
ext3 Journaling File System
 “absolute consistency of the filesystem in every respect after a reboot,

with no loss of existing functionality”

chadd williams
SHRUG

10/05/2001

Contents

•  Design Goals
•  File System reliability
•  What is JFS?
•  Why JFS?
•  How?
•  Details of ext3
•  Detail of JFS

Design Goals

•  No performance loss
– Should have a performance gain

•  Backwards compatible
•  Reliable!

File System reliability

•  Preservation
– Stable data is not affected by a crash

•  Predictability
– Known failure modes

•  Atomicity
– Each operation either fully completes or is fully

undone after recovery

What is a JFS?
•  Atomically updated
•  Old and new versions of data held on disk until the

update commits
•  Undo logging:

–  Copy old data to the log
–  Write new data to disk
–  If you crash during update, copy old data from log

•  Redo logging:
–  Write new data to the log
–  Old data remains on disk
–  If you crash, copy new data from the log

Why JFS?

•  Speed recovery time after a crash
–  fsck on a large disk can be very slow
– ‘to eliminate enormously long filesystem

recovery times after a crash’
•  With JFS you just reread the journal after a

crash, from the last checkpoint

Journal

•  Contains three types of data blocks
– Metadata: entire contents of a single block of

filesystem metadata as updated by the
transaction

– Descriptor: describe other journal metadata
blocks (where they really live on disk)

– Header: contain head and tail of the journal,
sequence number, the journal is a circular
structure

Versus log-structured file system

•  A log structured file system ONLY contains
a log, everything is written to the end of this
log

•  LSFS dictates how the data is stored on disk
•  JFS does not dictate how the data is stored

on disk

How does it work?
•  Each disk update is a Transaction (atomic

update)
– Write new data to the disk (journal)
– The update is not final until a commit

•  Only after the commit block is written is the
update final
– The commit block is a single block of data on

the disk
– Not necessarily flushed to disk yet!

How does data get out of the
journal?

•  After a commit the new data is in the
journal – it needs to be written back to its
home location on the disk

•  Cannot reclaim that journal space until we
resync the data to disk

To finish a Commit (checkpoint)
•  Close the transaction

–  All subsequent filesystem operations will go into
another transaction

•  Flush transaction to disk (journal), pin the buffers
•  After everything is flushed to the journal, update

journal header blocks
•  Unpin the buffers in the journal only after they

have been synced to the disk
•  Release space in the journal

How does this help crash recovery?

•  Only completed updates have been
committed
– During reboot, the recovery mechanism

reapplies the committed transactions in the
journal

•  The old and updated data are each stored
separately, until the commit block is written

ext3 and JFS

•  Two separate layers
–  /fs/ext3 – just the filesystem with transactions
–  /fs/jdb – just the journaling stuff (JFS)

•  ext3 calls JFS as needed
– Start/stop transaction
– Ask for a journal recovery after unclean reboot

•  Actually do compound transactions
– Transactions with multiple updates

ext3 details

•  This grew out of ext2
•  Exact same code base
•  Completely backwards compatible (if you

have a clean reboot)
– Set some option bits in the superblock,

preventing ext2 mount
– Unset during a clean unmount

JFS details

•  Abstract API based on handles, not
transactions

•  Handle: “represents one single operation
that marks a consistent set of updates on the
disk”
– Compound transactions

JFS details

•  API provides start()/stop() pairing to define
the operations within a handle

•  Allows for nesting of transactions
•  There must be enough space in the journal

for each update before it starts
– Lack of space can lead to deadlock
–  start/stop used to make reservations in journal

JFS details

•  Also need to make VM reservations
– Cannot free memory from an in process

transaction
– No transaction aborts – the transaction must

complete
–  If you run out of VM you can deadlock
– Provide call backs to VM so the VM can say,

your using too much memory

Guarantees
•  Write ordering within a transaction

– All the updates in a transaction will hit the disk
after the commit

– Updates are still write-behind, so you don’t
know when the commit will be done

•  Write ordering between transactions
– No formal guarantees
– Sequential implementation happens to preserve

write ordering

Internals
•  ext3 & JFS do redo logging

– New data written to log
– Old data left on disk
– After commit new data is moved to disk

•  Commit
– Consists of writing one 512-byte sector to disk
– Disks can guarantee the write of 1 sector

Internals

•  Checkpointing
– Writing the data from the log out to disk
– Allows reuse of the log
– Currently everything is written to disk twice
– Uses a zero-copy to do the second write

•  new I/O request points to old data buffer

Internals

•  What if we need to update data in a pending
transaction?
– Copy-on-write

•  Give a copy of the data buffer to the new transaction
– Both transactions still get committed in full

•  In order

