ext3 Journaling File System

“absolute consistency of the filesystem in every respect after a reboot,
with no loss of existing functionality”

chadd williams

SHRUG
10/05/2001



Contents

Design Goals

File System reliability
What 1s JFS?

Why JFS?

How?

Details of ext3

Detail of JFS



Design Goals

* No performance loss

— Should have a performance gain
* Backwards compatible
* Reliable!



File System reliability

* Preservation
— Stable data is not affected by a crash

* Predictability
— Known failure modes
* Atomicity

— Each operation either fully completes or 1s fully
undone after recovery



What 1s a JES?

Atomically updated

Old and new versions of data held on disk until the
update commits

Undo logging:

— Copy old data to the log

— Write new data to disk

— If you crash during update, copy old data from log
Redo logging:

— Write new data to the log

— OId data remains on disk
— If you crash, copy new data from the log



Why JFS?

* Speed recovery time after a crash
— fsck on a large disk can be very slow

— ‘to eliminate enormously long filesystem
recovery times after a crash’

* With JFS you just reread the journal after a
crash, from the last checkpoint



Journal

* Contains three types of data blocks

— Metadata: entire contents of a single block of
filesystem metadata as updated by the
transaction

— Descriptor: describe other journal metadata
blocks (where they really live on disk)

— Header: contain head and tail of the journal,
sequence number, the journal 1s a circular
structure



Versus log-structured file system

* A log structured file system ONLY contains
a log, everything 1s written to the end of this
log

L.SFS dictates how the data 1s stored on disk

 JFS does not dictate how the data 1s stored
on disk



How does 1t work?

* Each disk update 1s a Transaction (atomic
update)
— Write new data to the disk (journal)
— The update 1s not final until a commit
* Only after the commit block 1s written 1s the

update final

— The commit block 1s a single block of data on
the disk

— Not necessarily flushed to disk yet!



How does data get out of the
journal?
» After a commit the new data 1s in the

journal — 1t needs to be written back to its
home location on the disk

* Cannot reclaim that journal space until we
resync the data to disk



To finish a Commit (checkpoint)

Close the transaction

— All subsequent filesystem operations will go into
another transaction

Flush transaction to disk (journal), pin the buffers

After everything 1s flushed to the journal, update
journal header blocks

Unpin the buffers in the journal only after they
have been synced to the disk

Release space 1n the journal



How does this help crash recovery?

* Only completed updates have been
committed

— During reboot, the recovery mechanism
reapplies the committed transactions in the
journal

* The old and updated data are each stored
separately, until the commit block 1s written



ext3 and JFS

* Two separate layers

— /fs/ext3 — just the filesystem with transactions
— /fs/jdb — just the journaling stuff (JFS)

e ext3 calls JFS as needed

— Start/stop transaction
— Ask for a journal recovery after unclean reboot

* Actually do compound transactions
— Transactions with multiple updates



ext3 details

* This grew out of ext2
 Exact same code base

* Completely backwards compatible (if you
have a clean reboot)

— Set some option bits 1n the superblock,
preventing ext2 mount

— Unset during a clean unmount



JES details

» Abstract API based on handles, not
transactions

 Handle: “represents one single operation
that marks a consistent set of updates on the
disk”

— Compound transactions



JES details

* API provides start()/stop() pairing to define
the operations within a handle

* Allows for nesting of transactions

* There must be enough space 1n the journal
for each update before 1t starts

— Lack of space can lead to deadlock

— start/stop used to make reservations in journal



JES details

 Also need to make VM reservations

— Cannot free memory from an 1n process
transaction

— No transaction aborts — the transaction must
complete

— If you run out of VM you can deadlock

— Provide call backs to VM so the VM can say,
your using too much memory



Guarantees

* Write ordering within a transaction

— All the updates 1n a transaction will hit the disk
after the commut

— Updates are still write-behind, so you don’ t
know when the commit will be done

* Write ordering between transactions
— No formal guarantees

— Sequential implementation happens to preserve
write ordering



Internals

» ext3 & JFS do redo logging

— New data written to log
— Old data left on disk

— After commit new data is moved to disk

 Commit
— Consists of writing one 512-byte sector to disk
— Disks can guarantee the write of 1 sector



Internals

* Checkpointing
— Writing the data from the log out to disk
— Allows reuse of the log
— Currently everything 1s written to disk twice

— Uses a zero-copy to do the second write
* new I/O request points to old data buffer



Internals

* What if we need to update data in a pending
transaction?
— Copy-on-write
» (G1ve a copy of the data buffer to the new transaction

— Both transactions still get committed 1n full

e In order



