
1

Copyright @ Dr. M. Brian Blake, University of Miami

Software Engineering

Professor M. Brian Blake

Requirements Engineering
(Problem Statements and Use Cases)

Copyright @ Dr. M. Brian Blake, University of Miami

Where are we right now?

 Three ways to deal with complexity:
 Abstraction
 Decomposition (Technique: Divide and conquer)
 Hierarchy (Technique: Layering)

 Two ways to deal with decomposition:
 Object-orientation and functional decomposition
 Functional decomposition leads to unmaintainable

code
 Depending on the purpose of the system, different

objects can be found

 What is the right way?
 Start with a description of the functionality (Use

case model). Then proceed by finding objects
(object model).

 What activities and models are needed?
 This leads us to the software lifecycle we use in

this class

Copyright @ Dr. M. Brian Blake, University of Miami

Software Lifecycle Definition

 Software lifecycle:
 Set of activities and their relationships to each other

to support the development of a software system

 Typical Lifecycle questions:
Which activities should I select for the software

project?

What are the dependencies between activities?

 How should I schedule the activities?

What is the result of an activity

Copyright @ Dr. M. Brian Blake, University of Miami

Software Lifecycle Activities

Application
Domain
Objects

SubSystems

class...
class...
class...

Solution
Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured By

Implemented
By

Realized By Verified
By

System
Design

Object
Design

Implemen-
tation

Testing

class....?

Requirements
Elicitation

Use Case
Model

Requirements
Analysis

Copyright @ Dr. M. Brian Blake, University of Miami

First Step in Establishing the Requirements:
System Identification

 The development of a system is not just done by taking a
snapshot of a scene (domain)

 Two questions need to be answered:
 How can we identify the purpose of a system?
 Crucial is the definition of the system boundary: What is inside, what is

outside the system?

 These two questions are answered in the requirements
process

 The requirements process consists of two activities:
 Requirements Elicitation:

 Definition of the system in terms understood by the customer
(“Problem Description”)

 Requirements Analysis:
 Technical specification of the system in terms understood by the

developer (“Problem Specification”)

Copyright @ Dr. M. Brian Blake, University of Miami

Products of Requirements Process

Requirements
Analysis

system
specification:

Model

analysis
model: Model

(Activity Diagram)

Problem
Statement
Generation

Requirements
Elicitation

Problem
Statement

Problem Statement
Scenarios

Use Cases,
Use Case Templates
Activity Diagrams

Early
Class
Diagrams

2

Copyright @ Dr. M. Brian Blake, University of Miami

Requirements Elicitation

 Very challenging activity

 Requires collaboration of people with different
backgrounds
 Users with application domain knowledge

 Developer with solution domain knowledge (design knowledge,
implementation knowledge)

 Bridging the gap between user and developer:
 Scenarios: Example of the use of the system in terms of a series of

interactions with between the user and the system

 Use cases: Abstraction that describes a class of scenarios

Copyright @ Dr. M. Brian Blake, University of Miami

System Specification vs Analysis Model

 Both models focus on the requirements from the user’s
view of the system.

 System specification uses natural language (derived
from the problem statement)

 The analysis model uses formal or semi-formal notation
(for example, a graphical language like UML)

 The starting point is the problem statement

Copyright @ Dr. M. Brian Blake, University of Miami

Problem
Statements

Copyright @ Dr. M. Brian Blake, University of Miami

Problem Statement

 A Problem Statement is probably the simplest
concept in software engineering.

 Just a written narrative that tells how the
domain/system is supposed to initiate and execute.

 Generally the nouns of this statement become the
objects of the system

 Write as though you are explaining the system to a
designer

Copyright @ Dr. M. Brian Blake, University of Miami

Problem Statement

 The problem statement is developed by the client as a description of
the problem addressed by the system

 Other words for problem statement:

 Statement of Work

 A good problem statement describes

 The current situation

 The functionality the new system should support

 The environment in which the system will be deployed

 Deliverables expected by the client

 Delivery dates

 A set of acceptance criteria

Copyright @ Dr. M. Brian Blake, University of Miami

Ingredients of a Problem Statement

 Current situation: The Problem to be solved

 Description of one or more scenarios

 Requirements
 Functional and Nonfunctional requirements

 Constraints (“pseudo requirements”)

 Project Schedule
 Major milestones that involve interaction with the client including

deadline for delivery of the system

 Target environment
 The environment in which the delivered system has to perform a

specified set of system tests

 Client Acceptance Criteria
 Criteria for the system tests

3

Copyright @ Dr. M. Brian Blake, University of Miami

Current Situation: The Problem To Be Solved

 There is a problem in the current situation

 Examples:
 The response time when playing letter-chess is far too slow.

 I want to play, but cannot find players on my level.

 What has changed? Why can you address the problem
now?
 There has been a change, either in the application domain or in the

solution domain

 Change in the application domain

 A new function (business process) is introduced into the business

 Example: We can play highly interactive games with remote people

 Change in the solution domain

 A new solution (technology enabler) has appeared

 Example: The internet allows the creation of virtual communities.

Copyright @ Dr. M. Brian Blake, University of Miami

What’s wrong with the T2V
Problem Statement?

 Mobile customers are irritated when they have to ignore phone calls
when attending important meetings that they cannot leave. Although
they cannot leave the meeting, they are still able respond just not
verbally. You are developing software additions to the existing
mobile infrastructure that allows a person to answer a call in text
messaging mode. The user will receive voice from the caller in the
form of text and will be able to respond by typing on the phone and
the responses will be spoken back to the caller. The mobile user
may configure the phone with common phrases, in advance. The
mobile user will be able specify a type of voice from several options
(e.g. female, male, robotic). The mobile user should have a specific
module on his/her phone that handles this mode. Instead of just
answer and ignore buttons, this module will present a third button
that will allow the user to answer in T2V mode.

Copyright @ Dr. M. Brian Blake, University of Miami

Exercise: Simple Problem Statement

 Write a problem statement for :
A Futuristic Frisbie
Futuristic Shoes
Futuristic Refrigerator

Copyright @ Dr. M. Brian Blake, University of Miami

Task List

 Go over Assignment 1
 Finalize teams for Final Projects
Go over Final Project Deliverables again

 Lecture on Requirements
Demonstrate Requisite Pro

 Lecture on Scenarios
Example for the T2V Problems statement
Student Group Work in Class on Frisbee,

Shoes, Refrigerator

Copyright @ Dr. M. Brian Blake, University of Miami

Defining
Requirements

Copyright @ Dr. M. Brian Blake, University of Miami

Types of Requirements

 Functional requirements:
 Describe the interactions between the system and its environment independent

from implementation
 Examples:

 A Facebook user should be able to add photos

 Nonfunctional requirements:
 User visible aspects of the system not directly related to functional behavior.
 Examples:

 The response time must be less than 1 second
 Facebook’s main page should completely load in less than 15 seconds.

 Constraints (“Pseudo requirements”):
 Imposed by the client or the environment in which the system operates

 The implementation language must be Java
 Facebook should allow AJAX-based applications that extend existing

functions.

