
1/20/2013

1

Copyright @ Dr. M. Brian Blake

Software Engineering

Professors M. Brian Blake and Iman Saleh-
Moustafa

Course Overview

Administration
 Joint Lecturers:
Dr. M. Brian Blake (305) 284-4154

Dr. Iman Saleh (305) 284-2658

 Office Location: Graduate School, Pick
Hall, Brescia Avenue

 Teaching Assistants: Damian Clarke
(305) 284-4220 (d.clarke6@umiami.edu)

 Office Hours:
 Blake T/Th 11:15am -12:15pm (located at Pick)

 Saleh T/Th 12:15 pm – 1pm (located at Pick)

 Clarke M/W 9-11am (or by appointment) (located 4th Floor Ungar)

Class Overview/Goals
 Understand how to work in a group to develop medium-scale software

applications

 Become proficient at the industry-standard modeling language (Unified
Modeling Language (UML))

 Understand the general software engineering life-cycle

 Gain an appreciation of solving an **open** problem that requires
innovative software engineering practices

 Develop a product and take it "cradle to grave" through the full software
engineering lifecycle and articulate the outcomes to an external customer

 Gain an appreciation of contemporary software engineering techniques
such as design patterns, model-driven architecture, and service-oriented
computing

Class Philosophy

 Informal Class Environment

 50% Lecture / 50% Hands on exercise
each week

 Learn the material and your grades
should reflect

 Teaching the course from a corporate
perspective, preparation for the real
world

Class Progression

 Will adhere to the syllabus

 Group projects (5 in a group)
Presentations at the end of the term

 Ideas will be coming from outside companies
problem sets

 About 4 to 5 homework assignments
throughout the semester

Let’s run through the Syllabus

Can we substitute a few classes with
a night-time dinner class
(corporate presentations)

Main Course Webpage: http://www.cs.miami.edu/~blake/SE.html

Document location: http://www.cs.miami.edu/~blake/SE/

1/20/2013

2

Your Final Project Assignment
(yep, this early)

Copyright @ Dr. M. Brian Blake, University of Notre Dame

Next Class

Other Things that I forgot:
Cell Phones/ Laptops

Website, “Living Syllabus”, “No Books” and Slide Location

Copyright @ Dr. M. Brian Blake

Software Engineering

Professors M. Brian Blake and Iman Saleh-
Moustafa

Lecture 1: Introduction to the Object-Oriented
Software Engineering

Night-time Class
(Mon Jan 29))??

Syllabus Changes?
Talk about Grading?

Requirements

Software

Limitations of Non-engineered
Software

How would you start?

Software Production has a Poor Track Record

Example: Space Shuttle Software
 Cost: $10 Billion, millions of dollars more than planned

 Time: 3 years late

 Quality: First launch of Columbia was cancelled because of a synchronization
problem with the Shuttle's 5 onboard computers.

 Error was traced back to a change made 2 years earlier when a programmer
changed a delay factor in an interrupt handler from 50 to 80 milliseconds.

 The likelihood of the error was small enough, that the error caused no harm
during thousands of hours of testing.

 Substantial errors still exist.

 Astronauts are supplied with a book of known software problems "Program
Notes and Waivers".

 Service Activation – Professor Blake, BellSouth Experience

 Case Management System – Professor Blake, FBI
 Class seniors – Experience so far?

1/20/2013

3

Software Engineering
 Definitions:

 Software engineering. (1) The application of a
systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of
software; that is, the application of engineering to
software. - IEEE Std 610-1990

 Engineering is the systematic application of
scientific knowledge in creating and building cost
effective solutions to practical problems and
service of mankind. Software engineering is that
form of engineering that applies the principles of
computer science and mathematics to achieving
cost effective solutions to software problems -
CMU/SEI-90-TR-003

Can there really be Software
Engineering ?

 Is software quantifiable as in other
engineering fields ?

 Does current software development firms
consider software engineering as a field ?

 In Microsoft’s case, does it really work?

 Why is software engineering important ?

Decomposition

What is the least denominator, the smallest
piece that a human body can be broken

down into?

Is this the most practical piece
to build upon?

Object Technology

 Many believe that object technology makes
software quantifiable

 In a way, OOA/OOD engulfs all of our original
definitions of Software engineering

 Later, we will discuss how object technology
makes software systems quantifiable, in the
opinions of some.

Copyright @ Dr. M. Brian Blake, University of Notre Dame

Background on Object Technology

 What is a Methodology ?
A process for organized production of systems

and software using a collection of pre-defined
techniques and notational conventions.

 What is an Object-Oriented Methodology?
A development approach that organizes a system

as a collection of objects containing both data
structure and behavior.

Copyright @ Dr. M. Brian Blake, University of Notre Dame

Major Concepts of Object-Oriented
Analysis and Design

 What is an Object?
 An object has structure ~attributes

 An object must be an entity ~ a thing that can
have properties and not be a property itself.

 An object has behavior

 An object has unique identity

 An object is generally stated as a noun

 For example : Thermometer is an object,
temperature is not an object it is a property
(attribute) of the thermometer

1/20/2013

4

What is this Thing?

Modeling a Briefcase

BriefCase

Capacity: Integer
Weight: Integer

Open()
Close()
Carry()

A new Use for a Briefcase

BriefCase

Capacity: Integer
Weight: Integer

Open()
Close()
Carry()

SitOnIt()

Exercise 1.1

 Identify the objects likely to be encountered in
the following systems/domain:
A Convertible Car

An Airline

A Computer network

Copyright @ Dr. M. Brian Blake, University of Notre Dame

OO Concepts

 What is a Class ?
A group of objects with similar properties

(attributes), common behavior (operations),
common relationships to other objects
(associations), and common semantics.

 What is the difference between a Class and
an Object ? Give an example.

Exercise 1.2 Class Interpretation

 What classes would you create for the
following lists of objects?
1. 747, Lear jet, twin engine plane, stealth

bomber

2. laser printer, dot matrix printer, ink jet
printer, fax machine, photocopier

3. Prodigy, Compuserve, America On-line,
Erol

4. Fog-light, headlight, blinker, brake light,
back-up light, turn signal

1/20/2013

5

Object-Oriented Concepts
(You will be Graded by these!!)

 What is Reuse/Reusability?
The sharing of common components within a

single project and across multiple projects

 What is Generalization?
The relationship that organizes classes based

on similarities and differences. Example?

 What is Inheritance?
The sharing of features (e.g., structure and

behavior among classes related by
generalization. Example ?

Reusability
 A good software design solves a specific problem but is

general enough to address future problems (for example,
changing requirements)

 Experts do not solve every problem from scratch

 They reuse solutions that have worked for them in the
past

 Goal for the software engineer:

 Design the software to be reusable across application
domains and designs

 How?

 Use design patterns and frameworks whenever possible

Copyright @ Dr. M. Brian Blake, University of Notre Dame

Design Patterns and Frameworks
 Design Pattern:

 A small set of classes that provide a template solution to a
recurring design problem

 Reusable design knowledge on a higher level than data
structures (link lists, binary trees, etc)

 Framework:

 A moderately large set of classes that collaborate to carry
out a set of responsibilities in an application domain.

 Examples: User Interface Builder

 Provide architectural guidance during the design phase

 Provide a foundation for software components industry

Copyright @ Dr. M. Brian Blake, University of Notre Dame

Patterns are used by many people
 Chess Master:

 Openings

 Middle games

 End games

 Writer

 Tragically Flawed Hero
(Macbeth, Hamlet)

 Romantic Novel

 User Manual

 Architect

 Office Building

 Commercial Building

 Private Home

 Software Engineer

 Composite Pattern: A
collection of objects needs to
be treated like a single object

 Adapter Pattern (Wrapper):
Interface to an existing
system

 Bridge Pattern: Interface to an
existing system, but allow it to
be extensible

Copyright @ Dr. M. Brian Blake, University of Notre Dame

OO Concepts
 What is Abstraction?
Generalizing such that design focus is on the

inherent aspects of an entity and not those that
are accidental of specialized. Example ?

Why is this important?

 What is Encapsulation?
Also information hiding, it consists of separating

aspects of an object, which are accessible to
other objects, from the internal implementation
details of the object. Example ?

Why is this important?

Copyright @ Dr. M. Brian Blake, University of Notre Dame

OO Concepts
 What is Sharing ?
Allows functionality and total modules to be

implemented in various areas of the software
system

 How does inheritance promote sharing ?

 What is Scalability ?
This is that property of a software system that

allows other components to enter seamlessly.

1/20/2013

6

Copyright @ Dr. M. Brian Blake, University of Notre Dame

My OO Philosophy
 Software design is not yet a engineering

science, still subjective in some ways

 Believe in the basics
Scalability, Encapsulation, Reusability,

Abstraction, Polymorphism

 Show me the above and you will do well
in the class.

 << THE TOOLBOX PHILOSPHY>>

Objected-Oriented Design Wrap-up

 Software Engineering
 Is it engineering?

 Classes and Objects

 Object-Oriented Technology Concepts
 Inheritance, Polymorphism, Generalization,

Abstraction etc.

 My Philosophy - Think CONCEPTS!!

Software Engineering

Professor M. Brian Blake

Lecture 2: The Software Engineering Lifecycle

Copyright @ Dr. M. Brian Blake, University of Notre Dame

History of Selected OO
Development Methodologies
 Booch

 Originated for Ada development in the defense industry by Grady Booch
 Heavier emphasis on design process
 Extensive real-time and packing constructs
 Comparatively complex notation

 Objectory
 Originated in Swedish telecommunications market by Ivar Jacobsen
 Popularized Use Cases
 Heavy emphasis on textual description
 Comparatively weak design phase

 Shlaer/Mellor
 Originated in Berkeley Laboratories
 Strong on information modeling
 Real-time orientation
 Discontinuities between analysis and design
 More formal and less flexible
 Less sophisticated to support complexities

History of Selected OO Development
Methodologies

 Object Modeling Technique (OMT)
 Developed in early 1990’s, highly accepted among the software

environment

 an object-oriented methodology originally developed at GE Research
and Development Center. It covers the system development process
from conceptualization phase through implementation based on there
complementary views

 Rumbaugh, Blaha, Premerlani, Eddy, Lorensen

 OMT represented the first total solution
 Method - OMT methodology

 Automation - OMT Case Tool (Rational)

 Maturity - Training, Mentoring, Consulting, System Integration

First real collaboration of Object Technologist, led to later
unification

History of Selected OO Development
Methodologies

 Unified Modeling Language (UML)
 Early development around 1996-97

 First real publications by authors October, November and December of
1998

 Newest Language, authors do not commit to a process of development
(with reason)

 Combines the best of OMT, Objectory, Booch and Schlaer Mellor

 Rumbaugh, Booch, Jacobsen “Three Amigos”

 We will use the OMT (waterfall) process on UML
notations
 Great backbone for Object-oriented design

 OMT is a “tried-and-true” methodology

 To date, most designers use UML notation but still map development
processes around OMT design process

 UML fosters a hybrid development approach

 We will attack OMT using mostly UML notations and semantics

1/20/2013

7

The OMT Process
 Use Case

 This view is shared by both OMT and
UML.

 It is the initiation step that provides the
requirements for the system.

 Analysis Model
Object Model

 What are the objects?

 How are they related?

 Dynamic Model
 What are the object states?

 What events cause the state to
change?

 Functional Model
 What are the processes?

Things

FunctionsInteractions

Three Complementary Views of
an OMT System

How do the models relate?

 Dynamic models shows the sequence of
changes to the objects’ states

 Functional model shows details of complex
algorithms for operations on the objects

 Basically, the object model shows the
structure on which the other two models
operate on.

General Definition of Software
Lifecycle

 Software lifecycle:
Set of activities and their relationships to each

other to support the development of a software
system

 Typical Lifecycle questions:
Which activities should I select for the software

project?

What are the dependencies between activities?

How should I schedule the activities?

Waterfall Lifecyle
Professor Blake’s

Conceptualization

Deployment

Integration and Test

Implementation

Object Design

System Design

Analysis

Software Lifecycle Activities
Bruegge (10 years later)

Subsystems

Structured By

class...
class...
class...

Source
Code

Implemented
By

Solution
Domain
Objects

Realized By

System
Design

Object
Design

Implemen-
tation

Testing

Application
Domain
Objects

Expressed in
Terms Of

Test
Cases

?

Verified
By

class....?

Requirements
Elicitation

Use Case
Model

Analysis

Variation of waterfall lifecycles
 Incremental Lifecycle

 Full lifecycle, but over
and over again

 V-Shaped
 Promotes either parallel

paths or significant
depth in advance

 Efficient for large
application and big
development teams

1/20/2013

8

Rational Unified Process
IBM’s Flavor of Waterfall

Spiral Model – Barry Boehm

 Identifying
Characteristics
 Run through the

same cycle but at
increasing
degrees of detail

 6 month to 2 year
iterations
depending on
product

 Used this model
within the
Department of
Justice

Agile Software Development
 Identifying

Characteristics

 Not really a
process, but
development
approach

 Absolutely
requires close
stakeholder
interaction

 Works best on the
site of the
customer or if you
have a really
knowledgeable
Subject Matter
Expert (SME)

 A traditionalist’s
nightmare

 Measuring risk
is difficult.

Copyright @ Dr. M. Brian Blake, University of Notre Dame

Exercise 1.1 Sample Objects

Convertible Airline Computer
Network

Engine
Chasis
Steering W heel
Brake
Accelerator
Radio
Tire
Auto Light
W indshield
W iper

Airplane
Terminal
Baggage Claim
Schedule
Ticket
Reservation
Pilot
Flight Attendant
Passenger
Flight Plan
Stock Holder
Gate

File
Protocol
Server
Workstation
Cable
Port
Printer
Disk
Process
Test Equipment
Access Priviledge

Exercise 1.2 Suggested Classes

 1. Airplane

 2. Printer - Things that Jam

 3. On-line Service

 4. Light, Auto Light, Motor Vehicle Light

 Attributes, Operations, Associations, etc. on
Lecture 3 (THE OBJECT MODEL)

