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Abstract

Techniques for solving divide-and-conquer recurrences are routinely taught to thousands of
Computer Science students each year. The dominant approach to solving such recurrences is
known as the Master Method [2]. Recently, Akra and Bazzi [1] discovered a surprisingly elegant
generalization of the Master Method that yields a very simple formula for solving most divide-
and-conquer recurrences. In these notes, we provide a simple inductive proof of the Akra-Bazzi
result and we extend the result to handle variations of divide-and-conquer recurrences that
commonly arise in practice.

1 Introduction

Divide-and-conquer recurrences are ubiquitous in the analysis of algorithms. Many methods are
known for solving recurrences such as

T 1 ifn=1
(n) = 2T([n/2]) +O(n) if n > 1,

but perhaps the most widely taught approach is the Master Method that is described in the seminal
algorithms text by Cormen, Leiserson and Rivest [2].

The Master Method is fairly powerful and results in a closed form solution for divide-and-conquer
recurrences with a special (but commonly-occurring) form. Recently Akra and Bazzi [1] discovered
a far more general solution to divide-and-conquer recurrences. The Akra-Bazzi analysis is based
on a special functional transform that they call the “order transform.”

In these notes, we give a simple inductive proof of the Akra-Bazzi result that is suitable for use
in an undergraduate algorithms or discrete math class. We also show that the Akra-Bazzi result
holds for a more general class of recurrences that commonly arise in practice and that are often
considered to be difficult to solve.



2 The Akra-Bazzi Solution

We begin with a simple inductive proof of the Akra-Bazzi result. The result holds for recurrences
of the form:

T(z)=

{@(1) for 1 <z <z )

Zf:1 a; T (b;x) + g(z) for z > 2

wherel

1. 2 > 1is a real number,

2. z¢ is a constant such that zg > 1/b; and zg > 1/(1 = b;) for 1 < ¢ <k,

3. a; > 0 is a constant for 1 <z < k,

4. b; € (0,1) is a constant for 1 <1 < k,

5. k> 1is a constant, and

6. g(x) is a nonnegative function that satisfies the polynomial-growth condition specified below.

Definition. We say that g(z) satisfies the polynomial-growth condition if there exist positive con-
stants ¢y, ¢o such that for all # > 1, for all 1 <7 <k, and for all u € [b;z, z],

cg(z) < g(u) < eag(2).

Remark. If |¢'(z)| is upper bounded by a polynomial in z, then g(z) satisfies the polynomial-
growth condition. For example, g(z) = 2 logﬁ x satisfies the polynomial-growth condition for any
constants o, 5 € R.

Theorem 1 ([1]). Given a recurrence of the form specified in Fquation 1, let p be the unique real
number for which % a;b? = 1. Then

T(z) =0 (xp (1 +/j zﬁ} du)) .

Examples.
o If T(x) =2T(x/4)+ 3T (2/6) + O(z logz), then p=1 and T(z) = O(x log? z).
o If T'(x)=2

T(z/2)+ 5T (3z/4) + ©(2?/log z), then p =2 and T'(z) = O(2?/ loglog z).
T(z/2) + O(logz), then p = 0 and T(z) = O(log” ).

o If T'(x

)
)
)
) = 1T(z/2) + O(1/z), then p = —1 and T(z) = O((log z)/z).

(
(
o If T'(x
(
( 4T(x/2) 4+ O(z), then p=2 and T(z) = O(z?).

o If T'(x)

'These conditions are somewhat less restrictive than those of [1].



The proof of Theorem 1 makes use of the following simple lemma from calculus.

Lemma 1. If g(z) is a nonnegative function that satisfies the polynomial-growth condition, then
there are positive constants cs, ¢4 such that for 1 <i <k and all z > 1,

cgte) <o [ 2 du< (o)

Proof. From the polynomial-growth condition we know that

P /bx zgi du < 2"(x — bia) min{(bf;‘;fﬁ )
= % g(x)
< eag(w)
where we define ¢4 to be a constant for which
(1 —=b;)er
~ min{1,6/t"}
for 1 <o <k.
Similarly,
o /b,x zizz du > 2¥(z — byz) max{((,ﬁﬁifl xrtl}
B mi{lbb)pill} 9(2)
> c3g(x)
where we define ¢3 to be a constant for which
(1 —=b;)er
- max{l,bf“}
for 1 <o <k. O

We will use induction to prove Theorem 1, and so it will be helpful to partition the domain of x
into intervals Iy = [1,2¢] and I; = (zo+j — 1,20+ j] for j > 1.

By the definition of zg, we know that if z € I; for some j > 1, then for 1 <1 < k, bz € I; for
some j' < j. This is because bz > b;(zo+ j — 1) > bjzg > 1, and because bz < b;j(xg + j) <
zo+ 37— (1 —b)zo < zo+j— 1. As a consequence, we know that the value of T in any interval
after [1, zo] depends only on the values of T in prior intervals.



Proof of Theorem 1. We first show that there is a positive constant cs such that for all 2 > g,

s oo (14 [ 28 ),

The proof is by induction on the interval I; containing z. The base case when j = 0 follows from
the fact that T'(z) = ©(1) when z € [1, z¢] (provided that we choose ¢5 small enough).

The inductive step is argued as follows:

T(x)=>_ aT(bix) + g(x)

k b,z
‘ U . .
> Zai%(bix)p (1 + /1 zzg-l-z du) +g(z) (by induction)

1=1
: *9(w) " g
_c5xp2a2bp (1—|—/1 up-l-ld —/b‘ o1 du) + g(x)
=1 a
- " g(w) ¢
> csaf Zaibf (1 + /1 s du — x_j? g(x)) +g(z) (by Lemma 1)
1=1

provided that ¢5 < 1/¢y.

The proof that there is a positive constant cg such that for all z > zg,

T(z) < ca” (1 + /j zﬁ} du)

is nearly identical. We need only insure that cg is chosen large enough so that the base case is
satisfied and so that ¢g > 1/c3. As a consequence, we can conclude that

T(z)=0© (xp (1 +/1x Z;Q du)) :

as claimed. Ol

Remark. If g(z) grows faster than any polynomial in 2, then 7'(z) = ©(g(z)). Hence, Theorem 1
does not necessarily hold if g(z) does not satisfy the polynomial-growth condition.



3 Variations

Although the class of recurrences analyized in Section 2 is quite broad, recurrences that arise in
practice often differ in small ways from the class specified in Equation 1. For example, in algorithm
design, recurrences of the form

T(@) <Y al([bi]) + g(o)

=1

are comimaorn.

Generally speaking, the inclusion of floors and ceilings in a recurrence does not significantly change
the nature of the solution (e.g., see [1, 2]), but the proofs of this fact tend to be fairly tedious and
specialized in nature. In what follows, we describe a general class of variations (which includes
floors and ceilings) and we show that the variations in this class do not affect the solution of the
recurrence (up to constant factors). In particular, we show that the solution of Theorem 1 holds
for all recurrences of the form:

_Je() for 1 <a < xg
Tle)= {Zf:l a;T'(bjx + hi(z))+g(z) fora >z (2)

where

1. @, xo, a;, b;, k, and g(z) all satisfy the conditions specified in Section 2,
2. there is some constant ¢ > 0 for which |h;(z)| < #/(log!'™¢ z) for 1 < i < k whenever x > zo,

3. there exist positive constants ¢; and ¢ such that for all > 1, for all 1 <+ < k, and for all

u € [bjx + hi(x), z],
c19(2) < g(u) < e29(z),
and

4. zg is chosen to be a large enough constant? so that for any ¢ < k and any z > zg,

1 P 1
(a) (1—71+5) 1+ > 1+ —,
bilog' ™ x log®/? (bix + loglx‘l'—ex) log®/?

1 1
<1

P
o (1) (1 S
b; 10g1+ T 10g6/2 (bz$‘|‘ ]0g1+5x) loge/zx

2Such a constant value of zo can be shown to exist using standard Taylor series expansions and asymptotic analysis.



For example, we might choose h; so that
hi(z) = [biz] — bz,

thereby extending Theorem 1 to handle ceiling functions. In this case, |h;(2)| < 1. We can also use
much larger functions, however. For example, we could set h;(z) = —/Z or h;(z) = x/(log® x) for
x> 1.

To analyze the more general recurrence, we will need the following analogue of Lemma 1.

Lemma 2. There are positive constants c3, ¢4 such that for 1 < ¢ <k and all v > 1,

eag(2) < 27 /9” g(u)

1
bizt+h;(z) upt

du < eqg().

Proof. The proof is identical to that for Lemma 1 except that we use constraint 3 above in place
of the polynomial-growth condition of Section 2. U

Theorem 2. Given a recurrence of the form specified in Fquation 2, let p be the unique real number

for which % a;b? = 1. Then

T(z) =0 (xp (1 +/j zﬁ} du)) .

Proof. The proof is very similar to that of Theorem 1. The main difference is that we use a slightly

stronger inductive hypothesis. In particular, we begin by showing that there is a positive constant ¢
such that for all x > xzg,
1 “g(u)
p
T(z) > csx (1 + logE/Qx) (1 —I—/1 ) du) .

The proofis by induction on the interval /; containing z. The base case when j = 0 follows from the

fact that T'(z) = ©(1) when z € [1, z¢] (provided that cs is chosen to be a small enough constant).



The inductive step is argued as follows:

k
ZQZT (bix + hi(z)) + g(2)

=1

v

, 1
. aZC5(b$—|-h( )) (1+]0g5/2(()¢$+h¢($>))

bizt+h;(z)
X (1 —I—/1 zzgﬁ du) + g(2) (by induction)

LI 1 p 1
> bPesaP |1 — ———— 1
Z Za ; C5 L ( b; 10g1+e x) + 10g5/2 (b T _I_ 1+€ )

X (1 + /ll’ g(u) du — /j u}g_l_i du) + g(2) (by the bounds on h)

1
urt sx+hi(z)

=1

k
1 T glu c
ot () (1] o)

=1

(by constraint 4(a) on z¢ and Lemma 2)

1 7 g(u) Cq
— ¥4 _
= 57 (1 + 1Oge/z x) (1 +/1 uptl du P 9(95)) +9(x)
:c5xp(1+ ! )(H—/gg ()dU)—I-g(x)—C5C4(1+ ! )9(96)
10g6/2$ 1 p+1 IOg/

1 “ g(u)
P
Z oot (1 * logE/Zx) (1 +/1 uPtt du)

provided that ¢5 < 1/(2¢c4) (by constraint 4(c) on o).

The proof of the upper bound is quite similar. In this case, we show by induction that there is a
positive constant c¢g such that for all x > xg,

1 7 g(u)
P _
T(z) < cox (1 logE/Qx) (1 —I—/1 ) du) .




The base case is as before. The inductive step is argued as follows:

k
ZQZT (bix + hi(z)) + g(2)

1
aZC6(b z+h; ( )) (1 a IOgE/Q(bZ»x + h2($)))

bizt+h;(z)
X (1 —I—/1 zzgﬁ du) + g(2) (by induction)

il 1 P 1
S aibf%xp (1 —|— ﬁ) 1-
; bilog™™* log/? (bia + = )

 g(u) ¢ g(u)
X (1 -|_/1 s du — /b ) du | + g(z) (by the bounds on h)

sx+hi(z)

IA

k

=1

k

1 “g(u) &
HP P _
E a;b;cex (1 loge/z x) (1 + /1 s du e g(x)) +g(z)

=1

IA

(by constraint 4(b) on z¢ and Lemma 2)
=ceal | 1 — ! 1+ "o du — = () ) + g(2)
-6 loge/Q 2 1 upt1 TP g g
1 (u) 1
— P [ 1~ _ _
et (1) (1 ) o= (1 o
9(u) du)

1
p R —
< e (1 loge/Q $) (1 + upt1

provided that ¢g > 2/c3 (by constraint 4(d) on ).

T(x)=0 (xp (1 +/j zg} du)) ,

as desired. O

g

r
r

Hence, we can conclude that

Remark. It is worth noting that the x/log't® 2 limit on the size of |h;(2)| is nearly tight, since
the solution of the recurrence

O(1) for 1 <a <z

x):{QT(g—I—ﬁ) for > ¢

is T(z) = 21og®M) z, which is different than the solution of ©(z) for the recurrence without the
x/log @ term.
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