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Abstract

Techniques for solving divide-and-conquer recurrences are routinely taught to thousands of
Computer Science students each year. The dominant approach to solving such recurrences is
known as the Master Method [2]. Recently, Akra and Bazzi [1] discovered a surprisingly elegant
generalization of the Master Method that yields a very simple formula for solving most divide-
and-conquer recurrences. In these notes, we provide a simple inductive proof of the Akra-Bazzi
result and we extend the result to handle variations of divide-and-conquer recurrences that
commonly arise in practice.

1 Introduction

Divide-and-conquer recurrences are ubiquitous in the analysis of algorithms. Many methods are
known for solving recurrences such as

T (n) =

(
1 if n = 1

2T (dn=2e) +O(n) if n > 1;

but perhaps the most widely taught approach is the Master Method that is described in the seminal
algorithms text by Cormen, Leiserson and Rivest [2].

The Master Method is fairly powerful and results in a closed form solution for divide-and-conquer
recurrences with a special (but commonly-occurring) form. Recently Akra and Bazzi [1] discovered
a far more general solution to divide-and-conquer recurrences. The Akra-Bazzi analysis is based
on a special functional transform that they call the \order transform."

In these notes, we give a simple inductive proof of the Akra-Bazzi result that is suitable for use
in an undergraduate algorithms or discrete math class. We also show that the Akra-Bazzi result
holds for a more general class of recurrences that commonly arise in practice and that are often
considered to be di�cult to solve.
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2 The Akra-Bazzi Solution

We begin with a simple inductive proof of the Akra-Bazzi result. The result holds for recurrences
of the form:

T (x) =

(
�(1) for 1 � x � x0Pk

i=1 aiT (bix) + g(x) for x > x0
(1)

where1

1. x � 1 is a real number,

2. x0 is a constant such that x0 � 1=bi and x0 � 1=(1� bi) for 1 � i � k,

3. ai > 0 is a constant for 1 � i � k,

4. bi 2 (0; 1) is a constant for 1 � i � k,

5. k � 1 is a constant, and

6. g(x) is a nonnegative function that satis�es the polynomial-growth condition speci�ed below.

De�nition. We say that g(x) satis�es the polynomial-growth condition if there exist positive con-
stants c1, c2 such that for all x � 1, for all 1 � i � k, and for all u 2 [bix; x],

c1g(x) � g(u) � c2g(x):

Remark. If jg0(x)j is upper bounded by a polynomial in x, then g(x) satis�es the polynomial-
growth condition. For example, g(x) = x� log� x satis�es the polynomial-growth condition for any
constants �; � 2 R.
Theorem 1 ([1]). Given a recurrence of the form speci�ed in Equation 1, let p be the unique real

number for which
Pk

i=1 aib
p
i = 1. Then

T (x) = �

�
xp
�
1 +

Z x

1

g(u)

up+1
du

��
:

Examples.

� If T (x) = 2T (x=4)+ 3T (x=6)+ �(x log x), then p = 1 and T (x) = �(x log2 x).

� If T (x) = 2T (x=2)+ 8
9T (3x=4) + �(x2= log x), then p = 2 and T (x) = �(x2= log log x).

� If T (x) = T (x=2) + �(log x), then p = 0 and T (x) = �(log2 x).

� If T (x) = 1
2T (x=2)+ �(1=x), then p = �1 and T (x) = �((log x)=x).

� If T (x) = 4T (x=2)+ �(x), then p = 2 and T (x) = �(x2).

1These conditions are somewhat less restrictive than those of [1].
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The proof of Theorem 1 makes use of the following simple lemma from calculus.

Lemma 1. If g(x) is a nonnegative function that satis�es the polynomial-growth condition, then

there are positive constants c3, c4 such that for 1 � i � k and all x � 1,

c3g(x) � xp
Z x

bix

g(u)

up+1
du � c4g(x):

Proof. From the polynomial-growth condition we know that

xp
Z x

bix

g(u)

up+1
du � xp(x� bix)

c2g(x)

minf(bix)p+1; xp+1g
=

(1� bi)c2

minf1; bp+1i g g(x)

� c4g(x)

where we de�ne c4 to be a constant for which

c4 � (1� bi)c2

minf1; bp+1i g
for 1 � i � k.

Similarly,

xp
Z x

bix

g(u)

up+1
du � xp(x� bix)

c1g(x)

maxf(bix)p+1; xp+1g
=

(1� bi)c1

maxf1; bp+1i g
g(x)

� c3g(x)

where we de�ne c3 to be a constant for which

c3 � (1� bi)c2

maxf1; bp+1i g
for 1 � i � k.

We will use induction to prove Theorem 1, and so it will be helpful to partition the domain of x
into intervals I0 = [1; x0] and Ij = (x0 + j � 1; x0+ j] for j � 1.

By the de�nition of x0, we know that if x 2 Ij for some j � 1, then for 1 � i � k, bix 2 Ij0 for
some j0 < j. This is because bix > bi(x0 + j � 1) � bix0 � 1, and because bix � bi(x0 + j) �
x0 + j � (1� bi)x0 � x0 + j � 1. As a consequence, we know that the value of T in any interval
after [1; x0] depends only on the values of T in prior intervals.
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Proof of Theorem 1. We �rst show that there is a positive constant c5 such that for all x > x0,

T (x) � c5x
p

�
1 +

Z x

1

g(u)

up+1
du

�
:

The proof is by induction on the interval Ij containing x. The base case when j = 0 follows from
the fact that T (x) = �(1) when x 2 [1; x0] (provided that we choose c5 small enough).

The inductive step is argued as follows:

T (x) =
kX

i=1

aiT (bix) + g(x)

�
kX

i=1

aic5(bix)
p

�
1 +

Z bix

1

g(u)

up+1
du

�
+ g(x) (by induction)

= c5x
p

kX
i=1

aib
p
i

�
1 +

Z x

1

g(u)

up+1
du�

Z x

bix

g(u)

up+1
du

�
+ g(x)

� c5x
p

kX
i=1

aib
p
i

�
1 +

Z x

1

g(u)

up+1
du� c4

xp
g(x)

�
+ g(x) (by Lemma 1)

= c5x
p

�
1 +

Z x

1

g(u)

up+1
du� c4

xp
g(x)

�
+ g(x)

= c5x
p

�
1 +

Z x

1

g(u)

up+1
du

�
+ g(x)� c5c4g(x)

� c5x
p

�
1 +

Z x

1

g(u)

up+1
du

�

provided that c5 � 1=c4.

The proof that there is a positive constant c6 such that for all x > x0,

T (x) � c6x
p

�
1 +

Z x

1

g(u)

up+1
du

�

is nearly identical. We need only insure that c6 is chosen large enough so that the base case is
satis�ed and so that c6 � 1=c3. As a consequence, we can conclude that

T (x) = �

�
xp
�
1 +

Z x

1

g(u)

up+1
du

��
;

as claimed.

Remark. If g(x) grows faster than any polynomial in x, then T (x) = �(g(x)). Hence, Theorem 1
does not necessarily hold if g(x) does not satisfy the polynomial-growth condition.
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3 Variations

Although the class of recurrences analyized in Section 2 is quite broad, recurrences that arise in
practice often di�er in small ways from the class speci�ed in Equation 1. For example, in algorithm
design, recurrences of the form

T (x) �
kX

i=1

aiT (dbixe) + g(x)

are common.

Generally speaking, the inclusion of 
oors and ceilings in a recurrence does not signi�cantly change
the nature of the solution (e.g., see [1, 2]), but the proofs of this fact tend to be fairly tedious and
specialized in nature. In what follows, we describe a general class of variations (which includes

oors and ceilings) and we show that the variations in this class do not a�ect the solution of the
recurrence (up to constant factors). In particular, we show that the solution of Theorem 1 holds
for all recurrences of the form:

T (x) =

(
�(1) for 1 � x � x0Pk

i=1 aiT (bix+ hi(x)) + g(x) for x > x0
(2)

where

1. x, x0, ai, bi, k, and g(x) all satisfy the conditions speci�ed in Section 2,

2. there is some constant � > 0 for which jhi(x)j � x=(log1+� x) for 1 � i � k whenever x � x0,

3. there exist positive constants c1 and c2 such that for all x � 1, for all 1 � i � k, and for all
u 2 [bix + hi(x); x],

c1g(x) � g(u) � c2g(x);

and

4. x0 is chosen to be a large enough constant2 so that for any i � k and any x � x0,

(a)

�
1� 1

bi log
1+� x

�p
0
@1 + 1

log�=2
�
bix+

x
log1+� x

�
1
A � 1 +

1

log�=2 x
,

(b)

�
1 +

1

bi log
1+� x

�p
0
@1� 1

log�=2
�
bix+

x
log1+� x

�
1
A � 1� 1

log�=2 x
,

(c)
1

2

�
1 +

1

log�=2 x

�
� 1,

(d) 2

�
1� 1

log�=2 x

�
� 1.

2Such a constant value of x0 can be shown to exist using standard Taylor series expansions and asymptotic analysis.
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For example, we might choose hi so that

hi(x) = dbixe � bix;

thereby extending Theorem 1 to handle ceiling functions. In this case, jhi(x)j < 1. We can also use
much larger functions, however. For example, we could set hi(x) = �px or hi(x) = x=(log2 x) for
x > 1.

To analyze the more general recurrence, we will need the following analogue of Lemma 1.

Lemma 2. There are positive constants c3, c4 such that for 1 � i � k and all x � 1,

c3g(x) � xp
Z x

bix+hi(x)

g(u)

up+1
du � c4g(x):

Proof. The proof is identical to that for Lemma 1 except that we use constraint 3 above in place
of the polynomial-growth condition of Section 2.

Theorem 2. Given a recurrence of the form speci�ed in Equation 2, let p be the unique real number

for which
Pk

i=1 aib
p
i = 1. Then

T (x) = �

�
xp
�
1 +

Z x

1

g(u)

up+1
du

��
:

Proof. The proof is very similar to that of Theorem 1. The main di�erence is that we use a slightly
stronger inductive hypothesis. In particular, we begin by showing that there is a positive constant c5
such that for all x > x0,

T (x) � c5x
p

�
1 +

1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du

�
:

The proof is by induction on the interval Ij containing x. The base case when j = 0 follows from the

fact that T (x) = �(1) when x 2 [1; x0] (provided that c5 is chosen to be a small enough constant).
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The inductive step is argued as follows:

T (x) =
kX

i=1

aiT (bix+ hi(x)) + g(x)

�
kX

i=1

aic5(bix+ hi(x))
p

 
1 +

1

log�=2(bix+ hi(x))

!

�
 
1 +

Z bix+hi(x)

1

g(u)

up+1
du

!
+ g(x) (by induction)

�
kX

i=1

aib
p
i c5x

p

�
1� 1

bi log
1+� x

�p
0
@1 + 1

log�=2
�
bix+

x
log1+� x

�
1
A

�
 
1 +

Z x

1

g(u)

up+1
du�

Z x

bix+hi(x)

g(u)

up+1
du

!
+ g(x) (by the bounds on h)

�
kX

i=1

aib
p
i c5x

p

�
1 +

1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du� c4

xp
g(x)

�
+ g(x)

(by constraint 4(a) on x0 and Lemma 2)

= c5x
p

�
1 +

1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du� c4

xp
g(x)

�
+ g(x)

= c5x
p

�
1 +

1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du

�
+ g(x)� c5c4

�
1 +

1

log�=2 x

�
g(x)

� c5x
p

�
1 +

1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du

�

provided that c5 � 1=(2c4) (by constraint 4(c) on x0).

The proof of the upper bound is quite similar. In this case, we show by induction that there is a
positive constant c6 such that for all x > x0,

T (x) � c6x
p

�
1� 1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du

�
:
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The base case is as before. The inductive step is argued as follows:

T (x) =
kX

i=1

aiT (bix+ hi(x)) + g(x)

�
kX

i=1

aic6(bix+ hi(x))
p

 
1� 1

log�=2(bix+ hi(x))

!

�
 
1 +

Z bix+hi(x)

1

g(u)

up+1
du

!
+ g(x) (by induction)

�
kX

i=1

aib
p
i c6x

p

�
1 +

1

bi log
1+� x

�p
0
@1� 1

log�=2
�
bix+

x
log1+� x

�
1
A

�
 
1 +

Z x

1

g(u)

up+1
du�

Z x

bix+hi(x)

g(u)

up+1
du

!
+ g(x) (by the bounds on h)

�
kX

i=1

aib
p
i c6x

p

�
1� 1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du� c3

xp
g(x)

�
+ g(x)

(by constraint 4(b) on x0 and Lemma 2)

= c6x
p

�
1� 1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du� c3

xp
g(x)

�
+ g(x)

= c6x
p

�
1� 1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du

�
+ g(x)� c3c6

�
1� 1

log�=2 x

�
g(x)

� c6x
p

�
1� 1

log�=2 x

��
1 +

Z x

1

g(u)

up+1
du

�

provided that c6 � 2=c3 (by constraint 4(d) on x0).

Hence, we can conclude that

T (x) = �

�
xp
�
1 +

Z x

1

g(u)

up+1
du

��
;

as desired.

Remark. It is worth noting that the x= log1+� x limit on the size of jhi(x)j is nearly tight, since
the solution of the recurrence

T (x) =

(
�(1) for 1 � x � x0

2T
�
x
2 +

x
logx

�
for x > x0

is T (x) = x log�(1) x, which is di�erent than the solution of �(x) for the recurrence without the
x= log x term.
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