
Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

SOFTWARE ENGINEERING: AGILE
DEVELOPMENT
Professors M. Brian Blake and Iman Saleh

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Waterfall Methods…

•  How do you feel about waterfall practices?
•  How would you start a project otherwise?
•  What are the benefits of waterfall?
•  What are the limitations of waterfall?

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Introduction to Agile Development
•  http://www.youtube.com/watch?v=OJflDE6OaSc

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

A Manifesto for Agile Software Development

•  Irritated with heavyweight software engineering
practices that did not seem to fit well with smaller
projects with ever-evolving requirements.

•  In February 2001, 17 software engineers met at
Snowbird to create the “Manifesto for Agile
Software Development”

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Manifesto for Agile Software Development
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

12 Principles: Agile Software Development
•  Customer satisfaction by rapid delivery of useful software

•  Welcome changing requirements, even late in development

•  Working software is delivered frequently (weeks rather than months)

•  Working software is the principal measure of progress

•  Sustainable development, able to maintain a constant pace

•  Close, daily cooperation between business people and developers

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

•  Face-to-face conversation is the best form of communication (co-
location)

•  Continuous attention to technical excellence and good design enhances
agility.

•  Simplicity--the art of maximizing the amount of work not done--is
essential.

•  The best architectures, requirements, and designs emerge from self-
organizing teams.

•  At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

12 Principles: Agile Software Development

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Software Engineering Methods

Adaptive Predictive

Agile

Low criticality
Senior developers
Requirements change often
Small number of developers
Culture that thrives on chaos (?!)

Plan-driven home ground

High criticality
Junior developers

Requirements do not change often
Large number of developers
Culture that demands order

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Extreme Programming (XP)
One Flavor of Agile Development

•  Rapid feedback.
•  Confronting issues early results in more time for resolving issues.

This applies both to client feedback and feedback from testing.
•  Simplicity.

•  The design should focus on the current requirements.
•  Simple designs are easier to understand and change than complex

ones.
•  Incremental change.

•  One change at the time instead of many concurrent changes.
•  One change at the time should be integrated with the current

baseline.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

XP Mantras
• Embracing change.

•  Change is inevitable and frequent in XP projects.
•  Change is normal and not an exception that needs to be avoided.

• Quality work.
•  Focus on rapid projects where progress is demonstrated frequently.
•  Each change should be implemented carefully and completely.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

XP Iteration

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much planning in XP?
•  In XP, planning is driven by requirements and
their relative priorities.

•  Requirements are elicited by writing stories with the client.

•  Stories are high-level use cases that encompass a set of coherent

features.

•  Developers then decompose each story in terms of development

tasks that are needed to realize the features required by the story.

•  Developers estimate the duration of each task in terms of days.

•  If a task is planned for more than a couple of weeks, it is further

decomposed into smaller tasks.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much planning in XP?

• Team Organization

• Production code is written in pairs.

•  Individual developers may write prototypes for
experiments or proof of concepts, but not production
code

• Moreover, pairs are rotated often to enable a better

distribution of knowledge throughout the project.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much planning in XP?
•  Ideal weeks

•  Number of weeks estimated by a developer to implement the
story if all work time was dedicated for this single purpose.

•  Fudge Factor:
•  Factor to reflect overhead activities (meetings, holidays, sick

days...)
•  Also takes into account uncertainties associated with planning.

•  Project velocity:
•  Inverse of ideal weeks

•  i.e., how many ideal weeks can be accomplished in fixed time.
•  Heuristic for new teams with no previous experience in XP

•  Start with a fudge factor of three (i.e., three actual weeks for one
ideal week)

•  Lower this factor as time progresses.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much planning in XP?
•  Stacks

•  After estimating the effort needed for each story, the client and the
developers meet to assign specific stories to releases, which
correspond to versions of the system that will be deployed to the
end user.

•  The user stories are organized into stacks of related functionality.
•  Prioritization of stacks

•  The client prioritizes the stacks so that essential requirements can
be addressed early and optional requirements last.

•  Release Plan
•  Specifies which story will be implemented for which release and

when it will be deployed to the end user.
•  Schedule

•  Releases are scheduled frequently (e.g., every 1–2 months) to
ensure rapid feedback from the end users.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much reuse in XP?
•  Simple design

•  Developers are encouraged to select the most simple solution that
addresses the user story being currently implemented.

•  No design reusability
•  XP differs from conventional methodologies because it does not

focus on the system architecture, which would allow such reuse to
be planned up front.

•  XP argues, that the system architecture can be refined and
discovered one story at the time, as the prototype evolves towards
the complete system.

•  Focus on Refactoring
•  Design patterns might be introduced as a result of refactoring,

when changes are actually implemented.
•  Reuse discovery only during implementation

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much modeling in XP?
•  No explicit analysis/design models

•  XP goal: Minimize the amount of documentation produced beside
the code.

•  The assumption is that fewer deliverables reduces the amount of
work and duplication of issues.

•  Models are only communicated among participants
•  The client is seen as a “walking specification”

•  Source Code is the only external model
•  The system design is made visible in the source code by using

explicit names and by decomposing methods into many simpler
ones (each with a descriptive name).

•  Refactoring is used to improve the source code.
•  Coding standards are used to help developers communicate using

only the source code.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Models in XP (Story-Based)

Source Code!

class...!
class...!
class...!

Refactoring:!
The source code is !
transformed according to !
refactoring rules (program!
transformation)!

Stories	

Stories	

generate source code	

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much process in XP?
•  Very simple iterative life cycle model with activities: planning, design,

coding, testing and integration.
•  Planning occurs at the beginning of each iteration.
•  Design, coding, and testing occur incrementally in rapid

succession.
•  Source code is continuously integrated into the main branch, one

contribution at the time.
•  Unit tests for all integrated units are used for regression testing.

•  Constraints on these activities:
•  Test first. Unit tests are written before units. They are written by

the developer.
•  Write tests for each new bug. When defects are discovered, a

unit test is created to reproduce the defect. After the defect is
repaired all unit tests are run again.

•  Refactor before extending. To ensure that the design does not
decay as new features are added.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much control?

• Reduced number of formal meetings
•  Status is communicated in the team in a daily stand up meeting.
•  Information sharing only, no discussions to keep the meeting short.

• No inspections and no peer reviews
•  Pair programming is used instead.
•  All production code is written in pairs, review occurs during coding.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

How much control?

• Self-organizing System with a Leader

•  The leader communicates the vision of the system.

•  The leader does not plan, schedule or budget (not a project manager)

•  The leader establishes an environment based on collaboration, shared
information, and mutual trust.

•  The leader decides when to build consensus and when to dictate.

•  The leader ensures that a product is shipped.

•  Makes sure that participants pull the project in the same direction

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Summary: XP Methodology
Planning Collocate the project with the client , Write user stories with

the client, Plan frequent small releases (1-2 months)
Create schedule with release planning, Kick off an iteration
with iteration planning, create programmer pairs, allow
rotation of pairs

Modeling Select the simplest design that addresses the current story
Use a system metaphor to model difficult concepts
Write code that adheres to standards. Refactor whenever
possible

Process Code unit test first, do not release before all unit tests pass,
write a unit test for each uncovered bug, integrate one pair at
the time

Control Code is owned collectively, Adjust schedule, Rotate pairs,
Start the day with a status stand-up meeting, Run acceptance
tests often and publish the results

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Scrum

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Scrum Roles

•  Core roles (often referred to as pigs)
•  Product Owner
•  Development Team
•  ScrumMaster

•  Ancillary roles (chickens)
•  Stakeholders
•  Managers

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Scrum Roles

•  Product Owner

•  represents the stakeholders and is the voice of the customer.
•  writes customer-centric items (typically user stories), prioritizes them, and

adds them to the product backlog.
•  Development Team

•  A self-organizing team responsible for delivering potentially shippable
product increments at the end of each Sprint.

•  ScrumMaster
•  accountable for removing impediments to the ability of the team to deliver

the sprint goal/deliverables.
•  The ScrumMaster is not the team leader, but acts as a buffer between the

team and any distracting influences.
•  A key part of the ScrumMaster's role is to protect the Development Team

and keep it focused on the tasks at hand.
•  Stakeholders: are the customers, vendors.
•  Managers: People who control the work environment.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Scrum Terminology

•  Product backlog

•  A prioritized list of high-level requirements.
•  Sprint backlog

•  A prioritized list of tasks to be completed during the sprint.
•  Stories

•  High-level use cases that encompass a set of coherent features.
•  Daily Scrum

•  A daily standup meeting where each team member answers three
questions:
•  What have you done since yesterday?
•  What are you planning to do today?
•  Any impediments?

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

In-Class Exercise

Form groups, assign a
scrum master, define
your product backlog,

sprint backlog and
plan a 2-week Sprint

for your project

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Any Questions?

iman@miami.edu

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Any Questions?

iman@miami.edu

