SOFTWARE ENGINEERING: DESIGN
PATTERNS

Professors M. Brian Blake and Iman Saleh

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Object Design

Object design is the process of adding details to the
requirements analysis and making implementation
decisions

The object designer must choose among different ways
to implement the analysis model with the goal to
rr]llmmlze execution time, memory and other measures
of cost

Object Design: lterates on the models, in particular the
object model and refine the models

Object Design serves as the basis of implementation

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

-
Object Design Activities

- [dentification of existing components

- Full definition of associations

- Full definition of classes

- Specifying the contract for each component
- Choosing algorithms and data structures

- [dentifying possibilities of reuse

- Optimization

- Increase of inheritance

- Decision on control

- Packaging

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

M -

0(~<’:3 Al
$ey ;"'0' e
.',,. poreseeed

LI‘ H

M’" T

Twwe oy ﬁ'l—'b‘.

Julian Street Inn - San Jose, CA

Architect: Christopher Alexander

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Design Patterns: History and Observations

- 1977/79 — Patterns originated as an architectural concept by
Christopher Alexander

- “Each pattern is a three-part rule, which expresses a relation between
a certain context, a problem, and a solution.”

- 1987 — A small pattern language for Smalltalk is developed based on
Alexander’s idea

- 1995 — The Gang of Four (GoF) published the Design Patterns book
[Gamma et al]

- “Strict modeling of the real world leads to a system that reflects
today’s realities but not necessarily tomorrow’s.”

- "Designing object-oriented software is hard and designing reusable
object-oriented software is even harder.”

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Why Patterns?

A design pattern describes a problem which occurs
over and over again in our environment. Then it
describes the core of the solution to that problem, in
such a way that you can use the this solution a million
times over, without ever doing it the same way twice.

A solution that worked in the past can be used by
designers to save time, increase reusability and
flexibility of their software, and avoid common bad
practices.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

GoF Classification of Design Patterns
By Purpose: What a pattern does. ..

Concern the process of object
Creational [Factory] creation

Structural [Composite Deal with the composition of classes
Adapter, Facade] or objects

Patterns

Characterize the ways in which

Behavioral [Strategy] classes or objects interact and
distribute responsibility

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

GoF Classification of Design Patterns
By Scope: What the pattern applies to...

- Focus on the relationships between

Class [Ex: Factory, classes and their subclasses
Adapter] - Static, compile-time relationships

- Involve inheritance reuse

Patterns

Object [Ex: Abstract - Deal with object relationships
Factory, Strategy] - Dynamic, can be changed at runtime
- Involve composition reuse

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Factory

Define an interface for creating an object, but let
subclasses decide which class to instantiate.

The class to be instantiated is decided at M

runtime.

Used when you don’t know ahead of time what class
object you need

All potential classes must inherit from the same parent
class

Encapsulate object creation

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Factory

- Example: Randomly generating an enemy ship in a game

Rocket

D uro

<factory> <abstract>

EnemyShipFactory EnemyShip
—> ‘
+ makeEnemyShip(String) : Ship -name : String
- amtDamage : double

+ followHeroShip() : void

+ displayEnemyShip() : void
+ enemyShipShoots() : void
+ setDamage(double) : void
+ getDamage() : double

makeEnemyShip

Ship Factory

UFOEnemyShip

+ setName(String) : void + setName(String) : void
+ getName() : String + getName() : String

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh * Class diagram by Derek Banas

e
Strategy

- Define a family of algorithms, encapsulate
each one, and make them interchangeable.

- We don’ t want to support all the algorithms if we don’ t
need them.

- If we need a new algorithm, we want to add it easily
without disturbing the application using the algorithm.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Strategy

Context

< Strategy

+AlgorithmInterface()

A

+ContextInterface()

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

+AlgorithmInterfacel() +AlgorithmInterface() +AlgorithmInterface()

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

e
Strategy

- Example: A class wants to decide at run-time what
algorithm it should use to sort an array. Many different sort
algorithms are already available.

SortArray Strategy
~ sortStrategy R

Sort() hd Sort()

A

BubbleSort QuickSort MergeSort

Sort() Sort() Sort()

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Composite
I
- Compose objects into tree structures to ——
represent part-whole hierarchies. I
[
- Composite lets clients treat individual objects [

and compositions of objects uniformly. This is
called recursive composition.

- It makes it easy to add new kinds of components

- It makes clients simpler, since they do not have to know if
they are dealing with a leaf or a composite component

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Composite

Client | ————— e Component Ioc

Operation{)
Add{Component)
Remove{Component)
GetChild(int)

A

Leaf Composite

Operation() Operation{) &--—-——-—--F-—-=-—--—--—- a. ration();
Add{Component)
Remove(Component)
GetChild(int)

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Composite

- Example: A GUI has window objects which can contain
various GUI widgets such as, buttons, text boxes and menus.

A window can also contain widget container objects which
can hold other widgets.

Component

quw()

A

WidgetContainer |, .
Button TextBox O —
Draw() components
Draw() Draw() Add(Component c)
Remove(Component)
GetChild(int)

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Facade

- Provides a unified interface to a set of objects in a subsystem.

- A facade defines a higher-level interface that makes the
subsystem easier to use (i.e. it abstracts out the gory details)

client classes

T, e

N\ / =
/ 7 \?E
b subsystem classes / =

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Adapter

* Allows 2 classes with incompatible interfaces «

to work together \

« Used to provide a new interface to existing

legacy components (Interface engineering, /
reengineering).

« Also known as a wrapper

Clent |———m Target | P

Requesty() SpecificRequest{)
(implementation)
Adapter
Request() O-f-------- SpecificRequest() H

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

.
Adapter

« Delegation is used to bind an Adapter and an Adaptee
 Interface inheritance is use to specify the interface of the

Adapter class.

DrawingEditor ———w# Shape — TextView
BoundingBox{) GetExtent()
CreateManipulatory()
fext
Line TextShape
BoundingBox() BoundingBox() D P s retum text->GetExtent() H
CreateManipulator() CreateManipulator() O-f----+
|
|
=== retum new TextManipulator

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Delegation as alternative to Implementation
Inheritance

- Delegation is a way of making composition as powerful for
reuse as inheritance

- In Delegation two objects are involved in handling a

request
- Areceiving object delegates operations to its delegate.

- The developer can make sure that the receiving object does not allow the client to
misuse the delegate object

Client calls Receiver | —2¢l€gates 0/ Delegate

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Delegation instead of Implementation

Inheritance

Inheritance: Extending a Base class by a new operation or overwriting

an operation.

Delegation: Catching an operation and sending it to another object.
Which of the following models is better for implementing a stack?

List

Q +Add()
+Remove()

PN

Stack

+Push()
+Pop()

+Top()

List

f Stack

+Push()
+Pop()
+Top()

Remove()
Add()

» Problem with implementation inheritance: Some

of the inherited operations might exhibit

unwanted behavior. What happ

ens if the Stack

user calls Remove() instead of Pop()?
Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

e
Delegation vs. Implementation Inheritance

- Delegation
- Pro:

- Flexibility: Any object can be replaced at run time by another one (as long as it
has the same type)

- Con:
- Inefficiency: Objects are encapsulated.

- Inheritance
- Pro:
- Straightforward to use
- Supported by many programming languages
- Easy to implement new functionality
- Con:
- Inheritance exposes a subclass to the details of its parent class

- Any change in the parent class implementation forces the subclass to change
(which requires recompilation of both)

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Frameworks

A framework is a reusable partial application that can be specialized to
produce custom applications.

Examples: Microsoft Foundation Classes (MFC), Ruby On Rails, Android
Application Framework.

Frameworks are targeted to particular technologies, such as data
processing or cellular communications, or to application domains, such
as user interfaces or Web applications.

The key benefits of frameworks are reusability and extensibility.

Software frameworks use the Hollywood Principle: "Don't call us, we'll call
you.” This means that the user-defined classes (for example, new
subclasses), receive messages from the predefined framework classes.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Other Patterns

- Observer: Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically

- Command: Encapsulate a request to an object, thereby letting
you parameterize clients with different requests, queue or log
requests, and support undoable operations.

- Bridge: Decouple am abstraction from its implementation so
that the two can vary independently.

- Singleton: Ensure a class only has one instance, and provide a
global point of access to it.

- And others...

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Conclusion

Design patterns
Provide solutions to common problems.
Lead to extensible models and code.

Can be used as is or as examples of interface
iInheritance and delegation.

Encourage reusable designs.

Apply the same principles to structure and to
behavior.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Any Questions?

iIman@miami.edu

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

