
Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

SOFTWARE ENGINEERING: DESIGN
PATTERNS
Professors M. Brian Blake and Iman Saleh

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Object Design
• Object design is the process of adding details to the

requirements analysis and making implementation
decisions

•  The object designer must choose among different ways
to implement the analysis model with the goal to
minimize execution time, memory and other measures
of cost.

• Object Design: Iterates on the models, in particular the

object model and refine the models

• Object Design serves as the basis of implementation

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Object Design Activities
•  Identification of existing components
• Full definition of associations
• Full definition of classes
• Specifying the contract for each component
• Choosing algorithms and data structures
•  Identifying possibilities of reuse
• Optimization
•  Increase of inheritance
• Decision on control
• Packaging

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Julian Street Inn - San Jose, CA

Architect: Christopher Alexander

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Design Patterns: History and Observations
•  1977/79 – Patterns originated as an architectural concept by

Christopher Alexander

•  “Each pattern is a three-part rule, which expresses a relation between
a certain context, a problem, and a solution.”

•  1987 – A small pattern language for Smalltalk is developed based on
Alexander’s idea

•  1995 – The Gang of Four (GoF) published the Design Patterns book
[Gamma et al]

•  “Strict modeling of the real world leads to a system that reflects
today’s realities but not necessarily tomorrow’s.”

•  "Designing object-oriented software is hard and designing reusable
object-oriented software is even harder.”

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Why Patterns?
• A design pattern describes a problem which occurs
over and over again in our environment. Then it
describes the core of the solution to that problem, in
such a way that you can use the this solution a million
times over, without ever doing it the same way twice.

• A solution that worked in the past can be used by
designers to save time, increase reusability and
flexibility of their software, and avoid common bad
practices.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

GoF Classification of Design Patterns

Patterns

Creational [Factory]

Structural [Composite
Adapter, Facade]

Behavioral [Strategy]

By Purpose: What a pattern does…

Concern the process of object
creation

Deal with the composition of classes
or objects

Characterize the ways in which
classes or objects interact and
distribute responsibility

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

GoF Classification of Design Patterns

Patterns

Class [Ex: Factory,
Adapter]

Object [Ex: Abstract
Factory, Strategy]

By Scope: What the pattern applies to…

-  Focus on the relationships between
classes and their subclasses

-  Static, compile-time relationships
-  Involve inheritance reuse

-  Deal with object relationships
-  Dynamic, can be changed at runtime
-  Involve composition reuse

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Factory

• Used when you don’t know ahead of time what class
object you need

• All potential classes must inherit from the same parent
class

• Encapsulate object creation

• Define an interface for creating an object, but let
subclasses decide which class to instantiate.

•  The class to be instantiated is decided at
runtime.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Factory
• Example: Randomly generating an enemy ship in a game

Rocket

UFO
Ship Factory

makeEnemyShip

* Class diagram by Derek Banas

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Strategy
• Define a family of algorithms, encapsulate

each one, and make them interchangeable.

• We don’t want to support all the algorithms if we don’t
need them.

•  If we need a new algorithm, we want to add it easily
without disturbing the application using the algorithm.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Strategy

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Strategy
• Example: A class wants to decide at run-time what

algorithm it should use to sort an array. Many different sort
algorithms are already available.

Strategy!
!

Sort()!

SortArray!
!

Sort()!
sortStrategy!

BubbleSort!
!

Sort()!

QuickSort!
!

Sort()!

MergeSort!
!

Sort()!

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Composite

• Compose objects into tree structures to
represent part-whole hierarchies.

• Composite lets clients treat individual objects

and compositions of objects uniformly. This is
called recursive composition.

•  It makes it easy to add new kinds of components

•  It makes clients simpler, since they do not have to know if
they are dealing with a leaf or a composite component

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Composite

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Composite

• Example: A GUI has window objects which can contain
various GUI widgets such as, buttons, text boxes and menus.
A window can also contain widget container objects which
can hold other widgets.

Component!
!

Draw()!

TextBox!
!

Draw()!

WidgetContainer!
!

Draw()!
Add(Component c)!

Remove(Component)!
GetChild(int)!

components!
Button!
!

Draw()!

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Façade

• Provides a unified interface to a set of objects in a subsystem.
• A facade defines a higher-level interface that makes the

subsystem easier to use (i.e. it abstracts out the gory details)

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Adapter

•  Allows 2 classes with incompatible interfaces
to work together

•  Used to provide a new interface to existing
legacy components (Interface engineering,
reengineering).

•  Also known as a wrapper

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Adapter

•  Delegation is used to bind an Adapter and an Adaptee
•  Interface inheritance is use to specify the interface of the

Adapter class.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Client! Receiver! Delegate!Delegates to !calls!

Delegation as alternative to Implementation
Inheritance

• Delegation is a way of making composition as powerful for
reuse as inheritance

•  In Delegation two objects are involved in handling a
request
•  A receiving object delegates operations to its delegate.
•  The developer can make sure that the receiving object does not allow the client to

misuse the delegate object

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Delegation instead of Implementation
Inheritance

•  Inheritance: Extending a Base class by a new operation or overwriting
an operation.

•  Delegation: Catching an operation and sending it to another object.
•  Which of the following models is better for implementing a stack?

+Add()	

+Remove()	

List	

Stack	

+Push()	

+Pop()	

+Top()	

+Push()	

+Pop()	

+Top()	

Stack	

Add()	

Remove()	

List	

  Problem with implementation inheritance: Some
of the inherited operations might exhibit
unwanted behavior. What happens if the Stack
user calls Remove() instead of Pop()?

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Delegation vs. Implementation Inheritance

•  Delegation
•  Pro:

•  Flexibility: Any object can be replaced at run time by another one (as long as it
has the same type)

•  Con:
•  Inefficiency: Objects are encapsulated.

•  Inheritance
•  Pro:

•  Straightforward to use
•  Supported by many programming languages
•  Easy to implement new functionality

•  Con:
•  Inheritance exposes a subclass to the details of its parent class
•  Any change in the parent class implementation forces the subclass to change

(which requires recompilation of both)

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Frameworks

•  A framework is a reusable partial application that can be specialized to
produce custom applications.

•  Examples: Microsoft Foundation Classes (MFC), Ruby On Rails, Android
Application Framework.

•  Frameworks are targeted to particular technologies, such as data
processing or cellular communications, or to application domains, such
as user interfaces or Web applications.

•  The key benefits of frameworks are reusability and extensibility.

•  Software frameworks use the Hollywood Principle: "Don't call us, we'll call
you.” This means that the user-defined classes (for example, new
subclasses), receive messages from the predefined framework classes.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Other Patterns
•  Observer: Define a one-to-many dependency between objects

so that when one object changes state, all its dependents are
notified and updated automatically

•  Command: Encapsulate a request to an object, thereby letting
you parameterize clients with different requests, queue or log
requests, and support undoable operations.

•  Bridge: Decouple am abstraction from its implementation so
that the two can vary independently.

•  Singleton: Ensure a class only has one instance, and provide a
global point of access to it.

•  And others…

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Conclusion
• Design patterns

• Provide solutions to common problems.
• Lead to extensible models and code.
• Can be used as is or as examples of interface
inheritance and delegation.

• Encourage reusable designs.
• Apply the same principles to structure and to
behavior.

Copyright @ Dr. M. Brian Blake and Dr. Iman Saleh

Any Questions?

iman@miami.edu

