset field in the various "and X"
protocols defined later e.g. SMB_COM_OPEN_ANDX). This allows building the requests
unpacked. There may be space between the end of the previous request (as defined by
WordCount and ByteCount) and the start of the next chained request. This simplifies the
building of chained protocol requests. Note that because the client must know the size of
the data being returned in order to post the correct number of receives (e.g.
SMB_COM_TRANSACTION, SMB_COM_READ_MPX), the data in each response SMB
is expected to be truncated to the maximum number of 512 byte blocks (sectors) which
will fit (starting at a 32 bit boundary) in the negotiated buffer size with the odd bytes
remaining (if any) in the final buffer.

3.15. "Transaction" Style Subprotocols
The "transaction" style subprotocols are used for commands that potentially need to transfer a
large amount of data (greater than 64K bytes).

3.15.1. SMB_COM_TRANSACTION2 Format

The following list describes the format of the TRANSACTION2 client request:

Primary Client Request Description
======================= ============
 Command SMB_COM_TRANSACTION2
 UCHAR WordCount; Count of parameter words; value =
 (14 + SetupCount)
 USHORT TotalParameterCount; Total parameter bytes being sent
 USHORT TotalDataCount; Total data bytes being sent
 USHORT MaxParameterCount; Max parameter bytes to return
 USHORT MaxDataCount; Max data bytes to return
 UCHAR MaxSetupCount; Max setup words to return
 UCHAR Reserved;
 USHORT Flags; Additional information:
 bit 0 - Disconnect TID
 ULONG Timeout;
 USHORT Reserved2;
 USHORT ParameterCount; Parameter bytes sent this buffer
 USHORT ParameterOffset; Offset (from header start) to
 Parameters
 USHORT DataCount; Data bytes sent this buffer
 USHORT DataOffset; Offset (from header start) to data
 UCHAR SetupCount; Count of setup words
 UCHAR Reserved3; Reserved (pad above to word boundary)
 USHORT Setup[SetupCount]; Setup words (# = SetupWordCount)

CIFS Technical Reference SNIA Technical Proposal 33
Revision 1.0

 USHORT ByteCount; Count of data bytes
 STRING Name[]; Must be NULL
 UCHAR Pad[]; Pad to SHORT or LONG
 UCHAR Parameters[Parameter bytes (# = ParameterCount)
 ParameterCount];
 UCHAR Pad1[]; Pad to SHORT or LONG
 UCHAR Data[DataCount]; Data bytes (# = DataCount)

The interim server response will consist of two fields:

 UCHAR WordCount; \\ Count of parameter words = 0
 USHORT ByteCount; \\ Count of data bytes = 0

The following list describes the format of the TRANSACTION2 secondary client request:

Secondary Client Request Description
======================== ============
 Command SMB_COM_TRANSACTION_SECONDARY
 UCHAR WordCount; Count of parameter words = 8
 USHORT TotalParameterCount; Total parameter bytes being sent
 USHORT TotalDataCount; Total data bytes being sent
 USHORT ParameterCount; Parameter bytes sent this buffer
 USHORT ParameterOffset; Offset (from header start) to Parameters
 USHORT ParameterDisplacement; Displacement of these Parameter bytes
 USHORT DataCount; Data bytes sent this buffer
 USHORT DataOffset; Offset (from header start) to data
 USHORT DataDisplacement; Displacement of these data bytes
 USHORT Fid; FID for handle based requests, else
 0xFFFF. This field is present only
 if this is an SMB_COM_TRANSACTION2
 request.
 USHORT ByteCount; Count of data bytes
 UCHAR Pad[]; Pad to SHORT or LONG
 UCHAR Parameters[Parameter bytes (# = ParameterCount)
 ParameterCount];
 UCHAR Pad1[]; Pad to SHORT or LONG
 UCHAR Data[DataCount]; Data bytes (# = DataCount)

And, the fields of the server response are described in the following list:

Server Response Description
================ ============
 UCHAR WordCount; Count of data bytes; value = 10 +
 SetupCount
 USHORT TotalParameterCount; Total parameter bytes being sent
 USHORT TotalDataCount; Total data bytes being sent
 USHORT Reserved;
 USHORT ParameterCount; Parameter bytes sent this buffer
 USHORT ParameterOffset; Offset (from header start) to Parameters
 USHORT ParameterDisplacement; Displacement of these Parameter
 bytes
 USHORT DataCount; Data bytes sent this buffer
 USHORT DataOffset; Offset (from header start) to data
 USHORT DataDisplacement; Displacement of these data bytes
 UCHAR SetupCount; Count of setup words

CIFS Technical Reference SNIA Technical Proposal 34
Revision 1.0

 UCHAR Reserved2; Reserved (pad above to word boundary)
 USHORT Setup[SetupWordCount]; Setup words (# = SetupWordCount)
 USHORT ByteCount; Count of data bytes
 UCHAR Pad[]; Pad to SHORT or LONG
 UCHAR Parameters[Parameter bytes (# = ParameterCount)
 ParameterCount];
 UCHAR Pad1[]; Pad to SHORT or LONG
 UCHAR Data[DataCount]; Data bytes (# = DataCount)

3.15.2. SMB_COM_NT_TRANSACTION Formats

The following list describes the format of the TRANSACTION primary client request:

Primary Client Request Description
======================= ============
 UCHAR WordCount; Count of parameter words; value =
 (19 + SetupCount)
 UCHAR MaxSetupCount; Max setup words to return
 USHORT Reserved;
 ULONG TotalParameterCount; Total parameter bytes being sent
 ULONG TotalDataCount; Total data bytes being sent
 ULONG MaxParameterCount; Max parameter bytes to return
 ULONG MaxDataCount; Max data bytes to return
 ULONG ParameterCount; Parameter bytes sent this buffer
 ULONG ParameterOffset; Offset (from header start) to Parameters
 ULONG DataCount; Data bytes sent this buffer
 ULONG DataOffset; Offset (from header start) to data
 UCHAR SetupCount; Count of setup words
 USHORT Function; The transaction function code
 UCHAR Buffer[1];
 USHORT Setup[SetupWordCount]; Setup words
 USHORT ByteCount; Count of data bytes
 UCHAR Pad1[]; Pad to LONG
 UCHAR Parameters[Parameter bytes
 ParameterCount];
 UCHAR Pad2[]; Pad to LONG
 UCHAR Data[DataCount]; Data bytes

The interim server response will consist of two fields:

 UCHAR WordCount; \\ Count of parameter words = 0
 USHORT ByteCount; \\ Count of data bytes = 0

The following list describes the format of the TRANSACTION secondary client request:

Secondary Client Request Description
========================= ============
 UCHAR WordCount; Count of parameter words = 18
 UCHAR Reserved[3]; MUST BE ZERO
 ULONG TotalParameterCount; Total parameter bytes being sent
 ULONG TotalDataCount; Total data bytes being sent
 ULONG ParameterCount; Parameter bytes sent this buffer
 ULONG ParameterOffset; Offset (from header start) to
 Parameters

CIFS Technical Reference SNIA Technical Proposal 35
Revision 1.0

 ULONG ParameterDisplacement; Specifies the offset from the start
 of the overall parameter block to
 the parameter bytes that are
 contained in this message
 ULONG DataCount; Data bytes sent this buffer
 ULONG DataOffset; Offset (from header start) to data
 ULONG DataDisplacement; Specifies the offset from the start
 of the overall data block to the
 data bytes that are contained in
 this message
 UCHAR Reserved1;
 USHORT ByteCount; Count of data bytes
 UCHAR Pad1[]; Pad to LONG
 UCHAR Parameters[Parameter bytes
 ParameterCount];
 UCHAR Pad2[]; Pad to LONG
 UCHAR Data[DataCount]; Data bytes

And, the fields of the server response are described in the following list:

Server Response Description
================ ============
 UCHAR WordCount; Count of data bytes; value = 18 +
 SetupCount
 UCHAR Reserved[3];
 ULONG TotalParameterCount; Total parameter bytes being sent
 ULONG TotalDataCount; Total data bytes being sent
 ULONG ParameterCount; Parameter bytes sent this buffer
 ULONG ParameterOffset; Offset (from header start) to
 Parameters
 ULONG ParameterDisplacement; Specifies the offset from the start
 of the overall parameter block to
 the parameter bytes that are
 contained in this message
 ULONG DataCount; Data bytes sent this buffer
 ULONG DataOffset; Offset (from header start) to data
 ULONG DataDisplacement; Specifies the offset from the start
 of the overall data block to the
 data bytes that are contained in
 this message
 UCHAR SetupCount; Count of setup words
 USHORT Setup[SetupWordCount]; Setup words
 USHORT ByteCount; Count of data bytes
 UCHAR Pad1[]; Pad to LONG
 UCHAR Parameters[Parameter bytes
 ParameterCount];
 UCHAR Pad2[]; Pad to SHORT or LONG
 UCHAR Data[DataCount]; Data bytes

3.15.3. Functional Description

The transaction Setup information and/or Parameters define functions specific to a particular
resource on a particular server. Therefore the functions supported are not defined by the

CIFS Technical Reference SNIA Technical Proposal 36
Revision 1.0

transaction sub-protocol. The transaction protocol simply provides a means of delivering them
and retrieving the results.

The number of bytes needed in order to perform the transaction request may be more than will fit
in a single buffer.

At the time of the request, the client knows the number of parameter and data bytes expected to
be sent and passes this information to the server via the primary request (TotalParameterCount
and TotalDataCount). This may be reduced by lowering the total number of bytes expected
(TotalParameterCount and TotalDataCount) in each (if any) secondary request.

When the amount of parameter bytes received (total of each ParameterCount) equals the total
amount of parameter bytes expected (smallest TotalParameterCount) received, then the server
has received all the parameter bytes.

Likewise, when the amount of data bytes received (total of each DataCount) equals the total
amount of data bytes expected (smallest TotalDataCount) received, then the server has received
all the data bytes.

The parameter bytes should normally be sent first followed by the data bytes. However, the
server knows where each begins and ends in each buffer by the offset fields (ParameterOffset
and DataOffset) and the length fields (ParameterCount and DataCount). The displacement of the
bytes (relative to start of each) is also known (ParameterDisplacement and DataDisplacement).
Thus the server is able to reassemble the parameter and data bytes should the individual
requests be received out of sequence.

If all parameter bytes and data bytes fit into a single buffer, then no interim response is expected
and no secondary request is sent.

The client knows the maximum amount of data bytes and parameter bytes which may be returned
by the server (from MaxParameterCount and MaxDataCount of the request). Thus the client
initializes its bytes expected variables to these values. The server then informs the client of the
actual amounts being returned via each message of the server response (TotalParameterCount
and TotalDataCount). The server may reduce the expected bytes by lowering the total number of
bytes expected (TotalParameterCount and/or TotalDataCount) in each (any) response.

When the amount of parameter bytes received (total of each ParameterCount) equals the total
amount of parameter bytes expected (smallest TotalParameterCount) received, then the client
has received all the parameter bytes.

Likewise, when the amount of data bytes received (total of each DataCount) equals the total
amount of data bytes expected (smallest TotalDataCount) received, then the client has received
all the data bytes.

The parameter bytes should normally be returned first followed by the data bytes. However, the
client knows where each begins and ends in each buffer by the offset fields (ParameterOffset and
DataOffset) and the length fields (ParameterCount and DataCount). The displacement of the
bytes (relative to start of each) is also known (ParameterDisplacement and DataDisplacement).
The client is able to reassemble the parameter and data bytes should the server responses be
received out of sequence.

The flow for these transactions over a connection oriented transport is:

CIFS Technical Reference SNIA Technical Proposal 37
Revision 1.0

1. The client sends the primary client request identifying the total bytes (both parameters and
data) which are expected to be sent and contains the set up words and as many of the
parameter and data bytes as will fit in a negotiated size buffer. This request also identifies
the maximum number of bytes (setup, parameters and data) the server is to return on the
transaction completion. If all the bytes fit in the single buffer, skip to step 4.

2. The server responds with a single interim response meaning "OK, send the remainder of
the bytes" or (if error response) terminate the transaction.

3. The client then sends another buffer full of bytes to the server. This step is repeated until
all of the bytes are sent and received.

4. The Server sets up and performs the transaction with the information provided.

5. Upon completion of the transaction, the server sends back (up to) the number of
parameter and data bytes requested (or as many as will fit in the negotiated buffer size).
This step is repeated until all result bytes have been returned.

The flow for the transaction protocol when the request parameters and data do not all fit in a
single buffer is:

Client < -- > Server

Primary TRANSACTION request - >

 < - Interim Server Response

Secondary TRANSACTION request 1 - >

Secondary TRANSACTION request 2 - >

Secondary TRANSACTION request n - >

 < - Transaction response 1

 < - Transaction response 2

 < - Transaction response m

The flow for the transaction protocol when the request parameters and data do all fit in a single
buffer is:

Client < -- > Server

Primary TRANSACTION request - >

 < - Transaction response 1

 < - Transaction response 2

 < - Transaction response m

The primary transaction request through the final response make up the complete transaction
exchange, thus the Tid, Pid, Uid and Mid must remain constant and can be used as appropriate
by both the server and the client. Of course, other SMB requests may intervene as well.

There are (at least) three ways that actual server responses have been observed to differ from
what might be expected. First, some servers will send Pad bytes to move the DataOffset to a 2-
or 4-byte boundary even if there are no data bytes; the point here is that the ByteCount must be
used instead of ParameterOffset plus ParameterCount to infer the actual message length.
Second, some servers always return MaxParameterCount bytes even if the particular Transact2
has no parameter response. Finally, in case of an error, some servers send the "traditional
WordCount==0/ByteCount==0" response while others generate a Transact response format.

CIFS Technical Reference SNIA Technical Proposal 38
Revision 1.0

3.15.4. SMB_COM_TRANSACTION Operations

 DCE/RPC documents were defined by the Open Group (TOG) used to be called the X/open
group. CIFS uses DCE/RPC to process Server and User management information, like logon
information, Local Security, Account management, Server/Workstation services and CIFS
networking management functions (like browsing and domain controller management). DCE/RPC
are implemented on top of SMB. SMB protocol is used as a transport for the DCE/RPC protocol.
DCE/RPC uses Protocol Data Unit (PDU) fragments to communicate. The PDUs are totally
independent of the SMB transmission size. So PDU can span over multiple SMB transmission
boundaries and multiple PDUs can be transmitted in a single SMB transmission. Name Pipe are
used as the transmission vehicle. Once and Named Pipe is opened all the DCE/RPC calls related
to that Name Pipe will be written and read through SMB_COM_TRANSCATION operation.
SMB_COM_TRANSACTION will communicate to the Name Pipe with as much PDU fragments it
can contains, the rest of the fragments will follow with either SMBReadX or SMBWriteX. Some of
the RPC calls are defined at Appendix E.

The "smb com transaction" style subprotocols are used mostly as MS RPC commands for
managing the server and the client. Mail Slots are used for broadcasting and informing the other
nodes on the networks. Named Pipes are mostly used for RPC. The details of the use of these
RPCs are outside of the scope of this document. The following section describes the data format,
but not the content of the content of the RPC. After the client or the server has open a Name Pipe
the RPC are communicated using that pipe.

3.15.4.1. Mail Slot Transaction Protocol

The only transaction allowed to a mailslot is a mailslot write. The following table shows the
interpretation of parameters for a mailslot transaction:

Name Value Description

Command SMB_COM_TRANSACTION

Name \MAILSLOT\<name> STRING Name of mail slot to write

SetupCount 3

Setup[0] 1 Command code == write mailslot

Setup[1] Ignored

Setup[2] Ignored

TotalDataCount n Size of data to write to the mailslot

Data[n] The data to write to the mailslot

3.15.4.2. Server Announcement Mailslot Transaction

A server announces its presence on the network by periodically transmitting an announcement
mailslot message to a well known name. The server initially announces itself every minute, but as
the server stays up for longer and longer periods, it should stretch out its announcement period to
a maximum of once every 12 minutes. If a server has not been heard from for three
announcements, it is considered unavailable. The announcements can be received by any entity
on the network wishing to keep a reasonably up to date view of the available network servers.

Systems wishing to be visible on the network and compatible with LANMAN 1.0 periodically send
the following announcement:

CIFS Technical Reference SNIA Technical Proposal 39
Revision 1.0

Name Value Description

Command SMB_COM_TRANSACTION

Name \MAILSLOT\LANMAN

SetupCount 3

Setup[0] 1 Command code -- write mailslot

Setup[1] Ignored

Setup[2] Ignored

TotalDataCount N Size of following data to write to the mailslot

Data [n]

Description

USHORT Opcode; Announcement (value == 1)

ULONG InstalledServices; Bit mask describing the services running on the system

 0x1 SMB Workstation

 0x2 SMB Server

 0x4 SQL Server

 0x800 UNIX Operating System

 0x1000 NT Operating System

UCHAR MajorVersion; Major version number of network software

UCHAR MinorVersion; Minor version number of network software

USHORT Periodicity; Announcement frequency in seconds

UCHAR ServerName[]; NULL terminated ASCII server name

UCHAR ServerComment[]; NULL terminated ASCII server comment (up to 43 bytes in length)

The NETBIOS address for this mailslot transaction is the domain name padded with blanks and
having a zero as the sixteenth octet.

A client can cause LANMAN 1.0 severs to announce themselves to the client by sending the
following mailslot transaction to the specific computer of interest or to the domain name as
previously described:

Name Value Description

Command SMB_COM_TRANSACTION

Name \MAILSLOT\LANMAN

SetupCount 3

Setup[0] 1 Command code -- write mailslot

Setup[1] Ignored

Setup[2] Ignored

TotalDataCount N Size of following data to write to the mailslot

CIFS Technical Reference SNIA Technical Proposal 40
Revision 1.0

Data [n] Description

USHORT Opcode; Request announcement (value == 2)

UCHAR ResponseComputerName[]; NULL terminated ASCII name to which the announcement
response should be sent.

Nodes wishing to be visible on the network and compatible with systems using Windows for
Workgroups 3.1a and later dialects periodically send the following directed mailslot message
to a NETBIOS address consisting of the domain name padded with blanks and having a 0x1D in
the sixteenth octet.

Name Value Description

Command SMB_COM_TRANSACTION

Name \MAILSLOT\LANMAN

SetupCount 3

Setup[0] 1 Command code -- write mailslot

Setup[1] Ignored

Setup[2] Ignored

TotalDataCount n Size of following data to write to the mailslot

Data [n] Description

UCHAR BrowseType; Announcement (value == 1)

UCHAR Reserved; value == 0

ULONG Periodicity; Announcement frequency in milliseconds

UCHAR ServerName[16] Name of this node doing the announcement. ServerName[16] == 0

UCHAR VersionMajor; Major version number of network software

UCHAR VersionMinor; Minor version number of network software

ULONG InstalledServices; Bit mask describing the services running on the system

 0x1 SMB Workstation

 0x2 SMB Server

 0x4 SQL Server

 0x800 UNIX Operating System

 0x1000 NT Operating System

ULONG AStrangeValue; == 0xAA55001F

UCHAR ServerComment[44]; NULL terminated ASCII server comment (up to 44 bytes in length)

3.15.4.3. Named Pipe Transaction Protocol

A named pipe SMB_COM_TRANSACTION is used to wait for the specified named pipe to become
available (WaitNmPipe) or perform a logical "open -> write -> read -> close" of the pipe
(CallNmPipe), along with other functions defined below.

CIFS Technical Reference SNIA Technical Proposal 41
Revision 1.0

The identifier "\PIPE\<name>" denotes a named pipe transaction, where the <name> is the pipe
name to apply the transaction against.

Name Value Description

Command SMB_COM_TRANSACTIO
N

Name \PIPE\<name> Name of pipe for operation

SetupCount 2

Setup[0] See Below Subcommand code

Setup[1] Fid of pipe If required

TotalDataCount n Size of data

Data[n] If required

The subcommand codes, placed in SETUP[0], for named pipe operations are:

SubCommand Code Value Description

CallNamedPipe 0x54 open/write/read/close pipe

WaitNamedPipe 0x53 wait for pipe to be nonbusy

PeekNmPipe 0x23 read but don't remove data

QNmPHandState 0x21 query pipe handle modes

SetNmPHandState 0x01 set pipe handle modes

QNmPipeInfo 0x22 query pipe attributes

TransactNmPipe 0x26 write/read operation on pipe

RawReadNmPipe 0x11 read pipe in "raw" (non message mode)

RawWriteNmPipe 0x31 write pipe "raw" (non message mode) */

3.15.4.4. CallNamedPipe

This command is used to implement the Win32 CallNamedPipe() API remotely. The
CallNamedPipe function connects to a message-type pipe (and waits if an instance of the pipe is
not available), writes to and reads from the pipe, and then closes the pipe.

This form of the transaction protocol sends no parameter bytes, thus the bytes to be written to the
pipe are sent as data bytes and the bytes read from the pipe are returned as data bytes.

The number of bytes being written is defined by TOTALDATACOUNT and the maximum number
of bytes to return is defined by MAXDATACOUNT.

On the response TOTALPARAMETERCOUNT is 0 (no Parameter bytes to return),
TOTALDATACOUNT indicates the amount of databytes being returned in total and DATACOUNT
identifies the amount of data being returned in each buffer.

Note that the full form of the Transaction protocol can be used to write and read up to 65,535
bytes each utilizing the secondary requests and responses.

CIFS Technical Reference SNIA Technical Proposal 42
Revision 1.0

3.15.4.5. WaitNamedPipe

The command is used to implement the Win32 WaitNamedPipe() API remotely. The
WaitNamedPipe function waits until either a time-out interval elapses or an instance of the
specified named pipe is available to be connected to (that is, the pipe's server process has a
pending ConnectNamedPipe operation on the pipe).

The server will wait up to TIMEOUT milliseconds for a pipe of the name given to become
available. Note that although the timeout is specified in milliseconds, by the time that the timeout
occurs and the client receives the timed out response much more time than specified may have
occurred.

This form of the transaction protocol sends no data or parameter bytes. The response also
contains no data or parameters. If the transaction response indicates success, the pipe may now
be available. However, this request does not reserve the pipe, thus all waiting programs may
race to get the pipe now available. The losers will get an error on the pipe open attempt.

3.15.4.6. PeekNamedPipe

This form of the pipe Transaction protocol is used to implement the Win32 PeekNamePipe() API
remotely. The PeekNamedPipe function copies data from a named or anonymous pipe into a
buffer without removing it from the pipe. It also returns information about data in the pipe.

TOTALPARAMETERCOUNT and TOTALDATACOUNT should be 0 for this request. The FID of
the pipe to which this request should be applied is in Setup[1]. MAXPARAMETERCOUNT should
be set to 6, requesting 3 words of information about the pipe, and MAXDATACOUNT should be
set to the number of bytes to "peek".

The response contains the following PARAMETER WORDS:

Name Description

Parameters[0, 1] Total number of bytes available to be read from the pipe

Parameters[2,3] Total number of bytes remaining in the message at the "head" of the pipe

Parameters[4,5] Pipe status.

 1 Disconnected by server

 2 Listening

 3 Connection to server is OK

 4 Server end of pipe is closed

The DATA portion of the response is the data peeked from the named pipe.

3.15.4.7. GetNamedPipeHandleState

This form of the pipe transaction protocol is used to implement the Win32
GetNamedPipeHandleState() API. The GetNamedPipeHandleState function retrieves information
about a specified named pipe. The information returned can vary during the lifetime of an instance
of the named pipe.

This request sends no parameters and no data. The FID of the pipe to which this request should
be applied is in Setup[1]. MAXPARAMETERCOUNT should be set to 2 (requesting the 1 word of
information about the pipe) and MAXDATACOUNT should be 0 (not reading the pipe).

CIFS Technical Reference SNIA Technical Proposal 43
Revision 1.0

The response returns one parameter of pipe state information interpreted as:

Pipe Handle State Bits
 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 B E * * T T R R |--- Icount --|
where:
 B - Blocking

0 => reads/writes block if no data available
 1 => reads/writes return immediately if no data
 E - Endpoint
 0 => client end of pipe
 1 => server end of pipe
 TT - Type of pipe
 00 => pipe is a byte stream pipe
 01 => pipe is a message pipe
 RR - Read Mode
 00 => Read pipe as a byte stream
 01 => Read messages from pipe
 Icount - 8-bit count to control pipe instancing

The E (endpoint) bit is 0 because this handle is the client end of a pipe.

3.15.4.8. SetNamedPipeHandleState

This form of the pipe transaction protocol is used to implement the Win32
SetNamedPipeHandleState() API. The SetNamedPipeHandleState function sets the read mode
and the blocking mode of the specified named pipe.

This request sends 1 parameter word (TOTALPARAMETERCOUNT = 2) which is the pipe state
to be set. The FID of the pipe to which this request should be applied is in SETUP[1].

The response contains no data or parameters.

The interpretation of the input parameter word is:

Pipe Handle State Bits
 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 B * * * * * R R 0 0 0 0 0 0 0 0
where:
 B - Blocking

0 => reads/writes block if no data available
 1 => reads/writes return immediately if no data
 RR - Read Mode

00 => Read pipe as a byte stream
 01 => Read messages from pipe

Note that only the read mode (byte or message) and blocking/nonblocking mode of a named pipe
can be changed. Some combinations of parameters may be illegal and will be rejected as an
error.

3.15.4.9. GetNamedPipeInfo

This form of the pipe transaction protocol is used to implement the Win32 GetNamedPipeInfo()
API. The GetNamedPipeInfo function retrieves information about the specified named pipe.

CIFS Technical Reference SNIA Technical Proposal 44
Revision 1.0

The request sends 1 parameter word (TOTALPARAMETERCOUNT = 2) which is the information
level requested and must be set to 1. The FID of the pipe to which this request should be applied
is in SETUP[1]. MAXDATACOUNT should be set to the size of the buffer specified by the user in
which to receive the pipe information.

Pipe information is returned in the data area of the response, up to the number of bytes specified.
The information is returned in the following format:

Name Size Description

OutputBufferSize USHORT actual size of buffer for outgoing (server) I/O

InputBufferSize USHORT actual size of buffer for incoming (client) I/O

MaximumInstances UCHAR Maximum allowed number of instances

CurrentInstances UCHAR Current number of instances

PipeNameLength UCHAR Length of pipe name (including the null)

PipeName STRING Name of pipe (NOT including \\NodeName - \\NodeName is prepended to
this string by the client before passing back to the user)

3.15.4.10. TransactNamedPipe

This form of the pipe transaction protocol is used to implement the Win32 TransactNamedPipe()
API. The TransactNamedPipe function combines into a single network operation the functions
that write a message to and read a message from the specified named pipe.

It provides an optimum way to implement transaction-oriented dialogs. TransactNamedPipe will
fail if the pipe currently contains any unread data or is not in message read mode. Otherwise the
call will write the entire request data bytes to the pipe and then read a response from the pipe and
return it in the data bytes area of the response protocol. In the transaction request, SETUP[1]
must contain the FID of the pipe.

If NAME is \PIPE\LANMAN, this is a server API request. The request encoding is:

Request Field Description

Parameters[0->1] API #

Parameters[2->N] ASCIIZ RAP description of input structure

Parameters[N->X] The input structure

The response is formatted as:

Response Field Description

Parameters[0->1] Result Status

Parameters[2->3] Offset to result structure

The state of blocking/nonblocking has no effect on this protocol (TransactNamedPipe does not
return until a message has been read into the response protocol). If MAXDATACOUNT is too
small to contain the response message, an error is returned.

3.15.4.11. RawReadNamedPipe

RawReadNamedPipe reads bytes directly from a pipe, regardless of whether it is a message or
byte pipe. For a byte pipe, this is exactly like SMB_COM_READ. For a message pipe, this is exactly

CIFS Technical Reference SNIA Technical Proposal 45
Revision 1.0

like reading the pipe in byte read mode, except message headers will also be returned in the
buffer (note that message headers will always be returned in toto--never split at a byte boundary).

This request sends no parameters or data to the server, and SETUP[1] must contain the FID of
the pipe to read. MAXDATACOUNT should contain the number of bytes to read raw.

The response will return 0 parameters, and DATACOUNT will be set to the number of bytes read.

3.15.4.12. RawWriteNamedPipe

RawWriteNamedPipe puts bytes directly into a pipe, regardless of whether it is a message or byte
pipe. The data will include message headers if it is a message pipe. This call ignores the
blocking/nonblocking state and always acts in a blocking manner. It returns only after all bytes
have been written.

The request sends no parameters. SETUP[1] must contain the FID of the pipe to write.
TOTALDATACOUNT is the total amount of data to write to the pipe. Writing zero bytes to a pipe
is an error unless the pipe is in message mode.

The response contains no data and one parameter word. If no error is returned, the one
parameter word indicates the number of the requested bytes that have been "written raw" to the
specified pipe.

3.16. Valid SMB Requests by Negotiated Dialect
CIFS clients and servers may exchange the following SMB messages if the "PC NETWORK
PROGRAM 1.0" dialect is negotiated:

SMB_COM_CREATE_DIRECTORY SMB_COM_DELETE_DIRECTORY
SMB_COM_OPEN SMB_COM_CREATE
SMB_COM_CLOSE SMB_COM_FLUSH
SMB_COM_DELETE SMB_COM_RENAME
SMB_COM_QUERY_INFORMATION SMB_COM_SET_INFORMATION
SMB_COM_READ SMB_COM_WRITE
SMB_COM_LOCK_BYTE_RANGE SMB_COM_UNLOCK_BYTE_RANGE
SMB_COM_CREATE_TEMPORARY SMB_COM_CREATE_NEW
SMB_COM_CHECK_DIRECTORY SMB_COM_PROCESS_EXIT
SMB_COM_SEEK SMB_COM_TREE_CONNECT
SMB_COM_TREE_DISCONNECT SMB_COM_NEGOTIATE
SMB_COM_QUERY_INFORMATION_DISK SMB_COM_SEARCH
SMB_COM_OPEN_PRINT_FILE SMB_COM_WRITE_PRINT_FILE
SMB_COM_CLOSE_PRINT_FILE SMB_COM_GET_PRINT_QUEUE

If the "LANMAN 1.0" dialect is negotiated, all of the messages in the previous list must be
supported. Clients negotiating LANMAN 1.0 and higher dialects will probably no longer send
SMB_COM_PROCESS_EXIT, and the response format for SMB_COM_NEGOTIATE is modified
as well. New messages introduced with the LANMAN 1.0 dialect are:

SMB_COM_LOCK_AND_READ SMB_COM_WRITE_AND_UNLOCK
SMB_COM_READ_RAW SMB_COM_READ_MPX
SMB_COM_WRITE_MPX SMB_COM_WRITE_RAW
SMB_COM_WRITE_COMPLETE SMB_COM_WRITE_MPX_SECONDARY
SMB_COM_SET_INFORMATION2 SMB_COM_QUERY_INFORMATION2
SMB_COM_LOCKING_ANDX SMB_COM_TRANSACTION
SMB_COM_TRANSACTION_SECONDARY SMB_COM_IOCTL
SMB_COM_IOCTL_SECONDARY SMB_COM_COPY

CIFS Technical Reference SNIA Technical Proposal 46
Revision 1.0

SMB_COM_MOVE SMB_COM_ECHO
SMB_COM_WRITE_AND_CLOSE SMB_COM_OPEN_ANDX
SMB_COM_READ_ANDX SMB_COM_WRITE_ANDX
SMB_COM_SESSION_SETUP_ANDX SMB_COM_TREE_CONNECT_ANDX
SMB_COM_FIND SMB_COM_FIND_UNIQUE
SMB_COM_FIND_CLOSE

The "LM1.2X002" dialect introduces these new SMBs:

SMB_COM_TRANSACTION2 SMB_COM_TRANSACTION2_SECONDARY
SMB_COM_FIND_CLOSE2 SMB_COM_LOGOFF_ANDX

"NT LM 0.12" dialect introduces:

SMB_COM_NT_TRANSACT SMB_COM_NT_TRANSACT_SECONDARY
SMB_COM_NT_CREATE_ANDX SMB_COM_NT_CANCEL
SMB_COM_NT_RENAME

Capabilities are used to determine which SMB requests a server supports. However, they do not
directly map to which info levels associated with that particular request are supported. In the
event that a client sends a request with an info-level that the server does not support or recognize
(if it is legacy), it should return STATUS_UNSUPPORTED (or the non-NT equivalent). The
extended functionality that was added later is then simply not available to client applications who
would ask for it. (If a file system or SMB server does not support unique file ID's, then the query
file information asking for it would return Unsupported, where as the query for other types of file
information would return successfully.)

CIFS Technical Reference SNIA Technical Proposal 47
Revision 1.0

4. SMB Requests
This section lists the "best practice" SMB requests -- ones that would permit a client to exercise
full CIFS functionality and optimum performance when interoperating with a server speaking the
latest dialect as of this writing ("NT LM 0.12").

Note that, as of this writing, no existing client restricts itself to only these requests, so no useful
server can be written that supports just them. The classification is provided so that future clients
will be written to permit future servers to be simpler.

4.1. Session Requests

4.1.1. NEGOTIATE: Negotiate Protocol

The following list describes the format of the NEGOTIATE client request:

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes; min = 2
 struct {
 UCHAR BufferFormat; 0x02 -- Dialect
 UCHAR DialectName[]; ASCII null-terminated string
 } Dialects[];

The Client sends a list of dialects with which it can communicate. The response is a selection of
one of those dialects (numbered 0 through n) or -1 (hex FFFF) indicating that none of the dialects
were acceptable. The negotiate message is binding on the virtual circuit and must be sent. One
and only one negotiate message may be sent, subsequent negotiate requests will be rejected
with an error response and no action will be taken.

The protocol does not impose any particular structure to the dialect strings. Implementers of
particular protocols may choose to include, for example, version numbers in the string.

If the server does not understand any of the dialect strings, or if PC NETWORK PROGRAM 1.0 is
the chosen dialect, the response format is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT DialectIndex; Index of selected dialect
 USHORT ByteCount; Count of data bytes = 0

If the chosen dialect is greater than core up to and including LANMAN2.1, the protocol response
format is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 13
 USHORT DialectIndex; Index of selected dialect
 USHORT SecurityMode; Security mode:
 bit 0: 0 = share, 1 = user
 bit 1: 1 = use challenge/response
 authentication
 USHORT MaxBufferSize; Max transmit buffer size (>= 1024)

CIFS Technical Reference SNIA Technical Proposal 48
Revision 1.0

 USHORT MaxMpxCount; Max pending multiplexed requests
 USHORT MaxNumberVcs; Max VCs between client and server
 USHORT RawMode; Raw modes supported:
 bit 0: 1 = Read Raw supported
 bit 1: 1 = Write Raw supported
 ULONG SessionKey; Unique token identifying this session
 SMB_TIME ServerTime; Current time at server
 SMB_DATE ServerDate; Current date at server
 USHORT ServerTimeZone; Current time zone at server
 USHORT EncryptionKeyLength; MUST BE ZERO if not LM2.1
 dialect
 USHORT Reserved; MUST BE ZERO
 USHORT ByteCount; Count of data bytes
 UCHAR EncryptionKey[]; The challenge encryption key
 STRING PrimaryDomain[]; The server's primary domain

MaxBufferSize is the size of the largest message which the client can legitimately send to the
server.

If bit0 of the Flags field is set in the negotiate response, this indicates the server supports the
obsolescent SMB_COM_LOCK_AND_READ and SMB_COM_WRITE_AND_UNLOCK client
requests.

If the SecurityMode field indicates the server is running in user mode, the client must send
appropriate SMB_COM_SESSION_SETUP_ANDX requests before the server will allow the client
to access resources. If the SecurityMode field indicates the client should use
challenge/response authentication, the client should use the authentication mechanism specified
in the Section 2.8.

Clients using the "MICROSOFT NETWORKS 1.03" dialect use a different form of raw reads than
documented here, and servers are better off setting RawMode in this response to 0 for such
sessions.

If the negotiated dialect is "DOS LANMAN2.1" or "LANMAN2.1", then PrimaryDomain string
should be included in this response.

If the negotiated dialect is NT LM 0.12, the response format is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 17
 USHORT DialectIndex; Index of selected dialect
 UCHAR SecurityMode; Security mode:
 bit 0: 0 = share, 1 = user
 bit 1: 1 = encrypt passwords
 bit 2: 1 = Security Signatures
 (SMB sequence numbers) enabled
 bit 3: 1 = Security Signatures
 (SMB sequence numbers) required
USHORT MaxMpxCount; Max pending outstanding requests
USHORT MaxNumberVcs; Max VCs between client and server
ULONG MaxBufferSize; Max transmit buffer size
ULONG MaxRawSize; Maximum raw buffer size
ULONG SessionKey; Unique token identifying this session
ULONG Capabilities; Server capabilities

CIFS Technical Reference SNIA Technical Proposal 49
Revision 1.0

ULONG SystemTimeLow; System (UTC) time of the server (low)
ULONG SystemTimeHigh; System (UTC) time of the server (high)
USHORT ServerTimeZone; Time zone of server (minutes from UTC)

 CHAR EncryptionKeyLength; Length of encryption key
USHORT ByteCount; Count of data bytes

 UCHAR EncryptionKey[]; The challenge encryption key;
 Present only for Non Extended Security i.e.,
 CAP_EXTENDED_SECURITY is off in the Capabilities
 field

UCHAR OemDomainName[]; The name of the domain (in OEM chars);
 Present Only for Non Extended Security i.e.,
 CAP_EXTENDED_SECURITY is off in the Capabilities
 field
UCHAR GUID[16]; A globally unique identifier assigned to the
 server; Present only when
 CAP_EXTENDED_SECURITY is on in Capabilities field
 UCHAR SecurityBlob[]; Opaque Security Blob associated with the
 security package if CAP_EXTENDED_SECURITY
 is on in the Capabilities field; else challenge
 for CIFS challenge/response authentication

In addition to the definitions above, MaxBufferSize is the size of the largest message which the
client can legitimately send to the server. If the client is using a connectionless protocol,
MaxBufferSize must be set to the smaller of the server's internal buffer size and the amount of
data which can be placed in a response packet.

MaxRawSize specifies the maximum message size the server can send or receive for the
obsolescent SMB_COM_WRITE_RAW or SMB_COM_READ_RAW requests.

Connectionless clients must set Sid to 0 in the SMB request header.

The Capabilities field allows the server to tell the client what it supports. The client must not
ignore any capabilities specified by the server. The bit definitions are:

Capability Name Encoding Meaning

CAP_RAW_MODE 0x0001 The server supports
SMB_COM_READ_RAW and
SMB_COM_WRITE_RAW (obsolescent)

CAP_MPX_MODE 0x0002 The server supports
SMB_COM_READ_MPX and
SMB_COM_WRITE_MPX (obsolescent)

CAP_UNICODE 0x0004 The server supports UNICODE strings

CAP_LARGE_FILES 0x0008 The server supports large files with 64 bit offsets

CAP_NT_SMBS 0x0010 The server supports the SMBs particular to the NT LM
0.12 dialect. Implies CAP_NT_FIND.

CAP_RPC_REMOTE_APIS 0x0020 The server supports remote admin API requests via DCE
RPC

CAP_STATUS32 0x0040 The server can respond with 32 bit status codes in
Status.Status

CAP_LEVEL_II_OPLOCKS 0x0080 The server supports level 2 oplocks

CIFS Technical Reference SNIA Technical Proposal 50
Revision 1.0

Capability Name Encoding Meaning

CAP_LOCK_AND_READ 0x0100 The server supports the SMB,
SMB_COM_LOCK_AND_READ

CAP_NT_FIND 0x0200 Reserved

CAP_DFS 0x1000 The server is DFS aware

CAP_INFOLEVEL_PASSTHRU 0x2000 The server supports NT information level requests passing
through

CAP_LARGE_READX 0x4000 The server supports large
SMB_COM_READ_ANDX (up to 64k)

CAP_LARGE_WRITEX 0x8000 The server supports large
SMB_COM_WRITE_ANDX (up to 64k)

CAP_UNIX 0x00800000 The server supports CIFS Extensions for UNIX. (See
Appendix D for more detail)

CAP_RESERVED 0x02000000 Reserved for future use

CAP_BULK_TRANSFER 0x20000000 The server supports SMB_BULK_READ,
SMB_BULK_WRITE (should be 0, no known
implementations)

CAP_COMPRESSED_DATA 0x40000000 The server supports compressed data transfer
(BULK_TRANSFER capability is required to support
compressed data transfer).

CAP_EXTENDED_SECURITY 0x80000000 The server supports extended security exchanges

Undefined bit MUST be set to zero by servers, and MUST be ignored by clients.

Extended security exchanges provide a means of supporting arbitrary authentication protocols
within CIFS. Security blobs are opaque to the CIFS protocol; they are messages in some
authentication protocol that has been agreed upon by client and server by some out of band
mechanism, for which CIFS merely functions as a transport. When CAP_EXTENDED_SECURITY
is negotiated, the server includes a first security blob in its response; subsequent security blobs
are exchanged in SMB_COM_SESSION_SETUP_ANDX requests and responses until the
authentication protocol terminates.

If the negotiated dialect is NT LM 0.12, then the capabilities field of the Negotiate protocol
response indicates whether the server supports Unicode. The server is not required to support
Unicode. Unicode is supported in Win9x and NT clients. If Unicode is not supported by the server
then some localized of these clients may experience unexpected behavior with filenames,
resource names and user names.

ASCII defines the values of 128 characters (0x00 through 0x7F). The remaining 128 values (0x80
through 0xFF) are mapped into different DOS Code Pages (aka the OEM character set). Different
localized clients may use different code pages. (For example, Code Page 437 is the default in
English based systems). Clients can create file and folder names in their default code page that
follows the file naming rules and may contain both ASCII and non-ASCII characters.

4.1.1.1. Errors
SUCCESS/SUCCESS
ERRSRV/ERRerror

CIFS Technical Reference SNIA Technical Proposal 51
Revision 1.0

4.1.2. SESSION_SETUP_ANDX: Session Setup

This SMB is used to further "Set up" the session normally just established via the negotiate
protocol.

One primary function is to perform a "user logon" in the case where the server is in user level
security mode. The Uid in the SMB header is set by the client to be the userid desired for the
AccountName and validated by the AccountPassword.

4.1.2.1. Pre NT LM 0.12

If the negotiated protocol is prior to NT LM 0.12, the format of
SMB_COM_SESSION_SETUP_ANDX is:

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 10
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT MaxBufferSize; Client maximum buffer size
 USHORT MaxMpxCount; Actual maximum multiplexed pending requests
 USHORT VcNumber; 0 = first (only), nonzero=additional
 VC number
 ULONG SessionKey; Session key (valid iff VcNumber != 0)
 USHORT PasswordLength; Account password size
 ULONG Reserved; Must be 0
 USHORT ByteCount; Count of data bytes; min = 0
 UCHAR AccountPassword[]; Account Password
 STRING AccountName[]; Account Name
 STRING PrimaryDomain[]; Client's primary domain
 STRING NativeOS[]; Client's native operating system
 STRING NativeLanMan[]; Client's native LAN Manager type

The server response is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 3
 UCHAR AndXCommand; Secondary (X) command; 0xFF =
 none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT Action; Request mode:
 bit0 = logged in as GUEST
 USHORT ByteCount; Count of data bytes
 STRING NativeOS[]; Server's native operating system
 STRING NativeLanMan[]; Server's native LAN Manager type
 STRING PrimaryDomain[]; Server's primary domain

If the server is in "share level security mode", the account name and password should be ignored
by the server.

CIFS Technical Reference SNIA Technical Proposal 52
Revision 1.0

If challenge/response authentication is not being used, AccountPassword should be a null
terminated ASCII string with PasswordLength set to the string size including the null; the
password will be case insensitive. If challenge/response authentication is being used, then
AccountPassword will be the response to the server's challenge, and PasswordLength should be
set to its length.

The server validates the name and password supplied and if valid, it registers the user identifier
on this session as representing the specified AccountName. The Uid field in the SMB header will
then be used to validate access on subsequent SMB requests. The SMB requests where
permission checks are required are those which refer to a symbolically named resource such as
SMB_COM_OPEN, SMB_COM_RENAME, SMB_COM_DELETE, etc. The value of the Uid is
relative to a specific client/server session so it is possible to have the same Uid value represent
two different users on two different sessions at the server.

Multiple session setup commands may be sent to register additional users on this session. If the
server receives an additional SMB_COM_SESSION_SETUP_ANDX, only the Uid, AccountName
and AccountPassword fields need contain valid values (the server MUST ignore the other fields).

The client writes the name of its domain in PrimaryDomain if it knows what the domain name is. If
the domain name is unknown, the client either encodes it as a NULL string, or as a question
mark.

If bit0 of Action is set, this informs the client that although the server did not recognize the
AccountName, it logged the user in as a guest. This is optional behavior by the server, and in any
case one would ordinarily expect guest privileges to limited.

Another function of the Session Set Up protocol is to inform the server of the maximum values
which will be utilized by this client. Here MaxBufferSize is the maximum message size which the
client can receive. Thus although the server may support 16k buffers (as returned in the
SMB_COM_NEGOTIATE response), if the client only has 4k buffers, the value of MaxBufferSize
here would be 4096. The minimum allowable value for MaxBufferSize is 1024. The
SMB_COM_NEGOTIATE response includes the server buffer size supported. Thus this is the
maximum SMB message size which the client can send to the server. This size may be larger
than the size returned to the server from the client via the SMB_COM_SESSION_SETUP_ANDX
protocol which is the maximum SMB message size which the server may send to the client. Thus
if the server's buffer size were 4k and the client's buffer size were only 2K, the client could send
up to 4k (standard) write requests but must only request up to 2k for (standard) read requests.

The VcNumber field specifies whether the client wants this to be the first VC or an additional VC.

The values for MaxBufferSize, MaxMpxCount, and VcNumber must be less than or equal to the
maximum values supported by the server as returned in the SMB_COM_NEGOTIATE response.

If the server gets a SMB_COM_SESSION_SETUP_ANDX request with VcNumber of 0 and other
VCs are still connected to that client, they will be aborted thus freeing any resources held by the
server. This condition could occur if the client was rebooted and reconnected to the server before
the transport level had informed the server of the previous VC termination.

4.1.2.2. NT LM 0.12

If the negotiated SMB dialect is "NT LM 0.12" and the server supports ExtendedSecurity i.e. the
CAP_EXTENDED_SECURITY flag is set in the Capabilities field of the Negotiate Response SMB,
the Extended Security SessionSetup SMB format is:

Client Request Description
=============== ============

CIFS Technical Reference SNIA Technical Proposal 53
Revision 1.0

 UCHAR WordCount; Count of parameter words = 12
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT MaxBufferSize; Client's maximum buffer size
 USHORT MaxMpxCount; Actual maximum multiplexed pending
 requests
 USHORT VcNumber; 0 = first (only), nonzero=additional
 VC number
 ULONG SessionKey; Session key (valid iff VcNumber != 0)
 USHORT SecurityBlobLength; Length of opaque security blob
 ULONG Reserved; Must be 0
 ULONG Capabilities; Client capabilities
 USHORT ByteCount; Count of data bytes; min = 0
 UCHAR SecurityBlob[]; The opaque security blob
 STRING NativeOS[]; Client's native operating system,
 Unicode
 STRING NativeLanMan[]; Client's native LAN Manager type,
 Unicode

And the server response is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 4
 UCHAR AndXCommand; Secondary (X) command; 0xFF =
 none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT Action; Request mode:
 bit0 = logged in as GUEST
 USHORT SecurityBlobLength; Length of Security Blob that
 follows in a later field
 USHORT ByteCount; Count of data bytes
 UCHAR SecurityBlob[]; SecurityBlob of length specified
 by the field, SecurityBlobLength
 STRING NativeOS[]; Server's native operating system
 STRING NativeLanMan[]; Server's native LAN Manager type
 STRING PrimaryDomain[]; Server's primary domain

There may be multiple round trips involved in the security blob exchange. In that case, the server
may return an error STATUS_MORE_PROCESSING_REQUIRED (a value of 0xC0000016) in
the SMB status. The client can then repeat the SessionSetupAndX SMB with the rest of the
security blob.

If the negotiated SMB dialect is "NT LM 0.12" or later and the server does not support Extended
Security (i.e. the CAP_EXTENDED_SECURITY flag in the Capabilities field of the Negotiate
Response SMB is not set), the format of the response SMB is unchanged, but the request is:

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 13
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)

CIFS Technical Reference SNIA Technical Proposal 54
Revision 1.0

 USHORT AndXOffset; Offset to next command WordCount
 USHORT MaxBufferSize; Client's maximum buffer size
 USHORT MaxMpxCount; Actual maximum multiplexed pending
 requests
 USHORT VcNumber; 0 = first (only), nonzero=additional
 VC number
 ULONG SessionKey; Session key (valid iff VcNumber != 0)
 USHORT Account password size, ANSI
 CaseInsensitivePasswordLength;
 USHORT Account password size, Unicode
 CaseSensitivePasswordLength;
 ULONG Reserved; Must be 0
 ULONG Capabilities; Client capabilities
 USHORT ByteCount; Count of data bytes; min = 0
 UCHAR Account Password, ANSI
 CaseInsensitivePassword[];
 UCHAR Account Password, Unicode
 CaseSensitivePassword[];
 UCHAR Reserved2 Present if Unicode negotiated to even byte

boundary
STRING AccountName[]; Account Name, Unicode
 STRING PrimaryDomain[]; Client's primary domain, Unicode
 STRING NativeOS[]; Client's native operating system,
 Unicode
 STRING NativeLanMan[]; Client's native LAN Manager type,
 Unicode

The client expresses its capabilities to the server encoded in the Capabilities field. The format of
that field is:

Capability Name Encoding Meaning

CAP_UNICODE 0x0004 The client can use UNICODE strings

CAP_LARGE_FILES 0x0008 The client can deal with files having 64 bit offsets

CAP_NT_SMBS 0x0010 The client understands the SMBs introduced with the NT LM
0.12 dialect. Implies CAP_NT_FIND.

CAP_STATUS32 0x0040 The client can receive 32 bit errors encoded in Status.Status

CAP_LEVEL_II_OPLOCKS 0x0080 The client understands Level II oplocks

CAP_NT_FIND 0x0200 Reserved

The entire message sent and received including the optional ANDX SMB must fit in the
negotiated maximum transfer size. The following are the only valid SMB commands for
AndXCommand for SMB_COM_SESSION_SETUP_ANDX:

SMB_COM_TREE_CONNECT_ANDX SMB_COM_OPEN
SMB_COM_OPEN_ANDX SMB_COM_CREATE
SMB_COM_CREATE_NEW SMB_COM_CREATE_DIRECTORY
SMB_COM_DELETE SMB_COM_DELETE_DIRECTORY
SMB_COM_FIND SMB_COM_FIND_UNIQUE
SMB_COM_COPY SMB_COM_RENAME
SMB_COM_NT_RENAME SMB_COM_CHECK_DIRECTORY
SMB_COM_QUERY_INFORMATION SMB_COM_SET_INFORMATION
SMB_COM_NO_ANDX_COMMAND SMB_COM_OPEN_PRINT_FILE

CIFS Technical Reference SNIA Technical Proposal 55
Revision 1.0

SMB_COM_GET_PRINT_QUEUE SMB_COM_TRANSACTION

4.1.2.3. Errors
ERRSRV/ERRerror - No NEG_PROT issued
ERRSRV/ERRbadpw - Password not correct for given username
ERRSRV/ERRtoomanyuids - Maximum number of users per session exceeded
ERRSRV/ERRnosupport - Chaining of this request to the previous is not
supported

4.1.3. LOGOFF_ANDX: User Logoff

This SMB is the inverse of SMB_COM_SESSION_SETUP_ANDX.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 2
 UCHAR AndXCommand; Secondary (X) command; 0xFF =
 none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT ByteCount; Count of data bytes = 0

The server response is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 2
 UCHAR AndXCommand; Secondary (X) command; 0xFF =
 none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT ByteCount; Count of data bytes = 0

The user represented by Uid in the SMB header is logged off. The server closes all files currently
open by this user, and invalidates any outstanding requests with this Uid.

SMB_COM_SESSION_SETUP_ANDX is the only valid AndXCommand for this SMB.

4.1.3.1. Errors
ERRSRV/invnid - TID was invalid
ERRSRV/baduid - UID was invalid

4.1.4. TREE_CONNECT_ANDX: Tree Connect

The TREE_CONNECT_ANDX client request is defined below:

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 4
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT Flags; Additional information
 bit 0 set = Disconnect Tid

CIFS Technical Reference SNIA Technical Proposal 56
Revision 1.0

 USHORT PasswordLength; Length of Password[]
 USHORT ByteCount; Count of data bytes; min = 3
 UCHAR Password[]; Password
 STRING Path[]; Server name and share name
 STRING Service[]; Service name

The serving machine verifies the combination and returns an error code or an identifier. The full
name is included in this request message and the identifier identifying the connection is returned
in the Tid field of the SMB header. The Tid field in the client request is ignored. The meaning of
this identifier (Tid) is server specific; the client must not associate any standard meaning to it.

If the negotiated dialect is LANMAN1.0 or later, then it is a protocol violation for the client to send
this message prior to a successful SMB_COM_SESSION_SETUP_ANDX, and the server ignores
Password.

If the negotiated dialect is prior to LANMAN1.0 and the client has not sent a successful
SMB_COM_SESSION_SETUP_ANDX request when the tree connect arrives, a user level
security mode server must nevertheless validate the client's credentials as discussed earlier in
this document.

Path follows UNC style syntax, that is to say it is encoded as \\server\share and it indicates the
name of the resource to which the client wishes to connect.

Because Password may be an authentication response, it is a variable length field with the length
specified by PasswordLength. If authentication is not being used, Password should be a null
terminated ASCII string with PasswordLength set to the string size including the terminating null.

The server can enforce whatever policy it desires to govern share access. Typically, if the server
is paused, administrative privilege is required to connect to any share; if the server is not paused,
administrative privilege is required only for administrative shares (C$, etc.). Other such policies
may include valid times of day, software usage license limits, number of simultaneous server
users or share users, etc.

The Service component indicates the type of resource the client intends to access. Valid values
are:

Service Description Earliest Dialect Allowed

A: Disk share PC NETWORK PROGRAM 1.0

LPT1: Printer PC NETWORK PROGRAM 1.0

IPC Named pipe MICROSOFT NETWORKS 3.0

COMM Communications device MICROSOFT NETWORKS 3.0

????? Any type of device MICROSOFT NETWORKS 3.0

If bit0 of Flags is set, the tree connection to Tid in the SMB header should be disconnected. If
this tree disconnect fails, the error should be ignored.

If the negotiated dialect is earlier than DOS LANMAN2.1, the response to this SMB is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 2
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount

CIFS Technical Reference SNIA Technical Proposal 57
Revision 1.0

 USHORT ByteCount; Count of data bytes; min = 3

If the negotiated is DOS LANMAN2.1 or later, the response to this SMB is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 3
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT OptionalSupport; Optional support bits
 SMB_SUPPORT_SEARCH_BITS = 0x0001
 Exclusive search bits
 (“MUST HAVE BITS”) supported
 SMB_SHARE_IS_IN_DFS = 0x0002
 USHORT ByteCount; Count of data bytes; min = 3
 UCHAR Service[]; Service type connected (Always ANSII)
 STRING NativeFileSystem[]; Native file system for this tree

NativeFileSystem is the name of the filesystem. Expected values include FAT, NTFS, etc.

Some servers negotiate "DOS LANMAN2.1" dialect or later and still send the "downlevel" (i.e.
wordcount==2) response. Valid AndX following commands are:

SMB_COM_OPEN SMB_COM_OPEN_ANDX SMB_COM_CREATE
SMB_COM_CREATE_NEW SMB_COM_CREATE_DIRECTORY SMB_COM_DELETE
SMB_COM_DELETE_DIRECTORY SMB_COM_FIND SMB_COM_COPY
SMB_COM_FIND_UNIQUE SMB_COM_RENAME
SMB_COM_CHECK_DIRECTORY SMB_COM_QUERY_INFORMATION
SMB_COM_GET_PRINT_QUEUE SMB_COM_OPEN_PRINT_FILE
SMB_COM_TRANSACTION SMB_COM_NO_ANDX_CMD
SMB_COM_SET_INFORMATION SMB_COM_NT_RENAME

4.1.4.1. Errors
ERRDOS/ERRnomem
ERRDOS/ERRbadpath
ERRDOS/ERRinvdevice
ERRSRV/ERRaccess
ERRSRV/ERRbadpw
ERRSRV/ERRinvnetname

4.1.5. TREE_DISCONNECT: Tree Disconnect

This message informs the server that the client no longer wishes to access the resource
connected via a prior SMB_COM_TREE_CONNECT or SMB_COM_TREE_CONNECT_ANDX.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

The resource sharing connection identified by Tid in the SMB header is logically disconnected
from the server. Tid is invalidated; it will not be recognized if used by the client for subsequent
requests. All locks, open files, etc. created on behalf of Tid are released.

CIFS Technical Reference SNIA Technical Proposal 58
Revision 1.0

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.1.5.1. Errors
ERRSRV/ERRinvnid
ERRSRV/ERRbaduid

4.1.6. TRANS2_QUERY_FS_INFORMATION: Get File System Information

This transaction requests information about a filesystem on the server. Its format is:

Client Request Value
================ ======
WordCount 15
TotalParameterCount 2 or 4
MaxSetupCount 0
SetupCount 1 or 2
Setup[0] TRANS2_QUERY_FS_INFORMATION

The request’s parameter block encodes InformationLevel (a USHORT), describing the level of
filesystem info that should be returned. Values for InformationLevel are specified in the table
below.

The filesystem is identified by Tid in the SMB header.

MaxDataCount in the transaction request must be large enough to accommodate the response.

The encoding of the response parameter block depends on the InformationLevel requested.
Information levels whose values are greater than 0x102 are mapped to corresponding operating
system calls (NtQueryVolumeInformationFile calls) by the server. The two levels below 0x102 are
described below. The requested information is placed in the Data portion of the transaction
response.

Information Level Value

SMB_INFO_ALLOCATION 1

SMB_INFO_VOLUME 2

SMB_QUERY_FS_VOLUME_INFO 0x102

SMB_QUERY_FS_SIZE_INFO 0x103

SMB_QUERY_FS_DEVICE_INFO 0x104

SMB_QUERY_FS_ATTRIBUTE_INFO 0x105

SMB_QUERY_CIFS_UNIX_INFO 0x200

SMB_QUERY_MAC_FS_INFO 0x301

The following sections describe the InformationLevel dependent encoding of the data part of the
transaction response.

4.1.6.1. SMB_INFO_ALLOCATION
InformationLevel

CIFS Technical Reference SNIA Technical Proposal 59
Revision 1.0

Data Block Encoding Description
==================== ============
ULONG idFileSystem; File system identifier (NT server always returns 0)
ULONG cSectorUnit; Number of sectors per allocation unit
ULONG cUnit; Total number of allocation units
ULONG cUnitAvail; Total number of available allocation units
USHORT cbSector; Number of bytes per sector

4.1.6.2. SMB_INFO_VOLUME
InformationLevel
Data Block Encoding Description
==================== ============
ULONG ulVsn; Volume serial number
UCHAR cch; Number of characters in Label
STRING Label; The volume label

4.1.6.3. SMB_QUERY_FS_VOLUME_INFO
InformationLevel
Data Block Encoding Description
==================== ============
SMB_TIME Volume Creation Time
ULONG Volume Serial Number
ULONG Length of Volume Label in bytes
BYTE Reserved
BYTE Reserved
STRING Label; The volume label

4.1.6.4. SMB_QUERY_FS_SIZE_INFO
InformationLevel
Data Block Encoding Description
==================== ============
LARGE_INTEGER Total Number of Allocation units on the Volume
LARGE_INTEGER Number of free Allocation units on the Volume
ULONG Number of sectors in each Allocation unit
ULONG Number of bytes in each sector

4.1.6.5. SMB_QUERY_FS_DEVICE_INFO
InformationLevel
Data Block Encoding Description
==================== ======
ULONG DeviceType; Values as specified below
ULONG Characteristics of the device; Values as specified
below

For DeviceType, note that the values 0-32767 are reserved for the exclusive use of Microsoft
Corporation. The following device types are currently defined:

FILE_DEVICE_BEEP 0x00000001
FILE_DEVICE_CD_ROM 0x00000002
FILE_DEVICE_CD_ROM_FILE_SYSTEM 0x00000003

CIFS Technical Reference SNIA Technical Proposal 60
Revision 1.0

FILE_DEVICE_CONTROLLER 0x00000004
FILE_DEVICE_DATALINK 0x00000005
FILE_DEVICE_DFS 0x00000006
FILE_DEVICE_DISK 0x00000007
FILE_DEVICE_DISK_FILE_SYSTEM 0x00000008
FILE_DEVICE_FILE_SYSTEM 0x00000009
FILE_DEVICE_INPORT_PORT 0x0000000a
FILE_DEVICE_KEYBOARD 0x0000000b
FILE_DEVICE_MAILSLOT 0x0000000c
FILE_DEVICE_MIDI_IN 0x0000000d
FILE_DEVICE_MIDI_OUT 0x0000000e
FILE_DEVICE_MOUSE 0x0000000f
FILE_DEVICE_MULTI_UNC_PROVIDER 0x00000010
FILE_DEVICE_NAMED_PIPE 0x00000011
FILE_DEVICE_NETWORK 0x00000012
FILE_DEVICE_NETWORK_BROWSER 0x00000013
FILE_DEVICE_NETWORK_FILE_SYSTEM 0x00000014
FILE_DEVICE_NULL 0x00000015
FILE_DEVICE_PARALLEL_PORT 0x00000016
FILE_DEVICE_PHYSICAL_NETCARD 0x00000017
FILE_DEVICE_PRINTER 0x00000018
FILE_DEVICE_SCANNER 0x00000019
FILE_DEVICE_SERIAL_MOUSE_PORT 0x0000001a
FILE_DEVICE_SERIAL_PORT 0x0000001b
FILE_DEVICE_SCREEN 0x0000001c
FILE_DEVICE_SOUND 0x0000001d
FILE_DEVICE_STREAMS 0x0000001e
FILE_DEVICE_TAPE 0x0000001f
FILE_DEVICE_TAPE_FILE_SYSTEM 0x00000020
FILE_DEVICE_TRANSPORT 0x00000021
FILE_DEVICE_UNKNOWN 0x00000022
FILE_DEVICE_VIDEO 0x00000023
FILE_DEVICE_VIRTUAL_DISK 0x00000024
FILE_DEVICE_WAVE_IN 0x00000025
FILE_DEVICE_WAVE_OUT 0x00000026
FILE_DEVICE_8042_PORT 0x00000027
FILE_DEVICE_NETWORK_REDIRECTOR 0x00000028
FILE_DEVICE_BATTERY 0x00000029
FILE_DEVICE_BUS_EXTENDER 0x0000002a
FILE_DEVICE_MODEM 0x0000002b
FILE_DEVICE_VDM 0x0000002c

Some of these device types are not currently accessible over the network, and may never be
accessible on the network. Some may change to be accessible in the future. The values for
device types that will never be accessible over the network may be redefined to be “reserved”.

For the encoding of “Characteristics” in the protocol request, this field is the sum of any of the
following:

FILE_REMOVABLE_MEDIA 0x00000001
FILE_READ_ONLY_DEVICE 0x00000002
FILE_FLOPPY_DISKETTE 0x00000004
FILE_WRITE_ONE_MEDIA 0x00000008
FILE_REMOTE_DEVICE 0x00000010

CIFS Technical Reference SNIA Technical Proposal 61
Revision 1.0

FILE_DEVICE_IS_MOUNTED 0x00000020
FILE_VIRTUAL_VOLUME 0x00000040

4.1.6.6. SMB_QUERY_FS_ATTRIBUTE_INFO
InformationLevel
Data Block Encoding Description
==================== ============
ULONG File System Attributes;
 possible values described below
LONG Maximum length of each file name component
 in number of bytes
ULONG Length, in bytes, of the name of the file system
STRING Name of the file system

Where FileSystemAttributes are the sum of any of the following:

FILE_CASE_SENSITIVE_SEARCH 0x00000001
FILE_CASE_PRESERVED_NAMES 0x00000002
FILE_PERSISTENT_ACLS 0x00000004
FILE_FILE_COMPRESSION 0x00000008
FILE_VOLUME_QUOTAS 0x00000010
FILE_DEVICE_IS_MOUNTED 0x00000020
FILE_VOLUME_IS_COMPRESSED 0x00008000

4.1.6.7. SMB_QUERY_CIFS_UNIX_INFO
InformationLevel
Data Block Encoding Description
==================== ============
UNIT16 MajorVersionNumber; Major version of CIFS UNIX supported by
 server
UNIT16 MinorVersionNumber; Minor version of CIFS UNIX supported by
 server
LARGE_INTEGER Capability; Capabilities of CIFS UNIX support by
 Server

Where Capability is the sum of the following:

CIFS_UNIX_FCNTL_CAP 0x1 Reserved. Should be zero

CIFS_UNIX_POSIX_ACL_CAP 0x2 Reserved. Should be zero

CIFS Technical Reference SNIA Technical Proposal 62
Revision 1.0

4.1.6.8. SMB_QUERY_MAC_FS_INFO
InformationLevel
Data Block Encoding Description
==================== ============
LARGE_INTEGER CreationTime; Volume creation time - NT TIME.
LARGE_INTEGER ModifyTime; Volume Modify time - NT TIME.
LARGE_INTEGER BackUpTime; Volume was last Backup time - NT TIME.

Defaults to Create Time.
ULONG NmAlBlks; The number of allocation blocks in the

volume
ULONG AlBlkSiz; The allocation block size (in bytes) Must

be in multiple of 512 bytes
ULONG FreeBks; The number of unused allocations blocks on

the volume
UCHAR [32]; FndrInfo[32]; Information used by the finder that is

always in Big Endian.
 Bytes 0-3 File Type
 If a file default to 'TEXT' otherwise
default to zero
 Bytes 4-7 File Creator
 If a file default to 'dosa' otherwise
default to zero
 Bytes 8-9 a UWORD flags field
 If hidden item set this UWORD to 0x4000
else defaults to zero
 All other bytes should default to zero and are
only changeable by the Macintosh

LONG NmFls; The number of files in the root directory;
Zero if not known

LONG NmRtDirs; The number of directories in the root
directory; Zero if not known

LONG FilCnt; The number of files on the volume; Zero if
not known

LONG DirCnt; The number of directories on the volume;
Zero if not known

LONG MacSupportFlags; Must be zero unless you support the
other Macintosh options

Where MacSupportFlags is the sum of any of the following:

SUPPORT_MAC_ACCESS_CNTRL 0x00000010 The server will return folder
access control in the
Trans2_Find_First2 and
Trans2_Find_Next2 message
described later in this document.

SUPPORT_MAC_GETSETCOMMENTS 0x00000020 Not currently supported.

SUPPORT_MAC_DESKTOPDB_CALLS 0x00000040 The Server supports setting and
getting Macintosh desktop
database information using the
mechanism in this document.

CIFS Technical Reference SNIA Technical Proposal 63
Revision 1.0

SUPPORT_MAC_UNIQUE_IDS 0x00000080 The server will return a unique
id for files and directories in
the Trans2_Find_First2 and
Trans2_Find_Next2 message
described later in this document.

NO_STREAMS_OR_MAC_SUPPORT 0x00000100 The server will return this flag
telling the client that the
server does not support streams
or the Macintosh extensions. The
client will ignore the rest of
this message.

4.1.6.9. Errors
ERRSRV/invnid - TID was invalid
ERRSRV/baduid - UID was invalid
ERRHRD/ERRnotready - The file system has been removed
ERRHRD/ERRdata - Disk I/O error
ERRSRV/ERRaccess - User does not have rights to perform this operation
ERRSRV/ERRinvdevice - Resource identified by TID is not a file system

4.1.7. ECHO: Ping the Server

This request is used to test the connection to the server, and to see if the server is still
responding. The client request is defined as:

 Client Request Description
 =============== ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT EchoCount; Number of times to echo data back
 USHORT ByteCount; Count of data bytes; min = 1
 UCHAR Buffer[1]; Data to echo

And, the server response is:

 Server Response Description
 ================ ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT SequenceNumber; Sequence number of this echo
 USHORT ByteCount; Count of data bytes; min = 4
 UCHAR Buffer[1]; Echoed data

Each response echoes the data sent, though ByteCount may indicate “no data”. If EchoCount is
zero, no response is sent.

Tid in the SMB header is ignored, so this request may be sent to the server even if there are no
valid tree connections to the server.

The flow for the ECHO protocol is:

CIFS Technical Reference SNIA Technical Proposal 64
Revision 1.0

Client Request < -- > Server Response

Echo request (EchoCount == n) - >

 < - Echo response 1

 < - Echo response 2

 < - Echo response n

4.1.7.1. Errors
ERRSRV/ERRbaduid - UID was invalid
ERRSRV/ERRnoaccess - session has not been established
ERRSRV/ERRnosupport - ECHO function is not supported

4.1.8. NT_CANCEL: Cancel request

This SMB allows a client to cancel a request currently pending at the server. The client request is
defined as:

Client Request Description
=============== ============
 UCHAR WordCount; No words are sent (== 0)
 USHORT ByteCount; No bytes (==0)

The Sid, Uid, Pid, Tid, and Mid fields of the SMB are used to locate an pending server request
from this session. If a pending request is found, it is "hurried along" which may result in success
or failure of the original request. No other response is generated for this SMB.

4.2. File Requests

4.2.1. NT_CREATE_ANDX: Create or Open File

This command is used to create or open a file or a directory. The client request is defined as:

Client Request Description
=============== ============
UCHAR WordCount; Count of parameter words = 24
UCHAR AndXCommand; Secondary command; 0xFF = None
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
UCHAR Reserved; Reserved (must be 0)
USHORT NameLength; Length of Name[] in bytes
ULONG Flags; Create bit set:

 0x02 - Request an oplock
 0x04 - Request a batch oplock
 0x08 - Target of open must be directory

ULONG RootDirectoryFid; If non-zero, open is relative to
 this directory

ACCESS_MASK DesiredAccess; Access desired (See Section 3.8 for an
 explanation of this field)

LARGE_INTEGER AllocationSize; Initial allocation size
ULONG ExtFileAttributes; File attributes
ULONG ShareAccess; Type of share access
ULONG CreateDisposition; Action if file does/does not exist

CIFS Technical Reference SNIA Technical Proposal 65
Revision 1.0

ULONG CreateOptions; Options to use if creating a file
ULONG ImpersonationLevel; Security QOS information
UCHAR SecurityFlags; Security tracking mode flags:

 0x1 - SECURITY_CONTEXT_TRACKING
 0x2 - SECURITY_EFFECTIVE_ONLY

USHORT ByteCount; Length of byte parameters
STRING Name[]; File to open or create

The Name parameter contains the full path from the tree connect point unless the
RootDirectoryFid is used. To use the RootDirectoryFid perform a NT_CREATE_ANDX to open
the directory and then use the returned Fid for subsequent NT_CREATE_ANDX calls to
open/create files within that directory.

The DesiredAccess parameter is specified in section 3.8, Access Mask Encoding. If no value is
specified, an application can still query attributes without actually accessing the file.

The ExtFileAttributes parameter specifies the file attributes and flags for the file. The parameter's
value is the sum of allowed attributes and flags defined in section 3.12, Extended File Attribute
Encoding.

The ShareAccess field specifies how the file can be shared. This parameter must be some
combination of the following values:

Name Value Meaning

FILE_NO_SHARE 0x00000000 Prevents the file from being shared.

FILE_SHARE_READ 0x00000001 Other open operations can be performed on the file for read access.

FILE_SHARE_WRITE 0x00000002 Other open operations can be performed on the file for write access.

FILE_SHARE_DELET
E

0x00000004 Other open operations can be performed on the file for delete access.

The CreateDisposition parameter can contain one of the following values:

Name Value Meaning

FILE_SUPERSEDE

0x00000000 FILE_SUPERSEDE- Indicates that if the file already exists then it
should be superseded by the specified file. If it does not already
exist then it should be created.

FILE_OPEN 0x00000001 FILE_OPEN - Indicates that if the file already exists it should be
opened rather than creating a new file. If the file does not already
exist then the operation should fail.

FILE_CREATE 0x00000002 FILE_CREATE - Indicates that if the file already exists then the
operation should fail. If the file does not already exist then it should
be created.

FILE_OPEN_IF 0x00000003 FILE_OPEN_IF - Indicates that if the file already exists, it should
be opened. If the file does not already exist then it should be
created.

FILE_OVERWRITE 0x00000004 FILE_OVERWRITE - Indicates that if the file already exists it
should be opened and overwritten. If the file does not already exist
then the operation should fail.

FILE_OVERWRITE_IF 0x00000005 FILE_OVERWRITE_IF - Indicates that if the file already exists it
should be opened and overwritten. If the file does not already exist
then it should be created.

CIFS Technical Reference SNIA Technical Proposal 66
Revision 1.0

Name Value Meaning

FILE_MAXIMUM_DIS
POSITION

0x00000005 ?

The ImpersonationLevel parameter can contain one or more of the following values:

Name Value Meaning

SECURITY_ANONYMOUS 0 Impersonation of the client at the Anonymous level

SECURITY_IDENTIFICATION 1 Impersonation of the client at the Identification level

SECURITY_IMPERSONATION 2 Impersonation of the client at the Impersonation
level

SECURITY_DELEGATION 3 Impersonation of the client at the Delegation level

The SecurityFlags parameter can have either of the following two flags set:

Name Value Meaning

SECURITY_CONTEXT_TRACKING 0x00040000 Specifies that the security tracking mode is dynamic.
If this flag is not specified, Security Tracking Mode is
static.

SECURITY_EFFECTIVE_ONLY 0x00080000 Specifies that only the enabled aspects of the client's
security context are available to the server. If this flag
is not specified, all aspects of the client's security
context are available. This flag allows the client to
limit the groups and privileges that a server can use
while impersonating the client.

The server response to the NT_CREATE_ANDX request is as follows:

Server Response Description
================ ============
UCHAR WordCount; Count of parameter words = 26
UCHAR AndXCommand; 0xFF = None
UCHAR AndXReserved; MUST BE ZERO
USHORT AndXOffset; Offset to next command WordCount
UCHAR OplockLevel; The oplock level granted:

 0 - No oplock granted
 1 - Exclusive oplock granted
 2 - Batch oplock granted
 3 - Level II oplock granted

USHORT Fid; The file ID
ULONG CreateAction; The action taken
TIME CreationTime; The time the file was created
TIME LastAccessTime; The time the file was accessed
TIME LastWriteTime; The time the file was last written
TIME ChangeTime; The time the file was last changed
ULONG ExtFileAttributes; The file attributes
LARGE_INTEGER AllocationSize; The number of byes allocated
LARGE_INTEGER EndOfFile; The end of file offset
USHORT FileType;
USHORT DeviceState; State of IPC device (e.g. pipe)
BOOLEAN Directory; TRUE if this is a directory
USHORT ByteCount; = 0

CIFS Technical Reference SNIA Technical Proposal 67
Revision 1.0

The following SMBs may follow SMB_COM_NT_CREATE_ANDX:
SMB_COM_READ SMB_COM_READ_ANDX
SMB_COM_IOCTL

4.2.1.1. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnofids
ERRnoaccess
ERRnomem
ERRbadaccess
ERRbadshare
ERRfileexists
ERRquota

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.2.2. NT_TRANSACT_CREATE: Create or Open File with EAs or SD

This command is used to create or open a file or a directory, when EAs or an SD must be applied
to the file. The parameter and data blocks for the client’s CREATE request include the following
data:

 Request Parameter Block Encoding Description
 ================================= ============
 ULONG Flags; Creation flags (see below)
 ULONG RootDirectoryFid; Optional directory for relative
 open
 ACCESS_MASK DesiredAccess; Access desired (See Section 3.8 for
 an explanation of this field)
 LARGE_INTEGER AllocationSize; The initial allocation size in
 bytes, if file created
 ULONG ExtFileAttributes; The extended file attributes
 ULONG ShareAccess; The share access
 ULONG CreateDisposition; Action if file does/does not exist
 ULONG CreateOptions; Options for creating a new file
 ULONG SecurityDescriptorLength; Length of SD in bytes
 ULONG EaLength; Length of EA in bytes
 ULONG NameLength; Length of name in characters
 ULONG ImpersonationLevel; Security QOS information
 UCHAR SecurityFlags; Security QOS information
 STRING Name[NameLength]; The name of the file (not NULL
 terminated)

CIFS Technical Reference SNIA Technical Proposal 68
Revision 1.0

Request Data Block Encoding Description
 ============================ ============
 UCHAR SecurityDescriptor[
 SecurityDescriptorLength];
 UCHAR ExtendedAttributes[EaLength];

The Flags parameter can contain one of the following values:

Creation Flags Name Value Description

NT_CREATE_REQUEST_OPLOCK 0x02 Exclusive oplock requested

NT_CREATE_REQUEST_OPBATCH 0x04 Batch oplock requested

NT_CREATE_OPEN_TARGET_DIR 0x08 Target for open is a directory

The parameter block of the server response is defined as:

Response Parameter Block Encoding Description
================================== ============
 UCHAR OplockLevel; The oplock level granted
 UCHAR Reserved;
 USHORT Fid; The file ID
 ULONG CreateAction; The action taken
 ULONG EaErrorOffset; Offset of the EA error
 TIME CreationTime; The time the file was created
 TIME LastAccessTime; The time the file was accessed
 TIME LastWriteTime; The time the file was last written
 TIME ChangeTime; The time the file was last changed
 ULONG ExtFileAttributes; The file attributes
 LARGE_INTEGER AllocationSize; The number of byes allocated
 LARGE_INTEGER EndOfFile; The end of file offset
 USHORT FileType;
 USHORT DeviceState; State of IPC device (e.g. pipe)
 BOOLEAN Directory; TRUE if this is a directory

See the description of NT_CREATE_ANDX (section 4.2.1) for further definition of the CREATE
request/response parameters.

4.2.2.1. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnofids
ERRnoaccess
ERRnomem
ERRbadaccess
ERRbadshare
ERRfileexists
ERRquota

ERRSRV codes

ERRaccess

CIFS Technical Reference SNIA Technical Proposal 69
Revision 1.0

ERRinvdevice
ERRinvtid
ERRbaduid

4.2.3. CREATE_TEMPORARY: Create Temporary File

The server creates a data file in the specified Directory, relative to Tid in the SMB header, and
assigns a unique name to it. The client request and server response for the command are:

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 3
 USHORT reserved; Ignored by the server
 UTIME CreationTime; New file's creation time stamp
 USHORT ByteCount; Count of data bytes; min = 2
 UCHAR BufferFormat; 0x04
 STRING DirectoryName[]; Directory name

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT Fid; File handle
 USHORT ByteCount; Count of data bytes; min = 2
 UCHAR BufferFormat; 0x04
 STRING Filename[]; File name

Fid is the returned handle for future file access. Filename is the name of the file that was created
within the requested Directory. It is opened in compatibility mode with read/write access for the
client.

Support of CreationTime by the server is optional.

4.2.3.1. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnofids
ERRnoaccess
ERRnomem
ERRbadaccess
ERRbadshare
ERRfileexists
ERRquota

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

CIFS Technical Reference SNIA Technical Proposal 70
Revision 1.0

4.2.4. READ_ANDX: Read Bytes

Client requests a file read, using the SMB fields specified below:

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 10 or 12
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT Fid; File handle
 ULONG Offset; Offset in file to begin read
 USHORT MaxCount; Max number of bytes to return
 USHORT MinCount; Reserved for obsolescent requests
 ULONG MaxCountHigh; High 16 bits of MaxCount if
 CAP_LARGE_READX; else MUST BE ZERO
 USHORT Remaining; Reserved for obsolescent requests
 ULONG OffsetHigh; Upper 32 bits of offset (only if
 WordCount is 12)
 USHORT ByteCount; Count of data bytes = 0

And, the server response is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 12
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT Remaining; Reserved -- must be -1
 USHORT DataCompactionMode;
 USHORT Reserved; Reserved (must be 0)
 USHORT DataLength; Number of data bytes (min = 0)
 USHORT DataOffset; Offset (from header start) to data
 USHORT DataLengthHigh; High 16 bits of number of data bytes if
 CAP_LARGE_READX; else MUST BE ZERO
 USHORT Reserved[4]; Reserved (must be 0)
 USHORT ByteCount; Count of data bytes; ignored if
 CAP_LARGE_READX
 UCHAR Pad[];
 UCHAR Data[DataLength]; Data from resource

If the file specified by Fid has any portion of the range specified by Offset and MaxCount locked
for exclusive use by a client with a different connection or Pid, the request will fail with ERRlock.

If the negotiated dialect is NT LM 0.12 or later, the client may use the 12 parameter word version
of the request. This version allows specification of 64 bit file offsets.

If CAP_LARGE_READX was indicated by the server in the negotiate protocol response, the
request's MaxCount field may exceed the negotiated buffer size if Fid refers to a disk file. The
server may arbitrarily elect to return fewer than MaxCount bytes in response.

The SMB server MAY use the MinCount on named-pipe calls to determine if this is a blocking read or a
non-blocking read. (Non blocking is determined by MinCount = 0). Note that for blocking reads, the length

CIFS Technical Reference SNIA Technical Proposal 71
Revision 1.0

required to succeed is actually the ReadLength and not the MinCount. (So in some sense, MinCount has
become more of an indicator of blocking vs. non-blocking rather than a true length)

The following SMBs may follow SMB_COM_READ_ANDX:

SMB_COM_CLOSE

4.2.4.1. Errors
ERRDOS/ERRnoaccess
ERRDOS/ERRbadfid
ERRDOS/ERRlock
ERRDOS/ERRbadaccess
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.5. WRITE_ANDX: Write Bytes to file or resource

Client requests a file write, using the SMB fields specified below:

Client Request Description
=============== ============
UCHAR WordCount; Count of parameter words = 12 or 14
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Fid; File handle
ULONG Offset; Offset in file to begin write
ULONG Reserved; Must be 0
USHORT WriteMode; Write mode bits:

 0 - write through
USHORT Remaining; Bytes remaining to satisfy request
USHORT DataLengthHigh; High 16 bits of data length if

 CAP_LARGE_WRITEX; else MUST BE ZERO
USHORT DataLength; Number of data bytes in buffer (>=0)
USHORT DataOffset; Offset to data bytes
ULONG OffsetHigh; Upper 32 bits of offset (only present if

 WordCount = 14)
USHORT ByteCount; Count of data bytes; ignored if

 CAP_LARGE_WRITEX
UCHAR Pad[]; Pad to SHORT or LONG
UCHAR Data[DataLength]; Data to write

And, the server response is:

Server Response Description
================ ============
UCHAR WordCount; Count of parameter words = 6
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Count; Number of bytes written
USHORT Remaining; Reserved
ULONG Reserved;
USHORT ByteCount; Count of data bytes = 0

CIFS Technical Reference SNIA Technical Proposal 72
Revision 1.0

If the file specified by Fid has any portion of the range specified by Offset and MaxCount locked
for shared or exclusive use by a client with a different connection or Pid, the request will fail with
ERRlock.

A ByteCount of 0 does not truncate the file. Rather a zero length write merely transfers zero
bytes of information to the file. A request such as SMB_COM_WRITE must be used to truncate
the file.

If WriteMode has bit0 set in the request and Fid refers to a disk file, the response is not sent from
the server until the data is on stable storage.

If the negotiated dialect is NT LM 0.12 or later, the 14 word format of this SMB may be used to
access portions of files requiring offsets expressed as 64 bits. Otherwise, the OffsetHigh field
must be omitted from the request.

If CAP_LARGE_WRITEX was indicated by the server in the negotiate protocol response, the
request's DataLength field may exceed the negotiated buffer size if Fid refers to a disk file.

The following are the valid AndXCommand values for this SMB:

SMB_COM_READ SMB_COM_READ_ANDX
SMB_COM_LOCK_AND_READ SMB_COM_WRITE_ANDX
SMB_COM_CLOSE

4.2.5.1. Errors
ERRDOS/ERRnoaccess
ERRDOS/ERRbadfid
ERRDOS/ERRlock
ERRDOS/ERRbadaccess
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.6. LOCKING_ANDX: Lock or Unlock Byte Ranges

SMB_COM_LOCKING_ANDX allows both locking and/or unlocking of file range(s). A description
of the fields of the client request, and explanations for several of the fields are provided below.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 8
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT Fid; File handle
 UCHAR LockType; See LockType table below
 UCHAR OplockLevel; The new oplock level
 ULONG Timeout; Milliseconds to wait for unlock
 USHORT NumberOfUnlocks; Number of unlock range structures that
 follow
 USHORT NumberOfLocks; Number of lock range structures that
 follow
 USHORT ByteCount; Count of data bytes
 LOCKING_ANDX_RANGE Unlocks[]; Unlock ranges
 LOCKING_ANDX_RANGE Locks[]; Lock ranges

CIFS Technical Reference SNIA Technical Proposal 73
Revision 1.0

The LockType parameter can take on one of the values in the following table:

Flag Name Value Description

LOCKING_ANDX_SHARED_LOCK 0x01 Read-only lock

LOCKING_ANDX_OPLOCK_RELEASE 0x02 Oplock break notification

LOCKING_ANDX_CHANGE_LOCKTYP
E

0x04 Change lock type

LOCKING_ANDX_CANCEL_LOCK 0x08 Cancel outstanding request

LOCKING_ANDX_LARGE_FILES 0x10 Large file locking format

The format for LOCKING_ANDX_RANGE is:

 USHORT Pid; PID of process "owning" lock
 ULONG Offset; Offset to bytes to [un]lock
 ULONG Length; Number of bytes to [un]lock

And, for a large file, it is:

 USHORT Pid; PID of process "owning" lock
 USHORT Pad; Pad to DWORD align (Must be zero)
 ULONG OffsetHigh; Offset to bytes to [un]lock (high)
 ULONG OffsetLow; Offset to bytes to [un]lock (low)
 ULONG LengthHigh; Number of bytes to [un]lock
 (high)
 ULONG LengthLow; Number of bytes to [un]lock (low)

The server response is:

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 2
 UCHAR AndXCommand; Secondary (X) command; 0xFF = none
 UCHAR AndXReserved; Reserved (must be 0)
 USHORT AndXOffset; Offset to next command WordCount
 USHORT ByteCount; Count of data bytes = 0

Locking is a simple mechanism for excluding other processes read/write access to regions of a
file. The locked regions can be anywhere in the logical file. Locking beyond end-of-file is
permitted. Lock conflicts (overlapping lock-requests) should cause the server to refuse the lock to
the latter requestor. Any process using the Fid specified in this request's Fid has access to the
locked bytes; other processes will be denied the locking of the same bytes.

The proper method for using locks is not to rely on being denied read or write access on any of
the read/write protocols but rather to attempt the locking protocol and proceed with the read/write
only if the locks succeeded.

Locking a range of bytes will fail if any subranges or overlapping ranges are locked, if the
PID/UID of the requestor is not the same, and the locks are not compatible. In other words, if any
of the specified bytes are already locked, the lock will fail.

If NumberOfUnlocks is non-zero, the Unlocks vector contains NumberOfUnlocks elements. Each
element requests that a lock at Offset of Length be released. If NumberOfLocks is nonzero, the

CIFS Technical Reference SNIA Technical Proposal 74
Revision 1.0

Locks vector contains NumberOfLocks elements. Each element requests the acquisition of a lock
at Offset of Length.

Timeout is the maximum amount of time to wait for the byte range(s) specified to become
unlocked. A timeout value of 0 indicates that the server should fail immediately if any lock range
specified is locked. A timeout value of -1 indicates that the server should wait as long as it takes
for each byte range specified to become unlocked so that it may be again locked by this protocol.
Any other value of smb_timeout specifies the maximum number of milliseconds to wait for all lock
range(s) specified to become available.

If any of the lock ranges timeout because of the area to be locked is already locked (or the lock
fails), the other ranges in the protocol request which were successfully locked as a result of this
protocol will be unlocked (either all requested ranges will be locked when this protocol returns to
the client or none).

If LockType has the LOCKING_ANDX_SHARED_LOCK flag set, the lock is specified as a shared
lock. Locks for both read and write (where LOCKING_ANDX_SHARED_LOCK is clear) should
be prohibited, but other shared locks should be permitted. If shared locks can not be supported
by a server, the server should map the lock to a lock for both read and write. Closing a file with
locks still in force causes the locks to be released in no defined order.

If LockType has the LOCKING_ANDX_LARGE_FILES flag set and if the negotiated protocol is NT
LM 0.12 or later, then the Locks and Unlocks vectors are in the Large File
LOCKING_ANDX_RANGE format. This allows specification of 64 bit offsets for very large files.

If the one and only member of the Locks vector has the LOCKING_ANDX_CANCEL_LOCK flag
set in the LockType field, the client is requesting the server to cancel a previously requested, but
not yet responded to, lock.

If LockType has the LOCKING_ANDX_CHANGE_LOCKTYPE flag set, the client is requesting
that the server atomically change the lock type from a shared lock to an exclusive lock or vice
versa. If the server can not do this in an atomic fashion, the server must reject this request.
(Note: Windows NT and Windows 95 servers do not support this capability.)

If the client sends an SMB_LOCKING_ANDX SMB with the LOCKING_ANDX_OPLOCK_RELEASE
flag set and NumberOfLocks is zero, the server does not send a response. The entire message
sent and received including the optional second protocol must fit in the negotiated maximum
transfer size. The following are the only valid SMB commands for AndXCommand for
SMB_COM_LOCKING_ANDX:

 SMB_COM_READ SMB_COM_READ_ANDX
 SMB_COM_WRITE SMB_COM_WRITE_ANDX
 SMB_COM_FLUSH

4.2.6.1. Errors
ERRDOS/ERRbadfile
ERRDOS/ERRbadfid
ERRDOS/ERRlock
ERRDOS/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

CIFS Technical Reference SNIA Technical Proposal 75
Revision 1.0

4.2.7. SEEK: Seek in File

The seek message is sent to set the current file pointer for Fid.

Client Request Description
=============== =================================
UCHAR WordCount; Count of parameter words = 4
 USHORT Fid; File handle
 USHORT Mode; Seek mode:
 0 = from start of file
 1 = from current position
 2 = from end of file
 LONG Offset; Relative offset
 USHORT ByteCount; Count of data bytes = 0

The "current position" reflects the offset plus data length specified in the previous read, write, or
seek request; and the pointer set by this command will be replaced by the offset specified in the
next read, write, or seek command.

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 2
 ULONG Offset; Offset from start of file
 USHORT ByteCount; Count of data bytes = 0

The response returns the new file pointer in Offset, which is expressed as the offset from the start
of the file, and may be beyond the current end of file. An attempt to seek to before the start of file
sets the current file pointer to start of the file.

This request should generally be issued only by clients wishing to find the size of a file, because
all read and write requests include the read or write file position as part of the SMB. This request
is inappropriate for very large files, as the offsets specified are only 32 bits. A seek that results in
an Offset that cannot be expressed in 32 bits returns the least significant.

4.2.7.1. Errors
ERRDOS/ERRbadfid
ERRDOS/ERRnoaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.8. FLUSH: Flush File

The flush SMB is sent to ensure all data and allocation information for the corresponding file has
been written to stable storage. When the Fid has a value -1 (hex FFFF), the server performs a
flush for all file handles associated with the client and Pid. The response is not sent until the
writes are complete.

Client Request Description
=============== =================================
 UCHAR WordCount; Count of parameter words = 1
 USHORT Fid; File handle
 USHORT ByteCount; Count of data bytes = 0

CIFS Technical Reference SNIA Technical Proposal 76
Revision 1.0

This client request is probably expensive to perform at the server, since the server's operating
system is generally scheduling disk writes is a way which is optimal for the system's read and
write activity integrated over the entire population of clients. This message from a client
"interferes" with the server's ability to optimally schedule the disk activity; clients are discouraged
from overuse of this SMB request.

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.2.8.1. Errors
ERRDOS/ERRbadfid
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.9. CLOSE: Close File

The close message is sent to invalidate a file handle for the requesting process. All locks or other
resources held by the requesting process on the file should be released by the server. The
requesting process can no longer use Fid for further file access requests.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 3
 USHORT Fid; File handle
 UTIME LastWriteTime; Time of last write
 USHORT ByteCount; Count of data bytes = 0

If LastWriteTime is 0, the server should allow its local operating system to set the file's times.
Otherwise, the server should set the time to the values requested. Failure to set the times, even if
requested by the client in the request message, should not result in an error response from the
server.

If Fid refers to a print spool file, the file should be spooled to the printer at this time.

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.2.9.1. Errors
ERRDOS/ERRbadfid
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.10. CLOSE_AND_TREE_DISCONNECT

Close the file and perform a tree disconnect.

The close and tree disconnect message is sent to close a file and perform a tree disconnect. All
locks or other resources held by the requesting process on the file should be released by the
server. The requesting process can no longer use Fid for further file access requests. The server

CIFS Technical Reference SNIA Technical Proposal 77
Revision 1.0

will perform a TREE_DISCONNECT after completing the close operation. The requesting process
can no longer use Tid for further access requests.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 3
 USHORT Fid; File handle
 UTIME LastWriteTime; Time of last write
 USHORT ByteCount; Count of data bytes = 0

If LastWriteTime is 0, the server should allow its local operating system to set the file's times.
Otherwise, the server should set the time to the values requested. Failure to set the times, even if
requested by the client in the request message, should not result in an error response from the
server.

If Fid refers to a print spool file, the file should be spooled to the printer at this time.

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.2.10.1. Errors
ERRDOS/ERRbadfid
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.11. DELETE: Delete File

The delete file message is sent to delete a data file. The appropriate Tid and additional
pathname are passed. Read only files may not be deleted, the read-only attribute must be reset
prior to file deletion.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT SearchAttributes;
 USHORT ByteCount; Count of data bytes; min = 2
 UCHAR BufferFormat; 0x04
 STRING FileName[]; File name

Multiple files may be deleted in response to a single request as SMB_COM_DELETE supports
wildcards.

SearchAttributes indicates the attributes that the target file(s) must have. If the attribute is zero
then only normal files are deleted. If the system file or hidden attributes are specified, then the
delete is inclusive - both the specified type(s) of files and normal files are deleted. File attributes
are described in the "Attribute Encoding" section (3.11) of this document.

If bit0 of the Flags2 field of the SMB header is set, a pattern is passed in, and the file has a long
name, then the passed pattern must match the long file name for the delete to succeed. If bit0 is
clear, a pattern is passed in, and the file has a long name, then the passed pattern must match
the file's short name for the deletion to succeed.

CIFS Technical Reference SNIA Technical Proposal 78
Revision 1.0

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.2.11.1. Errors
ERRDOS/ERRbadpath
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRHRD/ERRnowrite
ERRSRV/ERRaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.12. RENAME: Rename File

The rename file message is sent to change the name of a file.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT SearchAttributes; Target file attributes
 USHORT ByteCount; Count of data bytes; min = 4
 UCHAR BufferFormat1; 0x04
 STRING OldFileName[]; Old file name
 UCHAR BufferFormat2; 0x04
 STRING NewFileName[]; New file name

The file, OldFileName, must exist and NewFileName must not. Both pathnames must be relative
to the Tid specified in the request. Open files may be renamed.

Multiple files may be renamed in response to a single request as Rename File supports wildcards
in the file name (last component of the pathname).

SearchAttributes indicates the attributes that the target file(s) must have. If SearchAttributes is
zero then only normal files are renamed. If the system file or hidden attributes are specified then
the rename is inclusive - both the specified type(s) of files and normal files are renamed. The
encoding of SearchAttributes is described in section 3.11 - File Attribute Encoding.

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.2.12.1. Errors
ERRDOS/ERRbadpath
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRDOS/ERRdiffdevice
ERRHRD/ERRnowrite
ERRSRV/ERRaccess
ERRSRV/ERRinvdevice

CIFS Technical Reference SNIA Technical Proposal 79
Revision 1.0

ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.13. NT_RENAME:

The rename file message is sent to change the name of a file. This version of RENAME supports
NT link tracking info.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 4
 USHORT SearchAttributes;
 USHORT Information Level;
 ULONG ClusterCount;
 USHORT ByteCount; Count of data bytes; min = 4
 UCHAR Buffer[1]; Buffer containing:
 UCHAR BufferFormat1 0x04 -- ASCII
 UCHAR OldFileName[] Old file name
 UCHAR BufferFormat2 0x04 -- ASCII
 UCHAR NewFileName[] New file name

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0
 UCHAR Buffer[1]; empty

Non-NT machines can ignore the extra parameters (InfoLevel, SearchAttributes, ClusterCount)
and just perform a normal rename.

4.2.13.1. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnofids
ERRnoaccess
ERRnomem
ERRfileexists

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.2.14. MOVE: Rename File

The source file is copied to the destination and the source is subsequently deleted.

 Client Request Description
 =============== ============
 UCHAR WordCount; Count of parameter words = 3

CIFS Technical Reference SNIA Technical Proposal 80
Revision 1.0

 USHORT Tid2; Second (target) file id
 USHORT OpenFunction; What to do if target file exists
 USHORT Flags; Flags to control move operations:
 0 - target must be a file
 1 - target must be a directory
 2 - reserved (must be 0)
 3 - reserved (must be 0)
 4 - verify all writes
 USHORT ByteCount; Count of data bytes; min = 2
 UCHAR Format1; 0x04
 STRING OldFileName[]; Old file name
 UCHAR FormatNew; 0x04
 STRING NewFileName[]; New file name

OldFileName is copied to NewFileName, then OldFileName is deleted. Both OldFileName and
NewFileName must refer to paths on the same server. NewFileName can refer to either a file or a
directory. All file components except the last must exist; directories will not be created.

NewFileName can be required to be a file or a directory by the Flags field.

The Tid in the header is associated with the source while Tid2 is associated with the destination.
These fields may contain the same or differing valid values. Tid2 can be set to -1 indicating that
this is to be the same Tid as in the SMB header. This allows use of the move protocol with
SMB_TREE_CONNECT_ANDX.

 Server Response Description
 ================ ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT Count; Number of files moved
 USHORT ByteCount; Count of data bytes; min = 0
 UCHAR ErrorFileFormat; 0x04 (only if error)
 STRING ErrorFileName[]; Pathname of file where error

 Occurred

The source path must refer to an existing file or files. Wildcards are permitted. Source files
specified by wildcards are processed until an error is encountered. If an error is encountered, the
expanded name of the file is returned in ErrorFileName. Wildcards are not permitted in
NewFileName.

OpenFunction controls what should happen if the destination file exists. If (OpenFunction & 0x30)
== 0, the operation should fail if the destination exists. If (OpenFunction & 0x30) == 0x20, the
destination file should be overwritten.

4.2.14.1. Errors
ERRDOS/ERRfilexists
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRDOS/ERRnofiles
ERRDOS/ERRbadshare
ERRHRD/ERRnowrite
ERRSRV/ERRnoaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid

CIFS Technical Reference SNIA Technical Proposal 81
Revision 1.0

ERRSRV/ERRbaduid
ERRSRV/ERRnosupport
ERRSRV/ERRaccess

4.2.15. COPY: Copy File

The source file is copied to the target.

 Client Request Description
 =============== ============
 UCHAR WordCount; Count of parameter words = 3
 USHORT Tid2; Second (target) path TID
 USHORT OpenFunction; What to do if target file exists
 USHORT Flags; Flags to control copy operation:
 bit 0 - target must be a file
 bit 1 - target must be a dir.
 bit 2 - copy target mode:
 0 = binary, 1 = ASCII
 bit 3 - copy source mode:
 0 = binary, 1 = ASCII
 bit 4 - verify all writes
 bit 5 - tree copy
 USHORT ByteCount; Count of data bytes; min = 2
 UCHAR SourceFileNameFormat; 0x04
 STRING SourceFileName; Pathname of source file
 UCHAR TargetFileNameFormat; 0x04
 STRING TargetFileName; Pathname of target file

The file at SourceName is copied to TargetFileName, both of which must refer to paths on the
same server.

The Tid in the header is associated with the source while Tid2 is associated with the destination.
These fields may contain the same or differing valid values. Tid2 can be set to -1 indicating that
this is to be the same Tid as in the SMB header. This allows use of the move protocol with
SMB_TREE_CONNECT_ANDX.

 Server Response Description
 ================ ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT Count; Number of files copied
 USHORT ByteCount; Count of data bytes; min = 0
 UCHAR ErrorFileFormat; 0x04 (only if error)
 STRING ErrorFileName;

The source path must refer to an existing file or files. Wildcards are permitted. Source files
specified by wildcards are processed until an error is encountered. If an error is encountered, the
expanded name of the file is returned in ErrorFileName. Wildcards are not permitted in
TargetFileName. TargetFileName can refer to either a file or a directory.

The destination can be required to be a file or a directory by the bits in Flags. If neither bit0 nor
bit1 are set, the destination may be either a file or a directory. The Flags field also controls the
copy mode. In a binary copy for the source, the copy stops the first time an EOF (control-Z) is
encountered. In a binary copy for the target, the server must make sure that there is exactly one
EOF in the target file and that it is the last character of the file.

CIFS Technical Reference SNIA Technical Proposal 82
Revision 1.0

If the destination is a file and the source contains wildcards, the destination file will either be
truncated or appended to at the start of the operation depending on bits in OpenFunction (see
section 3.7). Subsequent files will then be appended to the file.

If the negotiated dialect is LM1.2X002 or later, bit5 of Flags is used to specify a tree copy on the
remote server. When this option is selected the destination must not be an existing file and the
source mode must be binary. A request with bit5 set and either bit0 or bit3 set is therefore an
error. When the tree copy mode is selected, the Count field in the server response is undefined.

4.2.15.1. Errors
ERRDOS/ERRfilexists
ERRDOS/ERRshare
ERRDOS/ERRnofids
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRDOS/ERRnofiles
ERRDOS/ERRbadshare
ERRSRV/ERRnoaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid
ERRSRV/ERRaccess

4.2.16. TRANS2_QUERY_PATH_INFORMATION: Get File Attributes Given Path

This request is used to get information about a specific file or subdirectory.

Client Request Value
=============== ======
 WordCount 15
 MaxSetupCount 0
 SetupCount 1
 Setup[0] TRANS2_QUERY_PATH_INFORMATION

The request’s parameter block uses the following format:

 Parameter Block Encoding Description
 ========================= ============
 USHORT InformationLevel; Level of information requested
 ULONG Reserved; Must be zero
 STRING FileName; File or directory name

InformationLevels are specified using these values:

InformationLevel Value

SMB_INFO_STANDARD 1

SMB_INFO_QUERY_EA_SIZE 2

SMB_INFO_QUERY_EAS_FROM_LIST 3

SMB_INFO_QUERY_ALL_EAS 4

SMB_INFO_IS_NAME_VALID 6

SMB_QUERY_FILE_BASIC_INFO 0x101

CIFS Technical Reference SNIA Technical Proposal 83
Revision 1.0

InformationLevel Value

SMB_QUERY_FILE_STANDARD_INFO 0x102

SMB_QUERY_FILE_EA_INFO 0x103

SMB_QUERY_FILE_NAME_INFO 0x104

SMB_QUERY_FILE_ALL_INFO 0x107

SMB_QUERY_FILE_ALT_NAME_INFO 0x108

SMB_QUERY_FILE_STREAM_INFO 0x109

SMB_QUERY_FILE_COMPRESSION_INFO 0x10B

SMB_QUERY_FILE_UNIX_BASIC 0x200

SMB_QUERY_FILE_UNIX_LINK 0x201

The requested information is placed in the Data portion of the transaction response. For the
information levels greater than 0x100, the transaction response has 1 parameter word which
should be ignored by the client.

The following sections describe the InformationLevel dependent encoding of the data part of the
transaction response.

4.2.16.1. SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE
 Data Block Encoding Description
 ==================== ============
 SMB_DATE CreationDate; Date when file was created
 SMB_TIME CreationTime; Time when file was created
 SMB_DATE LastAccessDate; Date of last file access
 SMB_TIME LastAccessTime; Time of last file access
 SMB_DATE LastWriteDate; Date of last write to the file
 SMB_TIME LastWriteTime; Time of last write to the file
 ULONG DataSize; File Size
 ULONG AllocationSize; Size of filesystem allocation unit
 USHORT Attributes; File Attributes
 ULONG EaSize; Size of file's EA information
 (SMB_INFO_QUERY_EA_SIZE)

4.2.16.2. SMB_INFO_QUERY_EAS_FROM_LIST & SMB_INFO_QUERY_ALL_EAS
 Response Field Value
 =============== ======
 MaxDataCount Length of EAlist found (minimum value is 4)

 Parameter Block
 Encoding Description
 ================ ============
 USHORT EaErrorOffset; Offset into EAList of EA error

 Data Block Encoding Description
 ==================== ============
 ULONG ListLength; Length of the remaining data
 UCHAR EaList[]; The extended attributes list

CIFS Technical Reference SNIA Technical Proposal 84
Revision 1.0

4.2.16.3. SMB_INFO_IS_NAME_VALID

This requests checks to see if the name of the file contained in the request's Data field has a valid
path syntax. No parameters or data are returned on this information request. An error is returned
if the syntax of the name is incorrect. Success indicates the server accepts the path syntax, but it
does not ensure the file or directory actually exists.

4.2.16.4. SMB_QUERY_FILE_BASIC_INFO
 Data Block Encoding Description
 ==================== ============
 TIME CreationTime; Time when file was created
 TIME LastAccessTime; Time of last file access
 TIME LastWriteTime; Time of last write to the file
 TIME ChangeTime; Time when file was last changed
 ULONG Attributes; File Attributes
ULONG Pad; Undefined

The valid file attributes are:

Attribute Value Description

FILE_ATTRIBUTE_READONLY 0x00000001 The file is read only. Applications can read
the file but cannot write to it or delete it.

FILE_ATTRIBUTE_HIDDEN 0x00000002 The file is hidden. It is not to be included
in an ordinary directory listing.

FILE_ATTRIBUTE_SYSTEM 0x00000004 The file is part of or is used exclusively by
the operating system.

FILE_ATTRIBUTE_VOLUMEID 0x00000008 The corresponding object represents a
label for a filesystem object (obsolete)

FILE_ATTRIBUTE_DIRECTORY 0x00000010 The file is a directory.

FILE_ATTRIBUTE_ARCHIVE 0x00000020 The file is an archive file. Applications use
this attribute to mark files for backup or
removal.

FILE_ATTRIBUTE_DEVICE 0x00000040 The file is mapped to a device e.g. a
printer or serial device.

FILE_ATTRIBUTE_NORMAL 0x00000080 The file has no other attributes set. This
attribute is valid only if used alone. All
other attributes override this attribute.

FILE_ATTRIBUTE_TEMPORARY 0x00000100 The file is being used for temporary
storage. Applications should write to the
file only if absolutely necessary. Most of
the file’s data remains in memory without
being flushed to the media because the file
will soon be deleted.

FILE_ATTRIBUTE_SPARSE_FILE 0x00000200 The file is a sparse file.

FILE_ATTRIBUTE_REPARSE_POINT 0x00000400 The file has an associated reparse point.

FILE_ATTRIBUTE_COMPRESSED 0x00000800 The file or directory is compressed. For
a file, this means that all of the data in
the file is compressed. For a directory,
this means that compression is the
default for newly created files and
subdirectories.

CIFS Technical Reference SNIA Technical Proposal 85
Revision 1.0

Attribute Value Description

FILE_ATTRIBUTE_OFFLINE 0x00001000 The data of the file is not immediately
available. This attribute indicates that
the file data has been physically moved
to offline storage. This attribute is used
by Remote Storage, the hierarchical
storage management software in
Windows 2000. Applications should not
arbitrarily change this attribute.

FILE_ATTRIBUTE_NOT CONTENT INDEXED 0x00002000 The file will not be indexed by the
content indexing service.

FILE_ATTRIBUTE_ENCRYPTED 0x00004000 The file or directory is encrypted. For a
file, this means that all data streams in
the file are encrypted. For a directory,
this means that encryption is the
default for newly created files and
subdirectories.

4.2.16.5. SMB_QUERY_FILE_STANDARD_INFO
 Data Block Encoding Description
 ==================== ============
 LARGE_INTEGER AllocationSize; Allocated size of the file in number
 of bytes
 LARGE_INTEGER EndOfFile; Offset to the first free byte in the
 file
 ULONG NumberOfLinks; Number of hard links to the file
 BOOLEAN DeletePending; Indicates whether the file is marked
 for deletion
 BOOLEAN Directory; Indicates whether the file is a
 Directory

4.2.16.6. SMB_QUERY_FILE_EA_INFO
 Data Block Encoding Description
 ==================== ============
 ULONG EASize; Size of the file's extended
 attributes in number of bytes

4.2.16.7. SMB_QUERY_FILE_NAME_INFO
 Data Block Encoding Description
 ==================== ============
 ULONG FileNameLength; Length of the file name in number of
 bytes
 STRING FileName; Name of the file

NOTE: Do not include the path to the file.

4.2.16.8. SMB_QUERY_FILE_ALL_INFO
 Data Block Encoding Description
 ==================== ============
 TIME CreationTime; Time when file was created
 TIME LastAccessTime; Time of last file access
 TIME LastWriteTime; Time of last write to the file
 TIME ChangeTime; Time when file was last changed

CIFS Technical Reference SNIA Technical Proposal 86
Revision 1.0

 USHORT Attributes; File Attributes
 LARGE_INTEGER AllocationSize; Allocated size of the file in number
 of bytes
 LARGE_INTEGER EndOfFile; Offset to the first free byte in the
 file
 ULONG NumberOfLinks; Number of hard links to the file
 BOOLEAN DeletePending; Indicates whether the file is marked
 for deletion
 BOOLEAN Directory; Indicates whether the file is a
 directory
 LARGE_INTEGER IndexNumber; A file system unique identifier
 ULONG EASize; Size of the file's extended
 attributes in number of bytes
 ULONG AccessFlags; Access that a caller has to the
 file; Possible values and meanings
 are specified below

 LARGE_INTEGER IndexNumber1; A file system unique identifier
 LARGE_INTEGER Current byte offset within the file
 CurrentByteOffset;
 ULONG Mode; Current Open mode of the file handle
 to the file; possible values and
 meanings are detailed below
 ULONG AlignmentRequirement; Buffer Alignment required by device;
 possible values detailed below
 ULONG FileNameLength; Length of the file name in number of
 bytes
 STRING FileName; Name of the file

The AccessFlags specifies the access permissions a caller has to the file. It can have any
suitable combination of the following values:

AccessFlag Name Value Meaning

FILE_READ_DATA 0x00000001 Data can be read from the file

FILE_WRITE_DATA 0x00000002 Data can be written to the file

FILE_APPEND_DATA 0x00000004 Data can be appended to the file

FILE_READ_EA 0x00000008 Extended attributes associated with the file can be read

FILE_WRITE_EA 0x00000010 Extended attributes associated with the file can be written

FILE_EXECUTE 0x00000020 Data can be read into memory from the file using system
paging I/O

FILE_READ_ATTRIBUTES 0x00000080 Attributes associated with the file can be read

FILE_WRITE_ATTRIBUTE
S

0x00000100 Attributes associated with the file can be written

DELETE 0x00010000 The file can be deleted

READ_CONTROL 0x00020000 The access control list and ownership associated with the file
can be read

WRITE_DAC 0x00040000 The access control list and ownership associated with the file
can be written

WRITE_OWNER 0x00080000 Ownership information associated with the file can be written

CIFS Technical Reference SNIA Technical Proposal 87
Revision 1.0

AccessFlag Name Value Meaning

SYNCHRONIZE 0x00100000 The file handle can waited on to synchronize with the
completion of an input/output request

The Mode field specifies the mode in which the file is currently opened. The possible values may
be a suitable and logical combination of the following:

Mode Name Value Meaning

FILE_WRITE_THROUGH 0x00000002 File is opened in a mode where data is written
to the file before the driver completes a write
request

FILE_SEQUENTIAL_ONLY 0x00000004 All access to the file is sequential

FILE_SYNCHRONOUS_IO_ALERT 0x00000010 All operations on the file are performed
synchronously

FILE_SYNCHRONOUS_IO_NONALERT 0x00000020 All operations on the file are to be performed
synchronously. Waits in the system to
synchronize I/O queuing and completion are
not subject to alerts.

The AlignmentRequirement field specifies buffer alignment required by the device and can have
any one of the following values:

AlignmentRequirement Name Value Meaning

FILE_BYTE_ALIGNMENT 0x00000000 The buffer needs to be aligned on a byte boundary

FILE_WORD_ALIGNMENT 0x00000001 The buffer needs to be aligned on a word boundary

FILE_LONG_ALIGNMENT 0x00000003 The buffer needs to be aligned on a 4 byte boundary

FILE_QUAD_ALIGNMENT 0x00000007 The buffer needs to be aligned on an 8 byte boundary

FILE_OCTA_ALIGNMENT 0x0000000F The buffer needs to be aligned on a 16 byte boundary

FILE_32_BYTE_ALIGNMENT 0x0000001F The buffer needs to be aligned on a 32 byte boundary

FILE_64_BYTE_ALIGNMENT 0x0000003F The buffer needs to be aligned on a 64 byte boundary

FILE_128_BYTE_ALIGNMENT 0x0000007F The buffer needs to be aligned on a 128 byte boundary

FILE_256_BYTE_ALIGNMENT 0x000000FF The buffer needs to be aligned on a 256 byte boundary

FILE_512_BYTE_ALIGNMENT 0x000001FF The buffer needs to be aligned on a 512 byte boundary

Extended attributes are used primarily by OS/2 Network Clients since OS/2 1.2a, but are an
optional feature (I.e., filesystems and network servers are not required to support it). Extended
attributes provided alternate data streams that are most commonly used by OS/2 client programs
for the following purposes:

1) Storing the compiled form of a batch file (the first time a REXX program is run it is
compiled on the fly and stored in extended attributes, subsequent runs use the compiled
form)

2) Storing desktop attributes for folders and desktop objects for the OS/2Workplace Shell.

Supporting extended attributes is not mandatory in order to support OS/2 clients or to support the
vast majority of OS/2 programs. Note that Windows NT Workstations can generate extended
attribute request when requested by older programs (such as OS/2) and Windows NT servers do
support requests to get or set extended attributes. Windows NT programs with needs to store
"extended" attribute information, now largely use the capability to associate data streams with files
that was introduced in NT 4. In both cases, the general concept is similar to the data fork concept

CIFS Technical Reference SNIA Technical Proposal 88
Revision 1.0

introduced by the Macintosh filesystem. Extended Attributes have been used for Macintosh
compatibility in the past (to emulate data forks).

4.2.16.9. SMB_QUERY_FILE_ALT_NAME_INFO

Retrieves the 8.3 form of the file name, given the long name specified in the data block encoding.

 Data Block Encoding Description
 ==================== ============
 ULONG FileNameLength; Length of the file name in number
 of bytes
 STRING FileName; Name of the file

4.2.16.10. SMB_QUERY_FILE_STREAM_INFO
 Data Block Encoding Description
 ==================== ============
 ULONG NextEntryOffset; Offset to the next entry (in bytes)
 ULONG StreamNameLength; Length of the stream name in number
 of bytes
 LARGE_INTEGER StreamSize; Size of the stream in number of
 bytes
 LARGE_INTEGER Allocated size of the stream in
 StreamAllocationSize; number of bytes
 STRING FileName; Name of the stream

NOTE: When more than one data block is returned, the NextEntryOffset is the
offset to the next entry and is 0 for the last entry. STATUS_INVALID_PARAMETER is
returned if file streams are not supported.

4.2.16.11. SMB_QUERY_FILE_COMPRESSION_INFO
 Data Block Encoding Description
 ==================== ============
 LARGE_INTEGER Size of the compressed file in
 CompressedFileSize; number of bytes
 USHORT CompressionFormat; A constant signifying the
 compression algorithm used. Possible
 values are:
 0 - There is no compression
 2- Compression Format is LZNT
 UCHAR CompressionUnitShift;
 UCHAR ChunkShift; Stored in log2 format (1 << ChunkShift =
 ChunkSizeInBytes)
 UCHAR ClusterShift; Indicates how much space must be
 saved to successfully compress a
 compression unit
 UCHAR Reserved[3];

CIFS Technical Reference SNIA Technical Proposal 89
Revision 1.0

4.2.16.12. SMB_QUERY_FILE_UNIX_BASIC

Used to retrieve UNIX specific file information

Data Block Encoding Description
 ==================== ============
 LARGE_INTEGER EndOfFile; File size
 LARGE_INTEGER NumOfBytes Number of file system bytes used to store file
 TIME LastStatusChange; Last time the status of the file was changed.
 This is in DCE time.
 TIME LastAccessTime; Time of last file access. This is DCE time.
 TIME LastModificationTime; Last modification time. This is DCE time.
 LARGE_INTEGER Uid; Numeric user id for the owner
 LARGE_INTEGER Gid; Numeric group id of owner
 ULONG Type; Enumeration specifying the file type.
 0 –- File
 1 –- Directory
 2 –- Symbolic Link
 3 –- Character device
 4 –- Block device
 5 –- FIFO
 6 -- Socket
 LARGE_INTEGER DevMajor; Major device number if file type is device.
 LARGE_INTEGER DevMinor; Minor device number if file type is device.
 LARGE_INTEGER UniqueId; This is a server-assigned unique id for the
 file. The client will typically map this onto
 an inode number. The scope of uniqueness is
 the share.
 LARGE_INTEGER Permissions; Standard UNIX file permissions
 LARGE_INTEGER Nlinks; The number of directory entries that map to
 this entry or number of hard links.

4.2.16.13. SMB_QUERY_FILE_UNIX_LINK

Used to retrieve destination file of a symbolic link

Data Block Encoding Description
 ==================== ============
 STRING LinkDest; Destination for symbolic link

4.2.16.14. SMB_MAC_DT_GET_APPL

The Macintosh needs to be able to get an application name and its creator from a database. The
Client sends a Trans2_Query_Path_Information call in which the name field is just ignored. The
Client will send an info level that represents getting an application name with a structure that
contains the File Creator and index. Where index has the following meaning.

• Index = 0; Get the application path from the database with the most current date.

• Index > 0; Use the index to find the application path from the database. e.g. index of 5
means get the fifth entries of this application name in the database.

• If no more entry return an error. The Server returns with a structure that contains the full
path to the application and it’s creator’s data.

• Supporting the Desktop Database calls requires having a way to store information in a
database. There are two kinds of information store in the database. Applications path that

CIFS Technical Reference SNIA Technical Proposal 90
Revision 1.0

is associated with an application signature. Icons are stored based on size, icon type, file
creator, and file type.

Data Block Encoding Description

ULONG FileCreator; The application’s signature. Always in big endian.

WORD Index;

Response Field Description

LARGE_INTEGER CreationTime; The application's creation time NT date type

LONG FullPathLength; Length field for Unicode

STRING FullPath; If Unicode supported then Unicode string otherwise a ASCII string

4.2.16.15. SMB_MAC_DT_GET_ICON

The Macintosh needs to be able to get an icon from a database. The Client sends a
Trans2_Query_Path_Information call in which the path name is ignored. The Client will send an
info level that represents getting an icon with a structure that contains the Requested size of the
icon, the Icon type, File Creator, and File Type. The Server returns with a structure that contains
the actual size of the icon (must be less than requested length) and the icon bit map.

Data Block Encoding Description

ULONG ReqCount; Size of the icon being requested

ULONG FileCreator; The application’s signature. Always in big endian.

ULONG FileType; The application's type. Always in Big Endian

WORD IconType; The icon type. Always in Big Endian

Response Field Description

UCHAR IconData[]; Icon data. Always in Big Endian

4.2.16.16. SMB_MAC_DT_GET_ICON_INFO

The Macintosh needs to be able to get an icon from a database. The Client sends a
Trans2_Query_Path_Information call in which the path name is ignored. The Client will send an
info level that represents getting an icon with a structure that contains the index and File Creator.
The index allows the client to make repeated calls to the server gathering all icon stored by this
file creator. The Server returns with a structure that contains the actual size of the icon (must be
less than requested length) and the icon bit map, File Type, and Icon Type.

Data Block Encoding Description

ULONG FileCreator; The application’s signature. Always in big endian.

ULONG Index;

CIFS Technical Reference SNIA Technical Proposal 91
Revision 1.0

Response Field Description

ULONG ActCount; Size of the icon being requested

ULONG FileType; The application's type. Always in Big Endian

WORD IconType; The icon type. Always in Big Endian

4.2.16.17. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnoaccess
ERRnomem

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.2.17. TRANS2_QUERY_FILE_INFORMATION: Get File Attributes Given FID

This request is used to get information about a specific file or subdirectory given a handle to it.

Client Request Value
=============== ======
 WordCount 15
 MaxSetupCount 0
 SetupCount 1
 Setup[0] TRANS2_QUERY_FILE_INFORMATION

Parameter Block Encoding Description
========================= ============
 USHORT Fid; Handle of file for request
 USHORT InformationLevel; Level of information requested

The available information levels, as well as the format of the response are identical to
TRANS2_QUERY_PATH_INFORMATION.

4.2.18. TRANS2_SET_PATH_INFORMATION: Set File Attributes given Path

This request is used to set information about a specific file or subdirectory.

 Client Request Value
 =============== ======
 WordCount 15
 MaxSetupCount 0
 SetupCount 1
 Setup[0] TRANS2_SET_PATH_INFORMATION

CIFS Technical Reference SNIA Technical Proposal 92
Revision 1.0

 Parameter Block Encoding Description
 ========================= ============
 USHORT InformationLevel; Level of information to set
 ULONG Reserved; Must be zero
 STRING FileName; File or directory name

The following Information Levels may be set:

InformationLevel Name Value Meaning

SMB_INFO_STANDARD 1

SMB_INFO_QUERY_EA_SIZE 2

SMB_INFO_QUERY_ALL_EAS 4

SMB_SET_FILE_UNIX_BASIC 0x200

SMB_SET_FILE_UNIX_LINK 0x201

SMB_SET_FILE_UNIX_HLINK 0x203

The response formats are:

4.2.18.1. SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE
 Parameter Block Encoding Description
 ========================= ============
 USHORT Reserved 0

 Data Block Encoding Description
 ==================== ============
 SMB_DATE CreationDate; Date when file was created
 SMB_TIME CreationTime; Time when file was created
 SMB_DATE LastAccessDate; Date of last file access
 SMB_TIME LastAccessTime; Time of last file access
 SMB_DATE LastWriteDate; Date of last write to the file
 SMB_TIME LastWriteTime; Time of last write to the file
 ULONG DataSize; File Size
 ULONG AllocationSize; Size of filesystem allocation
 unit
 USHORT Attributes; File Attributes
 ULONG EaSize; Size of file's EA information
 (SMB_INFO_QUERY_EA_SIZE)

4.2.18.2. SMB_INFO_QUERY_ALL_EAS
 Response Field Value
 =============== ======
 MaxDataCount Length of FEAlist found (minimum value is 4)

 Parameter Block
 Encoding Description
 ================ ============
 USHORT EaErrorOffset; Offset into EAList of EA error

CIFS Technical Reference SNIA Technical Proposal 93
Revision 1.0

 Data Block Encoding Description
 ==================== ============
 ULONG ListLength; Length of the remaining data
 UCHAR EaList[]; The extended attributes list

4.2.18.3. SMB_SET_FILE_UNIX_BASIC

Used to set UNIX specific file attributes and create files

Data Block Encoding Description
 ==================== ============
 LARGE_INTEGER EndOfFile; File size
 LARGE_INTEGER NumOfBytes; Number of file system bytes used to
 store file
 TIME LastStatusChange; Last time the status of the file was
 changed. This is in DCE time.
 TIME LastAccessTime; Time of last file access. This is DCE
 time.
 TIME LastModificationTime; Last modification time. This is DCE
 time.
 LARGE_INTEGER Uid; Numeric user id for the owner
 LARGE_INTEGER Gid; Numeric group id of owner
 ULONG Type; Enumeration specifying the file type.
 0 –- File
 1 –- Directory
 2 –- Symbolic Link
 3 –- Character device
 4 –- Block device
 5 –- FIFO
 6 -- Socket
 LARGE_INTEGER DevMajor; Major device number if file type is
 device
 LARGE_INTEGER DevMinor; Minor device number if file type is
 device
 LARGE_INTEGER UniqueId; This is a server-assigned unique id
 for the file. The client will
 typically map this onto an inode
 number. The scop of uniqueness is
 the share
 LARGE_INTEGER Permissions; Standard UNIX file permissions
 LARGE_INTEGER Nlinks; The number of directory entries that
 map to this entry or number of hard
 links

4.2.18.4. SMB_SET_FILE_UNIX_LINK

Used to create symbolic link file.

Data Block Encoding Description
 ==================== ============
 STRING LinkDest; Destination for symbolic link

CIFS Technical Reference SNIA Technical Proposal 94
Revision 1.0

4.2.18.5. SMB_SET_FILE_UNIX_HLINK

Used to create hard link file.

Data Block Encoding Description
 ==================== ============
 STRING LinkDest; Destination for hard link

4.2.18.6. SMB_MAC_SET_FINDER_INFO

Parameter Block Encoding Description

USHORT Reserved 0

Data Block Encoding Description

WORD Type; Type of action to take, described below

UCHAR FLAttrib; Macintosh SetFLock if a 1 then the file is Macintosh locked

UCHAR Pad;

LARGE_INTEGER CreationTime; Time of file creation

LARGE_INTEGER LastWriteTime; Time of file last modify

LARGE_INTEGER ChangeTime; Time of file last change

ULONG ExtFileAttributes; Extended file attributes

UCHAR FndrInfo1[16]; Information set by the finder.

Described above in MacFindBothInfo structure

UCHAR FndrInfo2[16]; Information set by the finder.

Described above in MacFindBothInfo structure

Listed below are the types of actions that the client may request with this Information Level:

SetCreateDate 0x0001 If this is set then set the create date of the file/folder

SetModDate 0x0002 If this is set then set the modify date of the file/folder

SetFLAttrib 0x0004 If this is set then set the Macintosh lock bit of the file/folder

FndrInfo1 0x0008 If this is set then set the first 16 bytes of finder info

FndrInfo2 0x0010 If this is set then set the second 16 bytes of finder info

SetHidden 0x0020 The Client is either setting or unsetting the hidden bit

4.2.18.7. SMB_MAC_DT_ADD_APPL

The Macintosh needs to be able to store an application name and its creator in a database. The
Client sends a Trans2_Set_Path_Information call with the full path of the application in the path
field. The Client sends an info level that represents adding an application name and creator to the
database. The Client will pass the File Creator in the data message. The Server should just
respond with no error if it was successful or an error if the operation failed

.

CIFS Technical Reference SNIA Technical Proposal 95
Revision 1.0

Parameter Block Encoding Description

USHORT Reserved 0

Data Block Encoding Description

ULONG FileCreator; The application’s signature. Always in big endian. The path name
passed in this calls needs to be stored with this signature.

4.2.18.8. SMB_MAC_DT_REMOVE_APPL

The Macintosh needs to be able to remove an application name and its creator from a database.
The Client sends a Trans2_Set_Path_Information call with the full path of the application in the
path field. The Client will send an info level that represents removing an application name and
creator from the database. The Client will pass the File Creator in the data message. The Server
should just respond with no error if it was successful or an error it the operation failed.

Parameter Block Encoding Description

USHORT Reserved 0

Data Block Encoding Description

ULONG FileCreator; The application’s signature. Always in big endian. The path name
passed in this calls needs to be removed with this signature.

4.2.18.9. SMB_MAC_DT_ADD_ICON

The Macintosh needs to be able to add an icon to a database. The Client sends a
Trans2_Set_Path_Information call in which the path name is ignored. The Client will send an info
level that represents setting an icon with a structure that contains the icon data, icon size, icon
type, the file type, and file creator. The Server returns only if the call was successful or not.

Parameter Block Encoding Description

USHORT Reserved 0

Data Block Encoding Description

ULONG IconSize; Size of the icon in bytes.

ULONG FileCreator; The application’s signature. Always in big endian.

ULONG FileType; The application’s type. Always in big endian.

WORD IconType; The icon type. Always in big endian.

UCHAR IconData[]; Icon data,

4.2.18.10. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnoaccess
ERRnomem
ERRbadaccess
ERRbadshare

CIFS Technical Reference SNIA Technical Proposal 96
Revision 1.0

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.2.19. TRANS2_SET_FILE_INFORMATION: Set File Attributes Given FID

This request is used to set information about a specific file or subdirectory given a handle to the
file or subdirectory.

Client Request Value
=============== ======
 WordCount 15
 MaxSetupCount 0
 SetupCount 1
 Setup[0] TRANS2_SET_FILE_INFORMATION

Parameter Block Encoding Description
========================= ============
 USHORT Fid; Handle of file for request
 USHORT InformationLevel; Level of information requested
 USHORT Reserved; Ignored by the server

The following InformationLevels may be set:

InformationLevel Name Value Meaning

SMB_INFO_STANDARD 1

SMB_INFO_QUERY_EA_SIZE 2

SMB_SET_FILE_BASIC_INFO 0x101

SMB_SET_FILE_DISPOSITION_INFO 0x102

SMB_SET_FILE_ALLOCATION_INFO 0x103

SMB_SET_FILE_END_OF_FILE_INFO 0x104

SMB_SET_FILE_UNIX_BASIC 0x200

SMB_SET_FILE_UNIX_LINK 0x201

SMB_SET_FILE_UNIX_HLINK 0x203

The two levels below 0x101 and the three levels 0x200, 0x201, and 0x202 are as described in the
NT_SET_PATH_INFORMATION transaction. The requested information is placed in the Data
portion of the transaction response. For the information levels greater than 0x100 and below
0x200, the transaction response has 1 parameter word, which should be ignored by the client.

4.2.19.1. SMB_FILE_BASIC_INFO
Data Block Encoding Description
 ==================== ============
 TIME CreationTime; Time when file was created
 TIME LastAccessTime; Time of last file access
 TIME LastWriteTime; Time of last write to the file
 TIME ChangeTime; Time when file was last changed
 ULONG Attributes; File Attributes

CIFS Technical Reference SNIA Technical Proposal 97
Revision 1.0

The valid file attributes are listed in section 4.2.15.4 SMB_QUERY_FILE_BASIC_INFO:

4.2.19.2. SMB_FILE_DISPOSITION_INFO
 Response Field Value
 =============== ======
 BOOLEAN A boolean which is TRUE if the file is marked
 FileIsDeleted; for deletion

4.2.19.3. SMB_FILE_ALLOCATION_INFO
 Response Field Value
 =============== ======
 LARGE_INTEGER File Allocation size in number of bytes

4.2.19.4. SMB_FILE_END_OF_FILE_INFO
 Response Field Value
 =============== ======
 LARGE_INTEGER The total number of bytes that need to be
 traversed from the beginning of the file in
 order to locate the end of the file

4.2.19.5. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnoaccess
ERRnomem
ERRbadaccess
ERRbadshare

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.3. Directory Requests

4.3.1. TRANS2_CREATE_DIRECTORY: Create Directory (with optional EAs)

This requests the server to create a directory relative to Tid in the SMB header, optionally
assigning extended attributes to it.

Client Request Value
=============== ======
 WordCount 15
 MaxSetupCount 0
 SetupCount 1
 Setup[0] TRANS2_CREATE_DIRECTORY

CIFS Technical Reference SNIA Technical Proposal 98
Revision 1.0

Parameter Block Encoding Description
 ========================= ============

 ULONG Reserved; Reserved--must be zero
 STRING Name[]; Directory name to create
 UCHAR Data[]; Optional FEAList for the new directory

Response Parameter Block Description

 ========================= ============
 USHORT EaErrorOffset Offset into FEAList of first error which
 occurred while setting Eas

4.3.1.1. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnoaccess
ERRnomem
ERRbadaccess
ERRfileexists
ERRquota

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.3.2. DELETE_DIRECTORY: Delete Directory

The delete directory message is sent to delete an empty directory. The appropriate Tid and
additional pathname are passed. The directory must be empty for it to be deleted.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes; min = 2
 UCHAR BufferFormat; 0x04
 STRING DirectoryName[]; Directory name

The directory to be deleted cannot be the root of the share specified by Tid.

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.3.2.1. Errors
ERRDOS codes

ERRbadfile
ERRbadpath
ERRnoaccess

CIFS Technical Reference SNIA Technical Proposal 99
Revision 1.0

ERRnomem
ERRbadaccess
ERRfileexists

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.3.3. CHECK_DIRECTORY: Check Directory

This SMB is used to verify that a path exists and is a directory. No error is returned if the given
path exists and the client has read access to it. When the path turns out to specify a file (non-
directory) then STATUS_NOT_A_DIRECTORY is returned. Client machines which maintain a
concept of a "working directory" will find this useful to verify the validity of a "change working
directory" command. Note that the servers do NOT have a concept of working directory for a
particular client. The client must always supply full pathnames relative to the Tid in the SMB
header.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes; min = 2
 UCHAR BufferFormat; 0x04
 STRING DirectoryPath[]; Directory path

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

DOS clients, in particular, depend on the SMB_ERR_BAD_PATH return code if the directory is
not found.

4.3.3.1. Errors
ERRDOS/ERRbadfile
ERRDOS/ERRbadpath
ERRDOS/ERRnoaccess
ERRHRD/ERRdata
ERRSRV/ERRinvid
ERRSRV/ERRbaduid
ERRSRV/ERRaccess

4.3.4. TRANS2_FIND_FIRST2: Search Directory using Wildcards
 Client Request Value
 =============== ======
 WordCount 15
 TotalDataCount Total size of extended attribute list
 SetupCount 1
 Setup[0] TRANS2_FIND_FIRST2

CIFS Technical Reference SNIA Technical Proposal 100
Revision 1.0

Parameter Block Encoding Description
========================= ============
 USHORT SearchAttributes;
 USHORT SearchCount; Maximum number of entries to return
 USHORT Flags; Additional information:
 Bit 0 - close search after this request
 Bit 1 - close search if end of search
 reached
 Bit 2 - return resume keys for each
 entry found
 Bit 3 - continue search from previous
 ending place
 Bit 4 - find with backup intent
 USHORT InformationLevel; See below
 ULONG SearchStorageType;
 STRING FileName; Pattern for the search
 UCHAR Data[TotalDataCount]; FEAList if InformationLevel is
 QUERY_EAS_FROM_LIST

Response Parameter Block Description
========================= ============
 USHORT Sid; Search handle
 USHORT SearchCount; Number of entries returned
 USHORT EndOfSearch; Was last entry returned?
 USHORT EaErrorOffset; Offset into EA list if EA error
 USHORT LastNameOffset; Offset into Data[] holding the file name of
 the last entry, if server needs it to resume
 search; else 0
 UCHAR Data[TotalDataCount]; Level dependent info about the matches
 found in the search

This request allows the client to search for the file(s) which match the file specification. The
search can be continued if necessary with TRANS2_FIND_NEXT2. There are numerous levels of
information which may be obtained for the returned files, the desired level is specified in the
InformationLevel field of the request. The following values can be specified for InformationLevel:

InformationLevel Name Value Meaning

SMB_INFO_STANDARD 1

SMB_INFO_QUERY_EA_SIZE 2

SMB_INFO_QUERY_EAS_FROM_LIST 3

SMB_FIND_FILE_DIRECTORY_INFO 0x101

SMB_FIND_FILE_FULL_DIRECTORY_INFO 0x102

SMB_FIND_FILE_NAMES_INFO 0x103

SMB_FIND_FILE_BOTH_DIRECTORY_INFO 0x104

SMB_FIND_FILE_UNIX 0x202

The following sections detail the data returned for each InformationLevel. The requested
information is placed in the Data portion of the transaction response. Note: a client which does
not support long names can only request SMB_INFO_STANDARD.

CIFS Technical Reference SNIA Technical Proposal 101
Revision 1.0

The search Id is the Search Handle returned back from the server on the FindFirst response
which can be used on the FindNext request so that the full path can be avoided. Search Handle is
session wide. The server doesn’t care what process uses it on the client.

A four-byte resume key precedes each data item (described below). The return of resume keys is
dependent upon setting the flag SMB_FIND_RETURN_RESUME_KEYS in the FLAGS of the
REQ_FIND_NEXT2 packet. The resume key tells the server where to resume the operation on
the FindNext request in order to avoid duplicate entries. The contents of the resume key are
opaque to the client.

If the search doesn’t find any names, the server should return either STATUS_NO_SUCH_FILE or
the corresponding error code ERROR_FILE_NOT_FOUND.

4.3.4.1. SMB_INFO_STANDARD
 Response Field Description
 =============== ============
 SMB_DATE CreationDate; Date when file was created
 SMB_TIME CreationTime; Time when file was created
 SMB_DATE LastAccessDate; Date of last file access
 SMB_TIME LastAccessTime; Time of last file access
 SMB_DATE LastWriteDate; Date of last write to the file
 SMB_TIME LastWriteTime; Time of last write to the file
 ULONG DataSize; File Size
 ULONG AllocationSize; Size of filesystem allocation unit
 USHORT Attributes; File Attributes
 UCHAR FileNameLength; Length of filename in bytes
 STRING FileName; Name of found file

4.3.4.2. SMB_INFO_QUERY_EA_SIZE
 Response Field Description
 =============== ============
 SMB_DATE CreationDate; Date when file was created
 SMB_TIME CreationTime; Time when file was created
 SMB_DATE LastAccessDate; Date of last file access
 SMB_TIME LastAccessTime; Time of last file access
 SMB_DATE LastWriteDate; Date of last write to the file
 SMB_TIME LastWriteTime; Time of last write to the file
 ULONG DataSize; File Size
 ULONG AllocationSize; Size of filesystem allocation unit
 USHORT Attributes; File Attributes
 ULONG EaSize; Size of file's EA information
 UCHAR FileNameLength; Length of filename in bytes
 STRING FileName; Name of found file

4.3.4.3. SMB_INFO_QUERY_EAS_FROM_LIST

This request returns the same information as SMB_INFO_QUERY_EA_SIZE, but only for files
which have an EA list which match the EA information in the Data part of the request.

4.3.4.4. SMB_FIND_FILE_DIRECTORY_INFO
 Response Field Description
 =============== ==================================
 ULONG NextEntryOffset; Offset from this structure to

CIFS Technical Reference SNIA Technical Proposal 102
Revision 1.0

 the beginning of the next one
 ULONG FileIndex;
 TIME CreationTime; File creation time
 TIME LastAccessTime; Last access time for the file
 TIME LastWriteTime; Last write time for the file
 TIME ChangeTime; Last attribute change time for the file
 LARGE_INTEGER EndOfFile; File size
 LARGE_INTEGER AllocationSize; Size of filesystem allocation
 information
 ULONG ExtFileAttributes; Extended file attributes (see
 Section 3.12)
 ULONG FileNameLength; Length of filename in bytes
 STRING FileName; Name of the file

4.3.4.5. SMB_FIND_FILE_FULL_DIRECTORY_INFO
 Response Field Description
 =============== ============
 ULONG NextEntryOffset; Offset from this structure to
 the beginning of the next one
 ULONG FileIndex;
 TIME CreationTime; File creation time
 TIME LastAccessTime; Last access time for the file
 TIME LastWriteTime; Last write time for the file
 TIME ChangeTime; Last attribute change time for the file
 LARGE_INTEGER EndOfFile; File size
 LARGE_INTEGER AllocationSize; Size of filesystem allocation
 information
 ULONG ExtFileAttributes; Extended file attributes (see
 Section 3.12)
 ULONG FileNameLength; Length of filename in bytes
 ULONG EaSize; Size of file's extended attributes
 STRING FileName; Name of the file

4.3.4.6. SMB_FIND_FILE_BOTH_DIRECTORY_INFO
 Response Field Description
 =============== ============
 ULONG NextEntryOffset; Offset from this structure to
 the beginning of the next one
 ULONG FileIndex;
 TIME CreationTime; File creation time
 TIME LastAccessTime; Last access time for the file
 TIME LastWriteTime; Last write time for the file
 TIME ChangeTime; Last attribute change time for the file
 LARGE_INTEGER EndOfFile; File size
 LARGE_INTEGER AllocationSize; Size of filesystem allocation
 information
 ULONG ExtFileAttributes; Extended file attributes (see
 Section 3.12)
 ULONG FileNameLength; Length of FileName in bytes
 ULONG EaSize; Size of file's extended attributes
 UCHAR ShortNameLength; Length of file's short name in
 bytes
 UCHAR Reserved;

CIFS Technical Reference SNIA Technical Proposal 103
Revision 1.0

 WCHAR ShortName[12]; File's 8.3 conformant name in Unicode

 STRING FileName; File’s full length name

4.3.4.7. SMB_FIND_FILE_NAMES_INFO
 Response Field Description
 =============== ============
 ULONG NextEntryOffset; Offset from this structure to
 the beginning of the next one
 ULONG FileIndex;
 ULONG FileNameLength; Length of FileName in bytes
 STRING FileName; File’s full length name

4.3.4.8. SMB_FIND_FILE_UNIX

Used to return UNIX attribute information in a file search response

 Data Block Encoding Description
 ==================== ============
 ULONG NextEntryOffset; Offset from this structure to the beginning
 of the next one
 ULONG ResumeKey; Used for continuing search
 LARGE_INTEGER EndOfFile; File size
 LARGE_INTEGER NumOfBytes Number of file system bytes used to store
 file
 TIME LastStatusChange; Last time the status of the file was changed.
 This is in DCE time.
 TIME LastAccessTime; Time of last file access. This is DCE time.
 TIME LastModificationTime; Last modification time. This is DCE time.
 LARGE_INTEGER Uid; Numeric user id for the owner
 LARGE_INTEGER Gid; Numeric group id of owner
 ULONG Type; Enumeration specifying the file type.
 0 –- File
 1 –- Directory
 2 –- Symbolic Link
 3 –- Character device
 4 –- Block device
 5 –- FIFO
 6 -- Socket
 LARGE_INTEGER DevMajor; Major device number if file type is device
 LARGE_INTEGER DevMinor; Minor device number if file type is device
 LARGE_INTEGER UniqueId; This is a server-assigned unique id for the
 file. The client will typically map this onto
 an inode number. The scop of uniqueness is
 the share
 LARGE_INTEGER Permissions; Standard UNIX file permissions
 LARGE_INTEGER Nlinks; The number of directory entries that map to

 this entry or number of hard links
 STRING Name; Case-preserved alternative filename

CIFS Technical Reference SNIA Technical Proposal 104
Revision 1.0

4.3.4.9. SMB_ FINDBOTH_ MAC_HFS_INFO
Response Field Description
 =============== ============

ULONG NextEntryOffset; Offset from this structure to beginning of next one

ULONG FileIndex;

LARGE_INTEGER CreationTime; file creation time

LARGE_INTEGER LastWriteTime; last write time

LARGE_INTEGER ChangeTime; last attribute change time

LARGE_INTEGER EndOfFile; Data stream file size

LARGE_INTEGER EndOfFile_R; Resource stream file size

LARGE_INTEGER AllocationSize; Data stream size of file system allocation information

LARGE_INTEGER AllocationSize_R; Resource stream size of file system allocation information

ULONG ExtFileAttributes; Extended file attributes

UCHAR FLAttrib; Macintosh SetFLock if a 1 then the file is locked.

UCHAR Pad;

UWORD DrNmFls; If a directory the number of items in that directory otherwise
ignored.

ULONG AccessCntrl; Ignored unless SUPPORT_MAC_ACCESS_CNTRL is set.

UCHAR FndrInfo[32]; FndrInfo[32]; Information used by the finder that is always
in Big Endian.

 Bytes 0-3 File Type

 If a file default to 'TEXT' otherwise default to zero

 Bytes 4-7 File Creator

 If a file default to 'dosa' otherwise default to zero

 Bytes 8-9 a UWORD flags field

 If hidden item set this UWORD to 0x4000 else defaults
to zero

 All other bytes should default to zero and are only
changeable by the Macintosh

ULONG FileNameLength; Length of Filename in bytes

UCHAR ShortNameLength; Length of file's short name in bytes

UCHAR Reserved

WCHAR ShortName[12]; File's 8.3 conformant name in Unicode

STRING Filename; Files full length name

LONG UniqueFileID; Unique file or directory identifier - only supported if the
SUPPORT_MAC_UNIQUE_IDS bit is set in the
MacSupportFlags.

CIFS Technical Reference SNIA Technical Proposal 105
Revision 1.0

4.3.4.10. Errors
ERRDOS codes

ERRbadpath
ERRnoaccess
ERRnomem

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.3.5. TRANS2_FIND_NEXT2: Resume Directory Search Using Wildcards

This request resumes a search which was begun with a previous TRANS2_FIND_FIRST2
request.

Client Request Value
=============== ======
WordCount 15
SetupCount 1
Setup[0] TRANS2_FIND_NEXT2

Parameter Block Encoding Description
========================= ============
USHORT Sid; Search handle
USHORT SearchCount; Maximum number of entries to return
USHORT InformationLevel; Levels described in
 TRANS2_FIND_FIRST2 request
ULONG ResumeKey; Value returned by previous find2 call
USHORT Flags; Additional information: bit set-

 0 - close search after this request
 1 - close search if end of search reached
 2 - return resume keys for each entry found
 3 - resume/continue from previous ending place
 4 - find with backup intent

STRING FileName; Resume file name

Sid is the value returned by a previous successful TRANS2_FIND_FIRST2 call. If Bit3 of Flags is
set, then FileName may be the NULL string, since the search is continued from the previous
TRANS2_FIND request. Otherwise, FileName must not be more than 256 characters long.

Response Field Description
=============== ============
USHORT SearchCount; Number of entries returned
USHORT EndOfSearch; Was last entry returned?
USHORT EaErrorOffset; Offset into EA list if EA error
USHORT LastNameOffset; Offset into Data[] holding the file name

 of the last entry, if server needs it
 to resume search; else 0

UCHAR Data[TotalDataCount]; Level dependent info about the
 matches found in the search

CIFS Technical Reference SNIA Technical Proposal 106
Revision 1.0

4.3.5.1. Errors
ERRDOS codes

ERRnomem

ERRSRV codes

ERRinvtid
ERRbaduid

4.3.6. FIND_CLOSE2: Close Directory Search

This SMB closes a search started by the TRANS2_FIND_FIRST2 transaction request.

Client Request Description
=============== ============
 UCHAR WordCount; Count of parameter words = 1
 USHORT Sid; Find handle
 USHORT ByteCount; Count of data bytes = 0

Server Response Description
================ ============
 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.3.6.1. Errors
ERRDOS/ERRbadfid
ERRSRV/ERRinvid
ERRSRV/ERRaccess

4.3.7. NT_TRANSACT_NOTIFY_CHANGE: Request Change Notification
 Client Setup Words Description
 =================== ============
 ULONG CompletionFilter; Specifies operation to monitor
 USHORT Fid; Fid of directory to monitor
 BOOLEAN WatchTree; TRUE = Watch all subdirectories too
UCHAR Reserved; MUST BE ZERO

This command notifies the client when the directory specified by Fid is modified. It also returns
the name(s) of the file(s) that changed. The command completes once the directory has been
modified based on the supplied CompletionFilter. The command is a "single shot" and therefore
needs to be reissued to watch for more directory changes.

A directory file must be opened before this command may be used. Once the directory is open,
this command may be used to begin watching files and subdirectories in the specified directory for
changes. The first time the command is issued, the MaxParameterCount field in the transact
header determines the size of the buffer that will be used at the server to buffer directory change
information between issuances of the notify change commands.

When a change that is in the CompletionFilter is made to the directory, the command completes.
The names of the files that have changed since the last time the command was issued are
returned to the client. The ParameterCount field of the response indicates the number of bytes
that are being returned. If too many files have changed since the last time the command was

CIFS Technical Reference SNIA Technical Proposal 107
Revision 1.0

issued, then zero bytes are returned and the NTSTATUS code STATUS_NOTIFY_ENUM_DIR
(0x0000010C) is returned in the Status field of the response.

The CompletionFilter is a mask created as the sum of any of the following flags:

FILE_NOTIFY_CHANGE_FILE_NAME 0x00000001
FILE_NOTIFY_CHANGE_DIR_NAME 0x00000002
FILE_NOTIFY_CHANGE_NAME 0x00000003
FILE_NOTIFY_CHANGE_ATTRIBUTES 0x00000004
FILE_NOTIFY_CHANGE_SIZE 0x00000008
FILE_NOTIFY_CHANGE_LAST_WRITE 0x00000010
FILE_NOTIFY_CHANGE_LAST_ACCESS 0x00000020
FILE_NOTIFY_CHANGE_CREATION 0x00000040
FILE_NOTIFY_CHANGE_EA 0x00000080
FILE_NOTIFY_CHANGE_SECURITY 0x00000100
FILE_NOTIFY_CHANGE_STREAM_NAME 0x00000200
FILE_NOTIFY_CHANGE_STREAM_SIZE 0x00000400
FILE_NOTIFY_CHANGE_STREAM_WRITE 0x00000800

Server Response Description
================ ============
 ParameterCount # of bytes of change data
 Parameters[ParameterCount] FILE_NOTIFY_INFORMATION
 Structures

The response contains FILE_NOTIFY_INFORMATION structures, as defined below. The
NextEntryOffset field of the structure specifies the offset, in bytes, from the start of the current
entry to the next entry in the list. If this is the last entry in the list, this field is zero. Each entry in
the list must be longword aligned, so NextEntryOffset must be a multiple of four.

typedef struct {
 ULONG NextEntryOffset;
 ULONG Action;
 ULONG FileNameLength;
 WCHAR FileName[1];
} FILE_NOTIFY_INFORMATION;

Where Action describes what happened to the file named FileName:

FILE_ACTION_ADDED 0x00000001
FILE_ACTION_REMOVED 0x00000002
FILE_ACTION_MODIFIED 0x00000003
FILE_ACTION_RENAMED_OLD_NAME 0x00000004
FILE_ACTION_RENAMED_NEW_NAME 0x00000005
FILE_ACTION_ADDED_STREAM 0x00000006
FILE_ACTION_REMOVED_STREAM 0x00000007
FILE_ACTION_MODIFIED_STREAM 0x00000008

The client waits on the response after it sends the notify change request. If the client wants to
discard the request, it can send NT_CANCEL to the server which should return
STATUS_CANCELED. The server can reject the request with STATUS_NOT_IMPLEMENTED.

CIFS Technical Reference SNIA Technical Proposal 108
Revision 1.0

4.3.7.1. Errors
ERRDOS codes

ERRbadpath
ERRnoaccess
ERRnomem

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid
ERRSRV/ERROR_NOTIFY_ENUM_DIR

4.4. DFS Operations

4.4.1. TRANS2_GET_DFS_REFERRAL: Retrieve Distributed Filesystem Referral

The client sends this request to ask the server to convert RequestFilename into an alternate
name for this file. This request can be sent to the server if the server response to the
NEGOTIATE SMB included the CAP_DFS capability. The TID of the request must be IPC$. Bit15
of Flags2 in the SMB header must be set, indicating this is a UNICODE request.

Client Request Description
=============== ============
 WordCount 15
 TotalDataCount 0
 SetupCount 1
 Setup[0] TRANS2_GET_DFS_REFERRAL

Parameter Block Encoding Description
========================= ============
 USHORT MaxReferralLevel; Latest referral version number understood
 WCHAR RequestFileName[]; DFS name of file for which referral is
 sought

Response Data Block Description
==================== ============
 USHORT PathConsumed; Number of RequestFilename bytes consumed
 by the server
 USHORT NumberOfReferrals; Number of referrals contained in this
 response
 USHORT Flags; Bit0 - The servers in Referrals are
 capable of fielding
 TRANS2_GET_DFS_REFERRAL.
 Bit1 - The servers in Referrals should
 hold the storage for the requested file
 REFERRAL_LIST Referrals[]; Set of referrals for this file
 UNICODESTRING Strings; Used to hold the strings pointed to by
 Version 2 Referrals in REFERRALS

CIFS Technical Reference SNIA Technical Proposal 109
Revision 1.0

The server response is a list of Referrals which inform the client where it should resubmit the
request to obtain access to the file. PathConsumed in the response indicates to the client how
many characters of RequestFilename have been consumed by the server. When the client
chooses one of the referrals to use for file access, the client may need to strip the leading
PathConsumed characters from the front of RequestFileName before submitting the name to the
target server. Whether or not the pathname should be trimmed is indicated by the individual
referral as detailed below.

Flags indicates how this referral should be treated. If bit0 is clear, any entity in the Referrals list
holds the storage for RequestFileName. If bit0 is set, any entity in the Referrals list has further
referral information for RequestFilename - a TRANS2_GET_DFS_REFERRAL request should be
sent to an entity in the Referrals list for further resolution.

The format of an individual referral contains version and length information allowing the client to
skip referrals it does not understand. MaxReferralLevel indicates to the server the latest version
of referral which the client can digest. Since each referral has a uniform element,
MaxReferralLevel is advisory only. Each element in Referrals has this envelope:

REFERRAL_LIST Element
======================
 USHORT VersionNumber; Version of this referral element
 USHORT ReferralSize; Size of this referral element

The following referral element versions are defined:

Version 1 Referral Element Format
==================================
 USHORT ServerType; Type of Node handling referral:
 0 - Don't know
 1 - SMB Server
 2 - Netware Server
 3 - Domain
 USHORT ReferralFlags; Flags which describe this referral:
 01 - Strip off PathConsumed characters
 before submitting RequestFileName to Node
 UNICODESTRING Node; Name of entity to visit next

Version 2 Referral Element Format
==================================
 USHORT ServerType; Type of Node handling referral:
 0 - Don't know
 1 - SMB Server
 2 - Netware Server
 3 - Domain
 USHORT ReferralFlags; Flags which describe this referral:
 01 - Strip off PathConsumed characters
 before submitting RequestFileName to Node
 ULONG Proximity; A hint describing the proximity of this
 server to the client. 0 indicates the
 closest, higher numbers indicate
 increasingly "distant" servers. The
 number is only relevant within the
 context of the servers listed in this
 particular SMB.
 ULONG TimeToLive; Number of seconds for which the client
 can cache this referral.

CIFS Technical Reference SNIA Technical Proposal 110
Revision 1.0

 USHORT DfsPathOffset; Offset, in bytes from the beginning of
 this referral, of the DFS Path that
 matched PathConsumed bytes of the
 RequestFileName.
 USHORT Offset, in bytes from the beginning of
 DfsAlternatePathOffset; this referral, of an alternate name
 (8.3 format) of the DFS Path that
 matched PathConsumed bytes of the
 RequestFileName.
 USHORT NetworkAddressOffset; Offset, in bytes from the beginning of
 this referral, of the entity to visit next.

The CIFS protocol imposes no referral selection policy.

4.4.1.1. Errors
ERRDOS codes

ERRnoaccess
ERRnomem

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.4.2. TRANS2_REPORT_DFS_INCONSISTENCY: Inform a server about DFS Error

As part of the Distributed Name Resolution algorithm, a DFS client may discover a knowledge
inconsistency between the referral server (i.e., the server that handed out a referral), and the
storage server (i.e., the server to which the client was redirected by the referral server). When
such an inconsistency is discovered, the DFS client optionally sends this SMB to the referral
server, allowing the referral server to take corrective action.

Client Request Description
=============== ============
 WordCount 15
 MaxParameterCount 0
 SetupCount 1
 Setup[0] TRANS2_REPORT_DFS_INCONSISTENCY

Parameter Block Encoding Description
========================= ============
 UNICODESTRING RequestFileName; DFS Name of file for which
 referral is sought

The data part of this request contains the referral element (Version 1 format only) believed to be
in error. These are encoded as described in the TRANS2_GET_DFS_REFERRAL response. If
the server returns success, the client can resubmit the TRANS2_GET_DFS_REFERRAL request
to this server to get a new referral. It is not mandatory for the DFS knowledge to be automatically
repaired - the client must be prepared to receive further errant referrals and must not wind up
looping between this request and the TRANS2_GET_DFS_REFERRAL request.

CIFS Technical Reference SNIA Technical Proposal 111
Revision 1.0

Bit15 of Flags2 in the SMB header must be set, indicating this is a UNICODE request.

4.4.2.1. Errors
ERRDOS codes

ERRnoaccess
ERRnomem

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.5. Miscellaneous Operations

4.5.1. NT_TRANSACT_IOCTL

This command allows device and file system control functions to be transferred transparently from
client to server.

 Setup Words Encoding Description
 ===================== ============
 ULONG FunctionCode; NT device or file system control code
 USHORT Fid; Handle for i/o or file system control,
 unless BIT0 of ISFLAGS is set
 BOOLEAN IsFsctl; Indicates whether the command is for device
 (FALSE) or a file system control (TRUE)
 UCHAR IsFlags; BIT0 - command is to be applied to share
 root handle. Share must be a DFS share.

 Data Block Encoding Description
 ==================== ============
 UCHAR Data[Passed to the Fsctl or Ioctl
 TotalDataCount];

 Server Response Description
 ================ ============
 SetupCount 1
 Setup[0] Length of information returned by
 i/o or file system control
 DataCount Length of information returned by
 i/o or file system control
 Data[DataCount] The results of the i/o or file system
 control

4.5.1.1. Errors
ERRDOS codes

ERRnoaccess
ERRnomem

CIFS Technical Reference SNIA Technical Proposal 112
Revision 1.0

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.5.2. NT_TRANSACT_QUERY_SECURITY_DESC

This command allows the client to retrieve the security descriptor on a file.

 Client Parameter Block Description
 ======================= ============
 USHORT Fid; FID of target
 USHORT Reserved; MUST BE ZERO
 ULONG SecurityInformation; Fields of descriptor to get

NtQuerySecurityObject() is called, requesting SecurityInformation. The result of the call is
returned to the client in the Data part of the transaction response.

4.5.2.1. Errors
ERRDOS codes

ERRnoaccess
ERRnomem
ERRbadaccess

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid
ERRbaduid

4.5.3. NT_TRANSACT_SET_SECURITY_DESC

This command allows the client to change the security descriptor on a file.

 Client Parameter Block Encoding Description
 ================================ ============
 USHORT Fid; FID of target
 USHORT Reserved; MUST BE ZERO
 ULONG SecurityInformation; Fields of Security Descriptor to set

 Data Block Encoding Description
 ==================== ============
 Data[TotalDataCount] Security Descriptor information

Data is passed directly to NtSetSecurityObject(), with SecurityInformation describing which
information to set. The transaction response contains no parameters or data.

CIFS Technical Reference SNIA Technical Proposal 113
Revision 1.0

4.5.3.1. Errors
ERRDOS codes

ERRnoaccess
ERRnomem
ERRbadaccess
ERRbadshare

ERRSRV codes

ERRaccess
ERRinvdevice
ERRinvtid

 ERRbaduid

CIFS Technical Reference SNIA Technical Proposal 114
Revision 1.0

5. SMB Symbolic Constants
5.1. SMB Command Codes

The following values have been assigned for the SMB Commands.

SMB_COM_CREATE_DIRECTORY 0x00
SMB_COM_DELETE_DIRECTORY 0x01
SMB_COM_OPEN 0x02
SMB_COM_CREATE 0x03
SMB_COM_CLOSE 0x04
SMB_COM_FLUSH 0x05
SMB_COM_DELETE 0x06
SMB_COM_RENAME 0x07
SMB_COM_QUERY_INFORMATION 0x08
SMB_COM_SET_INFORMATION 0x09
SMB_COM_READ 0x0A
SMB_COM_WRITE 0x0B
SMB_COM_LOCK_BYTE_RANGE 0x0C
SMB_COM_UNLOCK_BYTE_RANGE 0x0D
SMB_COM_CREATE_TEMPORARY 0x0E
SMB_COM_CREATE_NEW 0x0F
SMB_COM_CHECK_DIRECTORY 0x10
SMB_COM_PROCESS_EXIT 0x11
SMB_COM_SEEK 0x12
SMB_COM_LOCK_AND_READ 0x13
SMB_COM_WRITE_AND_UNLOCK 0x14
SMB_COM_READ_RAW 0x1A
SMB_COM_READ_MPX 0x1B
SMB_COM_READ_MPX_SECONDARY 0x1C
SMB_COM_WRITE_RAW 0x1D
SMB_COM_WRITE_MPX 0x1E
SMB_COM_WRITE_MPX_SECONDARY 0x1F
SMB_COM_WRITE_COMPLETE 0x20
SMB_COM_QUERY_SERVER 0x21
SMB_COM_SET_INFORMATION2 0x22
SMB_COM_QUERY_INFORMATION2 0x23
SMB_COM_LOCKING_ANDX 0x24
SMB_COM_TRANSACTION 0x25
SMB_COM_TRANSACTION_SECONDARY 0x26
SMB_COM_IOCTL 0x27
SMB_COM_IOCTL_SECONDARY 0x28
SMB_COM_COPY 0x29
SMB_COM_MOVE 0x2A
SMB_COM_ECHO 0x2B
SMB_COM_WRITE_AND_CLOSE 0x2C
SMB_COM_OPEN_ANDX 0x2D
SMB_COM_READ_ANDX 0x2E
SMB_COM_WRITE_ANDX 0x2F
SMB_COM_NEW_FILE_SIZE 0x30
SMB_COM_CLOSE_AND_TREE_DISC 0x31
SMB_COM_TRANSACTION2 0x32
SMB_COM_TRANSACTION2_SECONDARY 0x33
SMB_COM_FIND_CLOSE2 0x34

CIFS Technical Reference SNIA Technical Proposal 115
Revision 1.0

SMB_COM_FIND_NOTIFY_CLOSE 0x35
/* Used by Xenix/Unix 0x60 – 0x6E */
SMB_COM_TREE_CONNECT 0x70
SMB_COM_TREE_DISCONNECT 0x71
SMB_COM_NEGOTIATE 0x72
SMB_COM_SESSION_SETUP_ANDX 0x73
SMB_COM_LOGOFF_ANDX 0x74
SMB_COM_TREE_CONNECT_ANDX 0x75
SMB_COM_QUERY_INFORMATION_DISK 0x80
SMB_COM_SEARCH 0x81
SMB_COM_FIND 0x82
SMB_COM_FIND_UNIQUE 0x83
SMB_COM_FIND_CLOSE 0x84
SMB_COM_NT_TRANSACT 0xA0
SMB_COM_NT_TRANSACT_SECONDARY 0xA1
SMB_COM_NT_CREATE_ANDX 0xA2
SMB_COM_NT_CANCEL 0xA4
SMB_COM_NT_RENAME 0xA5
SMB_COM_OPEN_PRINT_FILE 0xC0
SMB_COM_WRITE_PRINT_FILE 0xC1
SMB_COM_CLOSE_PRINT_FILE 0xC2
SMB_COM_GET_PRINT_QUEUE 0xC3
SMB_COM_READ_BULK 0xD8
SMB_COM_WRITE_BULK 0xD9
SMB_COM_WRITE_BULK_DATA 0xDA

5.2. SMB_COM_TRANSACTION2 Subcommand codes
The subcommand code for SMB_COM_TRANSACTION2 request is placed in Setup[0]. The
parameters associated with any particular request are placed in the Parameters vector of the
request. The defined subcommand codes are:

Setup[0] Transaction2 Subcommand Code Value Meaning

TRANS2_OPEN2 0x00 Create file with extended attributes

TRANS2_FIND_FIRST2 0x01 Begin search for files

TRANS2_FIND_NEXT2 0x02 Resume search for files

TRANS2_QUERY_FS_INFORMATION 0x03 Get file system information

 0x04 Reserved (TRANS_SET_FS_INFORMATION?)

TRANS2_QUERY_PATH_INFORMATION 0x05 Get information about a named file or directory

TRANS2_SET_PATH_INFORMATION 0x06 Set information about a named file or directory

TRANS2_QUERY_FILE_INFORMATION 0x07 Get information about a handle

TRANS2_SET_FILE_INFORMATION 0x08 Set information by handle

TRANS2_FSCTL 0x09 Not implemented by NT server

TRANS2_IOCTL2 0x0A Not implemented by NT server

TRANS2_FIND_NOTIFY_FIRST 0x0B Not implemented by NT server

TRANS2_FIND_NOTIFY_NEXT 0x0C Not implemented by NT server

TRANS2_CREATE_DIRECTORY Ox0D Create directory with extended attributes

TRANS2_SESSION_SETUP 0x0E Session setup with extended security information

CIFS Technical Reference SNIA Technical Proposal 116
Revision 1.0

Setup[0] Transaction2 Subcommand Code Value Meaning

TRANS2_GET_DFS_REFERRAL 0x10 Get a DFS referral

TRANS2_REPORT_DFS_INCONSISTENCY 0x11 Report a DFS knowledge inconsistency

5.3. SMB_COM_NT_TRANSACTION Subcommand Codes
For these transactions, Function in the primary client request indicates the operation to be
performed. It may assume one of the following values:

Transaction Subcommand Code Value Meaning

NT_TRANSACT_CREATE 1 File open/create

NT_TRANSACT_IOCTL 2 Device IOCTL

NT_TRANSACT_SET_SECURITY_DESC 3 Set security descriptor

NT_TRANSACT_NOTIFY_CHANGE 4 Start directory watch

NT_TRANSACT_RENAME 5 Reserved (Handle-based rename)

NT_TRANSACT_QUERY_SECURITY_DESC 6 Retrieve security descriptor info

5.4. SMB Protocol Dialect Constants
This is the list of CIFS protocol dialects, ordered from least functional (earliest) version to most
functional (most recent) version:

Dialect Name Comment

PC NETWORK PROGRAM 1.0 The original MSNET SMB protocol (otherwise known as the "core
protocol")

PCLAN1.0 Some versions of the original MSNET defined this as an alternate to the
core protocol name

MICROSOFT NETWORKS 1.03 This is used for the MS-NET 1.03 product. It defines
Lock&Read,Write&Unlock, and a special version of raw read and raw
write.

MICROSOFT NETWORKS 3.0 This is the DOS LANMAN 1.0 specific protocol. It is equivalent to the
LANMAN 1.0 protocol, except the server is required to map errors from
the OS/2 error to an appropriate DOS error.

LANMAN1.0 This is the first version of the full LANMAN 1.0 protocol

Windows for Workgroups 3.1a Windows for Workgroups Version 1.0 (similar to LANMAN1.0 dialect)

LM1.2X002 This is the first version of the full LANMAN 2.0 protocol

DOS LM1.2X002 This is the DOS equivalent of the LM1.2X002 protocol. It is identical to
the LM1.2X002 protocol, but the server will perform error mapping to
appropriate DOS errors. See section 6.0

DOS LANMAN2.1 DOS LANMAN2.1

LANMAN2.1 OS/2 LANMAN2.1

NT LM 0.12 The SMB protocol designed for NT networking. This has special SMBs
which duplicate the NT semantics.

CIFS servers select the most recent version of the protocol known to both client and server. Any
CIFS server, which supports dialects newer than the original core dialect, must support all the

CIFS Technical Reference SNIA Technical Proposal 117
Revision 1.0

messages and semantics of the dialects between the core dialect and the newer one. This is to
say that a server, which supports the NT LM 0.12 dialect, must also support all of the messages
of the previous 10 dialects. It is the client's responsibility to ensure it only sends SMBs, which are
appropriate to the dialect negotiated. Clients must be prepared to receive an SMB response from
an earlier protocol dialect -- even if the client used the most recent form of the request.

CIFS Technical Reference SNIA Technical Proposal 118
Revision 1.0

6. Error Codes and Classes
This section lists all of the valid values for Status.DosError.ErrorClass, and most of the error
codes for Status.DosError.Error. Additionally, a mapping between STATUS codes and DOS
errors are provided.

The following error classes may be returned by the server to the client.

Class Code Comment
======= ===== ========
SUCCESS 0 The request was successful.
ERRDOS 0x01 Error is from the core DOS operating system set.
ERRSRV 0x02 Error is generated by the server network file
 manager.
ERRHRD 0x03 Error is a hardware error.
ERRCMD 0xFF Command was not in the "SMB" format.

The following error codes may be generated with the SUCCESS error class.

Class Code Comment
======= ===== ========
SUCCESS 0 The request was successful.

The following error codes may be generated with the ERRDOS error class.

Error Code Description
====== ===== ============
ERRbadfunc 1 Invalid function. The server did not
 recognize or could not perform a system call
 generated by the server, e.g., set the
 DIRECTORY attribute on a data file, invalid
 seek mode.
ERRbadfile 2 File not found. The last component of a
 file's pathname could not be found.
ERRbadpath 3 Directory invalid. A directory component in
 a pathname could not be found.
ERRnofids 4 Too many open files. The server has no file
 handles available.
ERRnoaccess 5 Access denied, the client's context does not
 permit the requested function. This includes
 the following conditions: invalid rename command,
 write to Fid open for read only, read on Fid
 open for write only, attempt to delete a
 non-empty directory
ERRbadfid 6 Invalid file handle. The file handle
 specified was not recognized by the server.
ERRbadmcb 7 Memory control blocks destroyed.
ERRnomem 8 Insufficient server memory to perform the
 requested function.
ERRbadmem 9 Invalid memory block address.
ERRbadenv 10 Invalid environment.
ERRbadformat 11 Invalid format.
ERRbadaccess 12 Invalid open mode.
ERRbaddata 13 Invalid data (generated only by IOCTL calls

CIFS Technical Reference SNIA Technical Proposal 119
Revision 1.0

 within the server).
ERRbaddrive 15 Invalid drive specified.
ERRremcd 16 A Delete Directory request attempted to
 remove the server's current directory.
ERRdiffdevice 17 Not same device (e.g., a cross volume rename
 was attempted)
ERRnofiles 18 A File Search command can find no more files
 matching the specified criteria.
ERRbadshare 32 The sharing mode specified for an Open
 conflicts with existing FIDs on the file.
ERRlock 33 A Lock request conflicted with an existing
 lock or specified an invalid mode, or an
 Unlock requested attempted to remove a lock
 held by another process.
ERRfilexists 80 The file named in the request already exists.
ErrQuota 512 The operation would cause a quota limit to be
 exceeded.
ErrNotALink 513 A link operation was performed on a pathname
 that was not a link.

The following error codes may be generated with the ERRSRV error class.

Error Code Description
====== ===== ============
ERRerror 1 Non-specific error code. It is returned under
 the following conditions: resource other than
 disk space exhausted (e.g. TIDs), first SMB
 command was not negotiate, multiple negotiates
 attempted, and internal server error.
ERRbadpw 2 Bad password - name/password pair in a Tree
 Connect or Session Setup are invalid.
ERRaccess 4 The client does not have the necessary access
 rights within the specified context for the
 requested function.
ERRinvtid 5 The Tid specified in a command was invalid.
ERRinvnetname 6 Invalid network name in tree connect.
ERRinvdevice 7 Invalid device - printer request made to
 non-printer connection or non-printer request
 made to printer connection.
ERRqfull 49 Print queue full (files) -- returned by open
 print file.
ERRqtoobig 50 Print queue full -- no space.
ERRqeof 51 EOF on print queue dump.
ERRinvpfid 52 Invalid print file FID.
ERRsmbcmd 64 The server did not recognize the command received.
ERRsrverror 65 The server encountered an internal error,
 e.g., system file unavailable.
ERRbadBID 66 (obsolete)
ERRfilespecs 67 The Fid and pathname parameters contained an
 invalid combination of values.
ERRbadLink 68 (obsolete)
ERRbadpermits 69 The access permissions specified for a file
 or directory are not a valid combination.
 The server cannot set the requested attribute.
ERRbadPID 70

CIFS Technical Reference SNIA Technical Proposal 120
Revision 1.0

ERRsetattrmode 71 The attribute mode in the Set File Attribute
 request is invalid.
ERRpaused 81 Server is paused. (Reserved for messaging)
ERRmsgoff 82 Not receiving messages. (Reserved for messaging)
ERRnoroom 83 No room to buffer message.(Reserved for messaging)
ERRrmuns 87 Too many remote user names.(Reserved for messaging)
ERRtimeout 88 Operation timed out.
ERRnoresource 89 No resources currently available for request.
ERRtoomanyuids 90 Too many Uids active on this session.
ERRbaduid 91 The Uid is not known as a valid user
 identifier on this session.
ERRusempx 250 Temporarily unable to support Raw, use MPX mode.
ERRusestd 251 Temporarily unable to support Raw,
 use standard read/write.
ERRcontmpx 252 Continue in MPX mode.
ERRbadPassword 254 (obsolete)
ERR_NOTIFY_ENUM_DIR 1024 Too many files have changed since the last time a
 NT_TRANSACT_NOTIFY_CHANGE was issued
ERRaccountExpired 2239
ERRbadClient 2240 Cannot access the server from this workstation.
ERRbadLogonTime 2241 Cannot access the server at this time.
ERRpasswordExpired 2242
ERRnosupport 65535 Function not supported.

The following error codes may be generated with the ERRHRD error class.

Error Code Description
====== ===== ============
ERRnowrite 19 Attempt to write on write-protected media
ERRbadunit 20 Unknown unit.
ERRnotready 21 Drive not ready.
ERRbadcmd 22 Unknown command.
ERRdata 23 Data error (CRC).
ERRbadreq 24 Bad request structure length.
ERRseek 25 Seek error.
ERRbadmedia 26 Unknown media type.
ERRbadsector 27 Sector not found.
ERRnopaper 28 Printer out of paper.
ERRwrite 29 Write fault.
ERRread 30 Read fault.
ERRgeneral 31 General failure.
ERRbadshare 32 A open conflicts with an existing open.
ERRlock 33 A Lock request conflicted with an existing
 lock or specified an invalid mode, or an
 Unlock requested attempted to remove a lock
 held by another process.
ERRwrongdisk 34 The wrong disk was found in a drive.
ERRFCBUnavail 35 No FCBs are available to process request.
ERRsharebufexc 36 A sharing buffer has been exceeded.

CIFS Technical Reference SNIA Technical Proposal 121
Revision 1.0

These are the mappings of the listed STATUS_codes to the DOS errors.
DOS Error Status Code
========= ===========
ERROR_INVALID_FUNCTION STATUS_NOT_IMPLEMENTED
ERROR_FILE_NOT_FOUND STATUS_NO_SUCH FILE_
ERROR_PATH_NOT_FOUND STATUS_OBJECT_PATH_NOT_FOUND
ERROR_TOO_MANY_OPEN_FILES STATUS_TOO_MANY_OPENED_FILES
ERROR_ACCESS_DENIED STATUS_ACCESS_DENIED
ERROR_INVALID_HANDLE STATUS_INVALID_HANDLE
ERROR_NOT_ENOUGH_MEMORY STATUS_INSUFFICIENT_RESOURCES
ERROR_INVALID_ACCESS STATUS_ACCESS_DENIED
ERROR_INVALID_DATA STATUS_DATA_ERROR
ERROR_CURRENT_DIRECTORY STATUS_DIRECTORY_NOT_EMPTY
ERROR_NOT_SAME_DEVICE STATUS_NOT_SAME_DEVICE
ERROR_NO_MORE_FILES STATUS_NO_MORE_FILES
ERROR_WRITE_PROTECT STATUS_MEDIA_WRITE_PROTECTED
ERROR_NOT_READY STATUS_DEVICE_NOT_READY
ERROR_CRC STATUS_CRC_ERROR
ERROR_BAD_LENGTH STATUS_DATA_ERROR
ERROR_NOT_DOS_DISK STATUS_DISK_CORRUPT_ERROR
ERROR_SECTOR_NOT_FOUND STATUS_NONEXISTENT_SECTOR
ERROR_OUT_OF_PAPER STATUS_DEVICE_PAPER_EMPTY
ERROR_SHARING_VIOLATION STATUS_SHARING_VIOLATION
ERROR_LOCK_VIOLATION STATUS_FILE_LOCK_CONFLICT
ERROR_WRONG_DISK STATUS_WRONG_VOLUME
ERROR_NOT_SUPPORTED STATUS_NOT_SUPPORTED
ERROR_REM_NOT_LIST STATUS_REMOTE_NOT_LISTENING
ERROR_DUP_NAME STATUS_DUPLICATE_NAME
ERROR_BAD_NETPATH STATUS_BAD_NETWORK_PATH
ERROR_NETWORK_BUSY STATUS_NETWORK_BUSY
ERROR_DEV_NOT_EXIST STATUS_DEVICE_DOES_NOT_EXIST
ERROR_TOO_MANY_CMDS STATUS_TOO_MANY_COMMANDS
ERROR_ADAP_HDW_ERR STATUS_ADAPTER_HARDWARE_ERROR
ERROR_BAD_NET_RESP STATUS_INVALID_NETWORK_RESPONSE
ERROR_UNEXP_NET_ERR STATUS_UNEXPECTED_NETWORK_ERROR
ERROR_BAD_REM_ADAP STATUS_BAD_REMOTE_ADAPTER
ERROR_PRINTQ_FULL STATUS_PRINT_QUEUE_FULL
ERROR_NO_SPOOL_SPACE STATUS_NO_SPOOL_SPACE
ERROR_PRINT_CANCELLED STATUS_PRINT_CANCELLED
ERROR_NETNAME_DELETED STATUS_NETWORK_NAME_DELETED
ERROR_NETWORK_ACCESS_DENIED STATUS_NETWORK_ACCESS_DENIED
ERROR_BAD_DEV_TYPE STATUS_BAD_DEVICE_TYPE
ERROR_BAD_NET_NAME STATUS_BAD_NETWORK_NAME
ERROR_TOO_MANY_NAMES STATUS_TOO_MANY_NAMES
ERROR_TOO_MANY_SESS STATUS_TOO_MANY_SESSIONS
ERROR_SHARING_PAUSED STATUS_SHARING_PAUSED
ERROR_REQ_NOT_ACCEP STATUS_REQUEST_NOT_ACCEPTED
ERROR_REDIR_PAUSED STATUS_REDIRECTOR_PAUSED
ERROR_FILE_EXISTS STATUS_OBJECT_NAME_COLLISION
ERROR_INVALID_PASSWORD STATUS_WRONG_PASSWORD
ERROR_INVALID_PARAMETER STATUS_INVALID_PARAMETER
ERROR_NET_WRITE_FAULT STATUS_NET_WRITE_FAULT
ERROR_BROKEN_PIPE STATUS_PIPE_BROKEN
ERROR_OPEN_FAILED STATUS_OPEN_FAILED
ERROR_BUFFER_OVERFLOW STATUS_BUFFER_OVERFLOW
ERROR_DISK_FULL STATUS_DISK_FULL
ERROR_SEM_TIMEOUT STATUS_IO_TIMEOUT
ERROR_INSUFFICIENT_BUFFER STATUS_BUFFER_TOO_SMALL
ERROR_INVALID_NAME STATUS_OBJECT_NAME_INVALID

CIFS Technical Reference SNIA Technical Proposal 122
Revision 1.0

ERROR_INVALID_LEVEL STATUS_INVALID_LEVEL
ERROR_BAD_PATHNAME STATUS_OBJECT_PATH_INVALID
ERROR_BAD_PIPE STATUS_INVALID_PARAMETER
ERROR_PIPE_BUSY STATUS_PIPE_NOT_AVAILABLE
ERROR_NO_DATA STATUS_PIPE_EMPTY
ERROR_PIPE_NOT_CONNECTED STATUS_PIPE_DISCONNECTED
ERROR_MORE_DATA STATUS_BUFFER_OVERFLOW
ERROR_VC_DISCONNECTED STATUS_VIRTUAL_CIRCUIT_CLOSED
ERROR_INVALID_EA_NAME STATUS_INVALID_EA_NAME
ERROR_EA_LIST_INCONSISTENT STATUS_EA_LIST_INCONSISTENT
ERROR_EAS_DIDNT_FIT STATUS_EA_TOO_LARGE
ERROR_EA_FILE_CORRUPT STATUS_EA_CORRUPT_ERROR
ERROR_EA_TABLE_FULL STATUS_EA_CORRUPT_ERROR
ERROR_INVALID_EA_HANDLE STATUS_EA_CORRUPT_ERROR

CIFS Technical Reference SNIA Technical Proposal 123
Revision 1.0

7. Security Considerations
MISSING

Suggested content for this section:

Define share security level. What dialects support it?

1. Define user security level.

2. How is it supported in PDC/BDC environment (NT4)

3. How it supported in Active directory environment. Define the different security
considerations in different Active Directory modes.

4. How Kerberos security is used?

5. What are the protocols (or DCE/RPC) needed for each of the User level security models

6. Some discussion on how file access is authenticated, or how the SID is retrieved in each
of the user level environments mentioned above for ACL

7. Include the security protocol, or reference to it

CIFS Technical Reference SNIA Technical Proposal 124
Revision 1.0

8. References

[1] P. Mockapetris, "Domain Names - Concepts And Facilities", RFC 1034, November 1987

[2] P. Mockapetris, "Domain Names - Implementation And Specification", RFC 1035, November 1987

[3] Karl Auerbach, "Protocol Standard For A Netbios Service On A TCP/UDP Transport: Concepts And Methods", RFC
1001, March 1987

[4] Karl Auerbach, "Protocol Standard For A Netbios Service On A TCP/UDP Transport: Detailed Specifications", RFC

1002, March 1987

[5] US National Bureau of Standards, "Data Encryption Standard", Federal Information Processing Standard (FIPS)
Publication 46-1, January 1988

[6] Rivest, R. - MIT and RSA Data Security, Inc., "The MD4 Message Digest Algorithm", RFC 1320, April 1992

[7] Rivest, R. – MIT and RSA Data Security, Inc., “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992

[8] Metzger, P. Piermont, Simpson, W. Daydreamer, “IP Authentication using Keyed MD5”, RFC 1828, August 1995

[9] Leach, P. – Microsoft, “CIFS Authentication Protocols Specification, Author’s Draft 4

[10] B. Kaliski, M.Robshaw, "Message Authentication with MD5", CryptoBytes, Spring 1995, RSA Inc,

(ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto1n1.pdf)

[11] X/Open Company Ltd., "X/Open CAE Specification - Protocols for X/Open PC Interworking: SMB, Version 2",
X/Open Document Number: CAE 209, September 1992.

CIFS Technical Reference SNIA Technical Proposal 125
Revision 1.0

9. Appendix A -- NETBIOS transport over TCP
With respect to the 7-layer OSI reference model, NetBIOS is a session layer (layer 5) Application
Programmer's Interface (API). The NetBIOS API has been implemented on top of a variety of
transports (layer 4), including TCP/IP. NetBIOS over TCP/IP transport is specified in RFC 1001
and RFC 1002 (IETF Standard #19).

NetBIOS is the traditional session layer interface for SMB/CIFS. For backward compatibility with
older systems, CIFS implementations SHOULD provide support for RFC 1001/1002 transport.

9.1. Connection Establishment
Connections are established and messages transferred via the NetBIOS session service (see
section 5.3 of RFC 1001 and section 4.3 of RFC 1002). The system that originates the
connection is the "calling" node; the target node is the "called" node. In order to establish an
SMB session, a TCP connection must be established between the calling and called nodes. If a
TCP connection already exists, the SMB session may make use of the existing connection.

9.2. Connecting to a server using the NetBIOS name
Before a NetBIOS session can be established, the node initiating the session (the "calling" node)
must discover the IP address of the target node (the "called" node). This is done using the
NetBIOS name service (see section 5.2 of RFC 1001 and section 4.2 of RFC 1002). NetBIOS
names are always 16 bytes, padded with spaces (0x20) if necessary, as specified in the RFCs.
The 16th byte has been reserved, however, for use as a service indicator. This field is known as
the "suffix byte".

The NetBIOS session service requires that the client provide the NetBIOS names of both the
calling and called nodes. The calling name is the default NetBIOS name of the client, space
padded as described, with a suffix byte value of 0x00. The called name is the NetBIOS name of
the server with a suffix byte value of 0x20. Server implementations which support SMB via
NetBIOS over TCP/IP MUST support the registration and use of the server NetBIOS name.

The calling name is not significant in CIFS, except that an identical name from the same transport address
is assumed to represent the same client. SMB session establishment is initiated using a "Session
Request" packet sent to port 139 (see section 4.3.2 of RFC 1002).

9.3. Connecting to a server using a DNS name or IP address
Implementations MAY support the use of DNS names or IP addresses in addition to NetBIOS
names when initiating SMB connections via NetBIOS over TCP/IP transport. This functionality is
an extension to the NetBIOS over TCP/IP behavior specified in RFC 1001 and RFC 1002, and is
not part of that standard.

As stated above, the Session Request packet requires a called and a calling name, both of which
are NetBIOS names. In order to create a Session Request packet, the DNS name or IP address
of the server must be reverse-mapped to the server's NetBIOS name. Mechanisms for doing so
are as follows:

9.3.1. NetBIOS Adapter Status

A NetBIOS Adapter Status Query is sent to the target IP address. If a response is received and
the target is offering SMB services via NetBIOS over TCP, then the response will include a
NetBIOS name with a suffix byte value of 0x20. This NetBIOS name may be used as the
called name in a Session Request packet.

CIFS Technical Reference SNIA Technical Proposal 126
Revision 1.0

9.3.2. Generic Server Name

Servers offering SMB services via NetBIOS over TCP/IP MAY accept the generic SMB server
name "*SMBSERVER". A client can simply use the name "*SMBSERVER" as the called name
in a Session Request packet. As with all SMB server NetBIOS names, the "*SMBSERVER"
name must be space padded and terminated with a suffix byte value of 0x20.

The "*SMBSERVER" name MUST NOT be registered with the NetBIOS name service, as it is an
illegal NetBIOS name (see section 5.2 of RFC 1001).

The target may return a CALLED NAME NOT PRESENT error. This may simply indicate that
the server does not support the "*SMBSERVER" generic name.

9.3.3. - Parsing the DNS Name (guessing)

Systems which support NetBIOS transport over TCP/IP will often use the same base name within
the DNS and NetBIOS name spaces. Thus, the first label of the DNS name represents a good
guess at the NetBIOS name of the server.

The first label of the DNS name consists of the initial portion of the DNS name string, up to but not
including the first dot character ('.'). If the label is greater than 15 bytes in length, it must be
truncated to 15 bytes. The result is then space padded to a total of 15 bytes, and a suffix value
0x20 is used. This forms a valid NetBIOS name that may be used as a called name in a Session
Request packet.

If the target returns a CALLED NAME NOT PRESENT error, then the DNS name guess is
incorrect. If the original user input was an IP address, the DNS name can be determined using a
reverse lookup against the DNS. Any or all of the above MAY be tried in any order.

9.4. NetBIOS Name character set
There is no standard character set for NetBIOS names. NetBIOS names are simply strings of
octets, with the following restrictions:

• Names which are to be registered with the NetBIOS Name Service must not begin with an
asterisk (0x2A). (The *SMBSERVER name is never registered.)

• Names should not contain a NUL (0x00) octet. Common implementation languages may
interpret the NUL octet value as a string terminator.

CIFS Technical Reference SNIA Technical Proposal 127
Revision 1.0

10. Appendix B -- TCP transport
When operating CIFS over TCP, connections are established to TCP port 445, and each
message is framed as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ZERO | LENGTH |
 +-+
 | |
 / SMB (Packet Type Dependent) /
 | |
 +-+

Each CIFS request starts with a 4 byte field encoded as above: a byte of zero, followed by three
bytes of length; after that follows the body of the request.

CIFS Technical Reference SNIA Technical Proposal 128
Revision 1.0

11. Appendix C – Share Level Server Security
Each server makes a set of resources available to clients on the network. A resource being
shared may be a directory tree, named pipe, printer, etc. As far as clients are concerned, the
server has no storage or service dependencies on any other servers; a client considers the server
to be the sole provider of the file (or other resource) being accessed.

The CIFS protocol requires server authentication of users before file accesses are allowed, and
each server authenticates its own users. A client system must send authentication information to
the server before the server will allow access to its resources.

The CIFS protocol used to define two methods that can be selected by the server for security:
share level and user level. User level security is the only non-obsolescent method.

A share level server makes some directory on a disk device (or other resource) available. An
optional password may be required to gain access. Thus, any user on the network who knows the
name of the server, the name of the resource, and the password has access to the resource.
Share level security servers may use different passwords for the same shared resource with
different passwords, allowing different levels of access.

Share-level-only clients do not send SESSION_SETUP_ANDX requests. Instead, they send
TREE_CONNECT_ANDX requests that include a password or use challenge/response
authentication to prove that they know a password.

When a user level server validates the account name and password presented by the client, an
identifier representing that authenticated instance of the user is returned to the client in the Uid
field of the response SMB. In contrast, a share level server returns no useful information in the
Uid field.

If the server is executing in share level security mode, Tid is the only thing used to allow access to
the shared resource. Thus, if the user is able to perform a successful connection to the server
specifying the appropriate netname and passwd (if any), the resource may be accessed
according to the access rights associated with the shared resource (same for all who gained
access this way).

The user level security model was added after the original dialect of the CIFS protocol was
issued, and subsequently some clients may not be capable of sending account name and
passwords to the server. A server in user level security mode communicating with one of these
clients may allow a client to connect to resources even if the client has not sent account name
information:

1) If the client's computer name is identical to an account name known on the server, and if the
password supplied or authenticated via challenge/response to connect to the shared resource
matches that account's password, an implicit "user logon" will be performed using those
values. If the above fails, the server may fail the request or assign a default account name of
its choice.

2) The value of Uid in subsequent requests by the client will be ignored, and all access will be
validated assuming the account name selected above.

CIFS Technical Reference SNIA Technical Proposal 129
Revision 1.0

12. Appendix D – CIFS UNIX Extension

12.1. Introduction
The purpose of these extensions is to allow UNIX based CIFS clients and servers to exchange
information used by UNIX systems, but not present in Windows based CIFS servers or clients.
These extensions may not be implemented by all UNIX systems. Two simple examples are
symbolic links and UNIX special files (e.g. UNIX named pipes).

The CIFS UNIX Extension are intended for use by all UNIX and UNIX-like systems the implement
the CIFS protocol.

12.2. Principles
These are a set of principles that the extensions meet.

Minimal changes To make the extensions easier to implement, the number of changes and additions
were minimized.

Can be implemented on
non-UNIX systems

While being useful for UNIX, the extension allow one end of the connection to be a
non-UNIX system. This is so that other CIFS servers and clients can better integrate
with a UNIX CIFS client or server.

Use current commands The changes only affect current commands. There was no need for UNIX CIFS
clients to use CIFS commands marked as obsolete, nor should there be any changes
to obsolete requests.

Retain existing CIFS
semantics

The existing semantics of CIFS are retained. Perhaps the most notable is that file
names are case insensitive, but case should be preserved.

Use CIFS security model The standard CIFS security model is still used. This requires each distinct user to be
logged into the server.

Addition to dialect This specification is an addition to the CIFS dialect, currently NT LM 0.12. It is
selected by the capability bit in the server's Negotiate protocol response.

Future resilient Future enhancements MUST not modify or change the meaning of previous
implementations of the specification.

12.3. CIFS Protocol Modifications
This section details the require changes to the CIFS protocol that are needed to support CIFS
UNIX Extensions. A summary of the changes is listed below.

In the Negotiate Protocol SMB reserve a capabilities bit, CAP_UNIX with the value of
0x00800000, in the Server capabilities field to indicate support of CIFS Extension for UNIX.

Reserve information levels numbers 0x200-0x2FF

TRANS2_QUERY_FS_INFORMATION, TRANS2_QUERY_PATH_INFO,
TRANS2_QUERY_FILE_INFO, TRANS2_SET_PATH_INFO, TRANS2_SET_FILE_INFO,
TRANS2_FINDFIRST, and TRANS2_FINDNEXT SMBs for CIFS Extensions for UNIX.

CIFS Technical Reference SNIA Technical Proposal 130
Revision 1.0

12.4. Modified SMBs

SMB Modification

NEGOTIATE Added CAP_UNIX (0x00800000) to the server capabilities field.

See 4.2

TRANS2_QUERY_FS_INFORMATION Added Following Information Levels:

SMB_QUERY_CIFS_UNIX_INFO (0x200) See 4.1.6.7

TRANS2_QUERY_PATH_INFORMATION Added Following Information Levels:

SMB_QUERY_FILE_UNIX_BASIC (0x200) See 4.2.15.12

SMB_QUERY_FILE_UNIX_LINK (0x201) See 4.2.15.13

TRANS2_QUERY_FILE_INFORMATION Same modification as done in
TRANS2_QUERY_PATH_INFORMATION

TRANS2_SET_PATH_INFORMATION Added Following Information Levels:

SMB_SET_FILE_UNIX_BASIC (0x200) See 4.2.17.3

SMB_SET_FILE_UNIX_LINK (0x201) See 4.2.17.4

SMB_SET_FILE_UNIX_HLINK (0X203) See 4.2.17.5

TRANS2_SET_FILE_INFORMATION Same modification as done in
TRANS2_SET_PATH_INFORMATION

TRANS2_FINDFIRST Added following Information Levels:

SMB_FIND_FILE_UNIX (0X202) See 4.3.4.8

TRANS2_FINDNEXT Same modification as done in TRANS2_FINDFIRST

12.5. Guidelines for implementers
• Once the Client determines that the server supports the CIFS UNIX Extension it should

first send SMB_QUERY_CIFS_UNIX_INFO before sending any other CIFS UNIX
Extension SMBs to determine the version and capabilities that are supported by the
server.

• Clients or servers using this extension should have no specific reserved filenames (e.g.
CON, AUX, PRN), and should not need to take specific action to protect the other end of
the connection from them. If they have any such requirements, they must do them
internally. This also applies to reserved characters in filenames (e.g. : \ |).

• Inodes can be transferred in the uniqueid field of SMB_QUERY_FILE_UNIX_BASIC
(0x200).

• Clients should operate in UNICODE if at all possible. A useful bridging step is to
implement UTF-8

• Symbolic links are created by calling TRANS2_SET_PATH_INFO with the
SMB_QUERY_FILE_UNIX_LINK infolevel data structure provided.

• Device file (and other special UNIX files) are created by calling
TRANS2_SET_PATH_INFO with the SMB_QUERY_FILE_UNIX_BASIC infolevel data
structure appropriately filled in for a device node.

CIFS Technical Reference SNIA Technical Proposal 131
Revision 1.0

• Servers should return their timezone as UTC. This will then require no timezone mapping
by the client or server. The NetRemoteTimeOfDay IPC should still return the real local
time.

• Creates with particular permissions can be achieved by sending a CREATE_AND_X and
a TRANS2_SET_PATH_INFO SMBs.

CIFS Technical Reference SNIA Technical Proposal 132
Revision 1.0

13. Appendix E – CIFS Macintosh Extension

13.1. Introduction
The purpose of these extensions is to allow the Macintosh to better interoperate in a CIFS
network. With these extensions Macintosh Clients will be able to reduce network traffic generated
by the Macintosh, which in turn would speed up file access by the Client. These extensions will
allow non-Macintosh Clients access to Macintosh files and also allow for the server to decide how
to store Macintosh files and folders.

The CIFS Macintosh Extension is intended for use by all systems that implement the CIFS
protocol.

13.2. Principles
These are a set of principles that the extensions meet.

Minimal changes To make the extensions easier to implement, the number of changes and additions
were minimized.

Can be implemented on
non-Macintosh systems

While being useful for Macintosh, the extension allows one end of the connection to
be a non-Macintosh system. This is so that other CIFS servers and clients can better
integrate with a Macintosh CIFS client or server.

Use current commands The changes only affect current commands. There is no need for CIFS clients to use
CIFS commands marked as obsolete, nor should there be any changes to obsolete
requests.

Retain existing CIFS
semantics

The existing semantics of CIFS are retained.

Use CIFS security model The standard CIFS security model is still used. This requires each distinct user to be
logged into the server.

Addition to dialect These items are an addition to the CIFS dialect, currently NT LM 0.12. These
extensions are turn on by the server responding with out an error to the
TRANS2_QUERY_FS_INFORMATION call with an info level of
Trans2_GetSMB_MAC_QUERY_FS_INFO.

Future resilient Future enhancements MUST not modify or change the meaning of previous
implementations of the specification.

13.3. CIFS Protocol Modifications
This section details the require changes to the CIFS protocol that are needed to support CIFS
Macintosh Extensions. These extensions require support of the NT LM 0.12 dialect with some
minor additions. The Server must support the NT stream format for the opening of the resource,
comments, and data streams of a file. A summary of the changes is listed below.

Reserve information levels numbers 0x300-0x3FF in the TRANS2_QUERY_FS_INFORMATION,
TRANS2_QUERY_PATH_INFO, TRANS2_SET_PATH_INFO, TRANS2_FINDFIRST, and
TRANS2_FINDNEXT SMBs for CIFS Extensions for Macintosh.

CIFS Technical Reference SNIA Technical Proposal 133
Revision 1.0

13.4. Modified SMBs

SMB Modification

TRANS2_QUERY_FS_INFORMATION Added Following Information Levels:

SMB_ QUERY_ MAC_FS_INFO (0x301) See 4.1.6.7

TRANS2_FINDFIRST Added following Information Levels:

SMB_ FINDBOTH_ MAC_HFS_INFO (0X302) See 4.3.4.9

TRANS2_FINDNEXT Same modification as done in TRANS2_FINDFIRST

TRANS2_SET_PATH_INFORMATION Added Following Information Levels:

SMB_MAC_SET_FINDER_INFO (0x303) See 4.2.18.6

SMB_MAC_DT_ADD_APPL (0x304) See 4.2.18.7

SMB_MAC_DT_REMOVE_APPL (0x305) See 4.2.18.8

SMB_MAC_DT_ADD_ICON (0x309) See 4.2.18.9

TRANS2_QUERY_PATH_INFORMATION Added Following Information Levels:

SMB_MAC_DT_GET_APPL (0x306) See 4.2.16.14

SMB_MAC_DT_GET_ICON (0x307) See 4.2.16.15

SMB_MAC_DT_GET_ICON_INFO (0x308) See 4.2.16.16

13.5. Guidelines for implementers
• These extensions will be processed on share-by-share bases. This means that the Client

will have to confirm that each share supports these extensions not just that the Server
supports these extensions. This will allow a server to have some shares that are
Macintosh aware and others that are not.

• When a file or folder is deleted then all streams and information stored on the sever
associated with that file or folder should be removed. When a file or folder is
Copied/Renamed/Moved then all streams and information stored on the sever associated
with that file or folder should be Copied/Renamed/Moved.

• Clients or servers using this extension should have no specific reserved filenames (e.g.
CON, AUX, PRN), and should not need to take specific action to protect the other end of
the connection from them. If they have any such requirements, they must do them
internally. This also applies to reserved characters in filenames (e.g. : \ |).

• Clients should operate in UNICODE if at all possible.

• Supporting the Desktop Database calls requires having a way to store information in a
database. There are two kinds of information store in the database. Applications path that
is associated with an application signature. Icons are stored based on size, icon type, file
creator, and file type.

CIFS Technical Reference SNIA Technical Proposal 134
Revision 1.0

14. Appendix F – API Numbers for Transact based RAP calls
API_WshareEnum 0
API_WshareGetInfo 1
API_WshareSetInfo 2
API_WshareAdd 3
API_WshareDel 4
API_NetShareCheck 5
API_WsessionEnum 6
API_WsessionGetInfo 7
API_WsessionDel 8
API_WconnectionEnum 9
API_WfileEnum 10
API_WfileGetInfo 11
API_WfileClose 12
API_WserverGetInfo 13
API_WserverSetInfo 14
API_WserverDiskEnum 15
API_WserverAdminCommand 16
API_NetAuditOpen 17
API_WauditClear 18
API_NetErrorLogOpen 19
API_WerrorLogClear 20
API_NetCharDevEnum 21
API_NetCharDevGetInfo 22
API_WCharDevControl 23
API_NetCharDevQEnum 24
API_NetCharDevQGetInfo 25
API_WCharDevQSetInfo 26
API_WCharDevQPurge 27
API_WCharDevQPurgeSelf 28
API_WMessageNameEnum 29
API_WMessageNameGetInfo 30
API_WMessageNameAdd 31
API_WMessageNameDel 32
API_WMessageNameFwd 33
API_WMessageNameUnFwd 34
API_WMessageBufferSend 35
API_WMessageFileSend 36
API_WMessageLogFileSet 37
API_WMessageLogFileGet 38
API_WServiceEnum 39
API_WServiceInstall 40
API_WServiceControl 41
API_WAccessEnum 42
API_WAccessGetInfo 43
API_WAccessSetInfo 44
API_WAccessAdd 45
API_WAccessDel 46
API_WGroupEnum 47
API_WGroupAdd 48
API_WGroupDel 49
API_WGroupAddUser 50
API_WGroupDelUser 51
API_WGroupGetUsers 52
API_WUserEnum 53
API_WUserAdd 54
API_WUserDel 55
API_WUserGetInfo 56
API_WUserSetInfo 57

CIFS Technical Reference SNIA Technical Proposal 135
Revision 1.0

API_WUserPasswordSet 58
API_WUserGetGroups 59
API_DeadTableEntry 60
/*This line and number replaced a Dead Entry */
API_WWkstaSetUID 62
API_WWkstaGetInfo 63
API_WWkstaSetInfo 64
API_WUseEnum 65
API_WUseAdd 66
API_WUseDel 67
API_WUseGetInfo 68
API_WPrintQEnum 69
API_WPrintQGetInfo 70
API_WPrintQSetInfo 71
API_WPrintQAdd 72
API_WPrintQDel 73
API_WPrintQPause 74
API_WPrintQContinue 75
API_WPrintJobEnum 76
API_WPrintJobGetInfo 77
API_WPrintJobSetInfo_OLD 78
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
API_WPrintJobDel 81
API_WPrintJobPause 82
API_WPrintJobContinue 83
API_WPrintDestEnum 84
API_WPrintDestGetInfo 85
API_WPrintDestControl 86
API_WProfileSave 87
API_WProfileLoad 88
API_WStatisticsGet 89
API_WStatisticsClear 90
API_NetRemoteTOD 91
API_WNetBiosEnum 92
API_WNetBiosGetInfo 93
API_NetServerEnum 94
API_I_NetServerEnum 95
API_WServiceGetInfo 96
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
API_WPrintQPurge 103
API_NetServerEnum2 104
API_WAccessGetUserPerms 105
API_WGroupGetInfo 106
API_WGroupSetInfo 107
API_WGroupSetUsers 108
API_WUserSetGroups 109
API_WUserModalsGet 110
API_WUserModalsSet 111
API_WFileEnum2 112
API_WUserAdd2 113
API_WUserSetInfo2 114
API_WUserPasswordSet2 115
API_I_NetServerEnum2 116
API_WConfigGet2 117

CIFS Technical Reference SNIA Technical Proposal 136
Revision 1.0

API_WConfigGetAll2 118
API_WGetDCName 119
API_NetHandleGetInfo 120
API_NetHandleSetInfo 121
API_WStatisticsGet2 122
API_WBuildGetInfo 123
API_WFileGetInfo2 124
API_WFileClose2 125
API_WNetServerReqChallenge 126
API_WNetServerAuthenticate 127
API_WNetServerPasswordSet 128
API_WNetAccountDeltas 129
API_WNetAccountSync 130
API_WUserEnum2 131
API_WWkstaUserLogon 132
API_WWkstaUserLogoff 133
API_WLogonEnum 134
API_WErrorLogRead 135
API_WI_NetPathType 136
API_WI_NetPathCanonicalize 137
API_WI_NetPathCompare 138
API_WI_NetNameValidate 139
API_WI_NetNameCanonicalize 140
API_WI_NetNameCompare 141
API_WAuditRead 142
API_WPrintDestAdd 143
API_WPrintDestSetInfo 144
API_WPrintDestDel 145
API_WUserValidate2 146
API_WPrintJobSetInfo 147
API_TI_NetServerDiskEnum 148
API_TI_NetServerDiskGetInfo 149
API_TI_FTVerifyMirror 150
API_TI_FTAbortVerify 151
API_TI_FTGetInfo 152
API_TI_FTSetInfo 153
API_TI_FTLockDisk 154
API_TI_FTFixError 155
API_TI_FTAbortFix 156
API_TI_FTDiagnoseError 157
API_TI_FTGetDriveStats 158
/* This line and number replaced a Dead Entry */
API_TI_FTErrorGetInfo 160
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
API_NetAccessCheck 163
API_NetAlertRaise 164
API_NetAlertStart 165
API_NetAlertStop 166
API_NetAuditWrite 167
API_NetIRemoteAPI 168
API_NetServiceStatus 169
API_I_NetServerRegister 170
API_I_NetServerDeregister 171
API_I_NetSessionEntryMake 172
API_I_NetSessionEntryClear 173
API_I_NetSessionEntryGetInfo 174
API_I_NetSessionEntrySetInfo 175
API_I_NetConnectionEntryMake 176
API_I_NetConnectionEntryClear 177

CIFS Technical Reference SNIA Technical Proposal 137
Revision 1.0

API_I_NetConnectionEntrySetInfo 178
API_I_NetConnectionEntryGetInfo 179
API_I_NetFileEntryMake 180
API_I_NetFileEntryClear 181
API_I_NetFileEntrySetInfo 182
API_I_NetFileEntryGetInfo 183
API_AltSrvMessageBufferSend 184
API_AltSrvMessageFileSend 185
API_wI_NetRplWkstaEnum 186
API_wI_NetRplWkstaGetInfo 187
API_wI_NetRplWkstaSetInfo 188
API_wI_NetRplWkstaAdd 189
API_wI_NetRplWkstaDel 190
API_wI_NetRplProfileEnum 191
API_wI_NetRplProfileGetInfo 192
API_wI_NetRplProfileSetInfo 193
API_wI_NetRplProfileAdd 194
API_wI_NetRplProfileDel 195
API_wI_NetRplProfileClone 196
API_wI_NetRplBaseProfileEnum 197
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
API_WIServerSetInfo 201
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
/* This line and number replaced a Dead Entry */
API_WPrintDriverEnum 205
API_WPrintQProcessorEnum 206
API_WPrintPortEnum 207
API_WNetWriteUpdateLog 208
API_WNetAccountUpdate 209
API_WNetAccountConfirmUpdate 210
API_WConfigSet 211
API_WAccountsReplicate 212
/* 213 is used by WfW */
API_SamOEMChgPasswordUser2_P 214
API_NetServerEnum3 215
API_WprintDriverGetInfo 250
API_WprintDriverSetInfo 251
API_WaliasAdd 252
API_WaliasDel 253
API_WaliasGetInfo 254
API_WaliasSetInfo 255
API_WaliasEnum 256
API_WuserGetLogonAsn 257
API_WuserSetLogonAsn 258
API_WuserGetAppSel 259
API_WuserSetAppSel 260
API_WappAdd 261
API_WappDel 262
API_WappGetInfo 263
API_WappSetInfo 264
API_WappEnum 265
API_WUserDCDBInit 266
API_WDASDAdd 267
API_WDASDDel 268
API_WDASDGetInfo 269
API_WDASDSetInfo 270
API_WDASDEnum 271

CIFS Technical Reference SNIA Technical Proposal 138
Revision 1.0

API_WDASDCheck 272
API_WDASDCtl 273
API_WuserRemoteLogonCheck 274
API_WUserPasswordSet3 275
API_WCreateRIPLMachine 276
API_WDeleteRIPLMachine 277
API_WGetRIPLMachineInfo 278
API_WSetRIPLMachineInfo 279
API_WEnumRIPLMachine 280
API_WI_ShareAdd 281
API_WI_AliasEnum 282
API_WaccessApply 283
API_WPrt16Query 284
API_WPrt16Set 285
API_WUserDel100 286
API_WUserRemoteLogonCheck2 287
API_WRemoteTODSet 294
API_WprintJobMoveAll 295
API_W16AppParmAdd 296
API_W16AppParmDel 297
API_W16AppParmGet 298
API_W16AppParmSet 299
API_W16RIPLMachineCreate 300
API_W16RIPLMachineGetInfo 301
API_W16RIPLMachineSetInfo 302
API_W16RIPLMachineEnum 303
API_W16RIPLMachineListParmEnum 304
API_W16RIPLMachClassGetInfo 305
API_W16RIPLMachClassEnum 306
API_W16RIPLMachClassCreate 307
API_W16RIPLMachClassSetInfo 308
API_W16RIPLMachClassDelete 309
API_W16RIPLMachClassLPEnum 310
API_W16RIPLMachineDelete 311
API_W16WSLevelGetInfo 312
API_WserverNameAdd 313
API_WserverNameDel 314
API_WserverNameEnum 315
API_I_WDASDEnum 316
API_I_WDASDEnumTerminate 317
API_I_WDASDSetInfo2 318

MAX_API 318

